“Passivity-Based Control of a Class of Blondel-Park Transformable Electric Machines”

Authors: Per J. Nicklasson, Romeo Ortega and Gerardo Espinosa-Perez,
Affiliation: SINTEF, Laboratoire des Signaux et Systemes (France) and Universidad de Mexico
Reference: 1997, Vol 18, No 4, pp. 273-305.

Keywords: Passivity-based control, electric machines, physical systems

Abstract: In this paper we study the viability of extending, to the general rotating electric machine´s model, the passivity-based controller method that we have developed for induction motors. In this approach the passivity (energy dissipation) properties of the motor are taken advantage of at two different levels. First, we prove that the motor model can be decomposed as the feedback interconnection of two passive subsystems, which can essentially be identified with the electrical and mechanical dynamics. Then, we design a torque tracking controller that preserves passivity for the electrical subsystem, and leave the mechanical part as a 'passive disturbance'. In position or speed control applications this procedure naturally leads to the well known cascaded controller structure which is typically analyzed invoking time-scale separation assumptions. A key feature of the new cascaded control paradigm is that the latter arguments are obviated in the stability analysis. Our objective in this paper is to characterize a class of machines for which such a passivity-based controller solves the output feedback torque tracking problem. Roughly speaking, the class consists of machines whose nonactuated dynamics are well damped and whose electrical and mechanical dynamics can be suitably decoupled via a coordinate transformation. The first condition translates into the requirement of approximate knowledge of the rotor resistances to avoid the need of injecting high gain into the loop. The latter condition is known in the electric machines literature as Blondel-Park transformability, and in practical terms it requires that the air-gap magnetomotive force must be suitably approximated by the first harmonic in its Fourier expansion. These conditions, stemming from the construction of the machine, have a clear physical interpretation in terms of the couplings between its electrical, magnetic and mechanical dynamics, and are satisfied by a large number of practical machines. The passivity-based controller presented here reduces to the well known indirect vector controller for current-fed induction machines. Our developments constitute an extension, to voltage-fed machines, of this de facto standard in industrial applications. Furthermore, our analysis provides it with a solid theoretical foundation.

PDF PDF (5182 Kb)        DOI: 10.4173/mic.1997.4.3

DOI forward links to this article:
[1] Joel Ferguson, Alejandro Donaire and Richard H. Middleton (2017), doi:10.1109/TAC.2017.2700995
[1] AILON, A. ORTEGA, R. (1993). An observer-based set-point controller for robot manipulators with flexible joints, System and Control Letters, 21, 329-335 doi:10.1016/0167-6911(93)90076-I
[2] ARNOLD, V.I. (1989). Mathematical Methods of Classical Mechanics, 2nd. ed..Springer-Verlag.
[3] BERGHUIS H. NIJMEIJER, H. (1993). A passivity approach to controller-observer design for robots, IEEE Trans. Rob. Aut., 9, 740-754 doi:10.1109/70.265918
[4] BODSON, M., CHIASSON, J.N., NOVOTNAK. R.T. REKOWSKI, R.B. (1993). High-Performance Nonlinear Feedback Control of a Permanent Magnet Stepper Motor, IEEE Trans. Cont. Syst. Tech., 1, 5-14.
[5] BODSON, M., CHIASSON, J. NOVOTNAK, R. (1994). High-Performance Induction Motor Control Via Input-Output Linearization, IEEE Control Systems Magazine, 14, 25-33 doi:10.1109/37.295967
[6] BOSE, B.K. (1993). Power Electronics and Motion Control - Technology Status and Recent Trends, IEEE Trans. Indust. Appl., 29, 902-909 doi:10.1109/28.245713
[7] BOYD, S. BARRAT. C. (1991). Linear controller design: Limits of performance, Prentice Hall, NY.
[8] BROGLIATO, R., ORTEGA, R. LOZANO, R. (1995). Globally Stable Nonlinear Controllers for Flexible Joint Manipulators: A Comparative Study, Automatica, 31, 941-956 doi:10.1016/0005-1098(94)00172-F
[9] BYRNES, C., ISIDORI, A. WILLEMS, J.C. (1991). Passivity, Feedback Equivalence and the Global Stabilization of Minimum Phase Nonlinear Systems, IEEE Trans Aut, Cont., 36, 1228-1240.
[10] CANUDAS DE WIT, C., ORTEGA, R. SELEME S.I. JR., (1993). Robot Motion Control using Induction Motor Drives, Proc. IEEE ICRA, Atlanta, Georgia, 533-538.
[11] CRANDALL, S.H. (1968). Dynamics of Mechanical and Electromechanical Systems, McGraw-Hill.
[12] DAWSON, D., HU, J. VEDAGARBHA, P. (1995). An adaptive controller for a class of induction motor systems, Proc. IEEE CDC, New Orleans, LA, USA, Dec. 13-15, 1567-1572.
[13] DESOER, C. VIDYASAGAR, M. (1975). Feedback Systems: Input-Output Properties, Academic Press.
[14] ESPINOSA-PEREZ, G (1993). Nonlinear Control of Induction Motors, Ph.D. Thesis, UNAM, Mexico.
[15] ESPINOSA-PEREZ, G., CAMPOS-CANTON, I., LARA-REYES, P. GOMEZ-BECERRIL, D. (1995). Passivity-based Speed Control of a 2-Phi Induction Motor: Experimental Results, Proc. IV IEEE International Power Electronics Congress, San Luis Potosi, Mexico, October 16-19.
[16] ESPINOSA-PEREZ, G. ORTEGA, R. (1994). State Observers are Unnecessary for Induction Motor Control, Systems and Control Letters, 23, 315-323 doi:10.1016/0167-6911(94)90063-9
[17] ESPINOSA-PEREZ, G. ORTEGA, R. (1995). An Output Feedback Globally Stable Controller for Induction Motors, IEEE Trans. Aut. Cont., 40, 138-143 doi:10.1109/9.362883
[18] ESPINOSA-PEREZ, G., NICKLASSON, P.J. ORTEGA, R. (1995). Control of Induction Motors in the Field Weakening Region, Proc. 34th IEEE CDC, New Orleans, LA, 2151-2152.
[19] FITZGERALD, A.E., KINGSLEY, C. JR. UMANS, S.D. (1983). Electric Machinery, McGraw-Hill.
[20] GÖKDERE, L.U. (1996). Passivity-based methods for control of induction motors, Ph.D. Thesis, University of Pittsburgh.
[21] GOLDSTEIN, H. (1980). Classical Mechanics, 2nd ed..Addison-Wesley.
[22] HEMATI, N. (1994). Non-Dimensionalization of the Equations of Motion for Permanent-Magnet Machines, Electric Machines and Power Systems, 23,541-556.
[23] HEMATI, N. LEU, M.C. (1992). A Complete Model Characterization of Brushless dc Motors, IEEE Trans. Indust. Appl., 28, 172-180 doi:10.1109/28.120227
[24] ISIDORI, A. (1995). Nonlinear Control Systems, 3rd ed..Springer-Verlag.
[25] ISIDORI, A. BYRNES, C. (1990). Output regulation of nonlinear systems, IEEE Trans. Aut. Cont., 35, 131-140 doi:10.1109/9.45168
[26] JIANG, Z. (1993). Quelques resultats de stabilisation rohuste: Applications a la commande, Ph.D. Thesis, Ecole des Mines de Paris.
[27] JIANG, Z.-P., HILL D. J. FRADKOV, A.L. (1996). A passification approach to adaptive non-linear stabilization, Systems and Control Letters, 28,73-84 doi:10.1016/0167-6911(96)00010-2
[28] KAILATH, T. (1980). Linear Systems, Prentice-Hall.
[29] KIM, K., ORTEGA, R., CHARARA, A. VILAIN, J.P. (1997). Theoretical and Experimental Comparison of Two Nonlinear Controllers for Current-fed Induction Motors, IEEE Trans. Cont. Sys:. Tech.
[30] KRSTIC, M., KANELLAKOPOULOS, I. KOKOTOVIC, P.V. (1995). Nonlinear and Adaptive Control Design, ISBN 0-471-12732-9.John Wiley and Sons.
[31] KOLESNIKOV, A. (1987). Analytical construction of nonlinear agregated regulators from a given set of invariant manifolds, Izvestia Vuishix Uchebnix Zavedenii: Electromexanika, 3, 100-108.
[32] KOKOTOVIC, P.V. (1992). The joy of feedback, IEEE Cont. Sys:. Mag., 12, 7-17.
[33] KRAUSE, P.C. (1986). Analysis of Electric Machinery, McGraw-Hill.
[34] KRENER, A.J. (1992). Optimal Model Matching Controllers for Linear and Nonlinear Systems, Proc. IFAC NOLCOS Conf., Bordeaux, France.
[35] KRSTIC, M., KANELLAKOPOULOS I. KOKOTOVIC, P. (1994). Passivity and parametric robustness of a new class of adaptive systems, Automatica, 30, 1703-1716 doi:10.1016/0005-1098(94)90073-6
[36] KUCERA, V. (1991). Analysis and design of discrete linear control systems, Prentice Hall, NY.
[37] LANCASTER P. TISMENETSKY, M. (1985). The Theory of Matrices, Academic Press.
[38] LANARI, L. WEN, J.T. (1992). Adaptive PD controller for robot manipulators, Syst. and Contr. Letters, 19, 119-129 doi:10.1016/0167-6911(92)90095-A
[39] LEONHARD, W. (1996). Control of Electrical Drives, 2nd edn..Springer-Verlag.
[40] LIPO, T. (1991). Synchronous Reluctance Machines - A Viable Alternative for AC Drives, Electric Machines and Power Systems,. 19, 659-672 doi:10.1080/07313569108909556
[41] LIU, X., VERGHESE, G., LANG, J. ÖNDER, M. (1989). Generalizing the Blondel-Park Transformation of Electrical Machines: Necessary and Sufficient Conditions, IEEE Trans. Cir. Syst., 36, 1085-1067 doi:10.1109/31.192414
[42] LORENZ, R.D., LIPO, T.A. NOVOTNY, D.W. (1994). Motion Control with Induction Motors, Proc. of the IEEE,.Special Issue on Power Electronics and Motion Control, 82, 1215-1240.
[43] LOZANO, R., BROGLIATO, B. LANDAU, I. (1992). Passivity and global stabilization of cascaded nonlinear systems, IEEE Trans. Aut. Control, 37, 1386-1388 doi:10.1109/9.159577
[44] MARINO, R., PERESEDA, S. VALIGI, P. (1993). Adaptive Input-Output Linearizing Control of Induction Motors, IEEE Trans. Aut. Control, 38, 208-221 doi:10.1109/9.250510
[45] MARINO, R. TOMEI, P. (1991). Dynamic output feedback linearization and global stabilization, Syst. and Control Letters, 17, 15-21 doi:10.1016/0167-6911(91)90036-E
[46] MARINO, R. TOMEI, P. (1995). Nonlinear Control Design, Geometric, Adaptive and Robust, ISBN 0-13-342635-1.Prentice Hall.
[47] MEISEL, J. (1996). Principles of Electromechanical-Energy Conversion, McGraw-Hill.
[48] MILLER, T. J. E. (1989). Brushless Permanent-Magnet and Reluctance Motor Drives, Oxford, Clarendon Press.
[49] NAM, K. ARAPOSTATHIS, A. (1988). A MRAC scheme for pure feedback systems, IEEE Trans. Aut. Control, 33, 803-811 doi:10.1109/9.1308
[50] NEWARK, J.I. FUFAEV, N.A. (1972). Dynamics of nonholonomic Systems, Vol. 33 of Translations of Mathematical Monographs, American Mathematical Society.
[51] NICKLASSON, P.J. (1996). Passivity-Based Control of Electric Machines, Ph.D. Thesis, ISBN 82-7119-905-6, NTH, Norway.
[52] NIJMEIJER, H. VAN DER SCHAFT, A. (1990). Nonlinear Dynamical Control Systems, Springer Verlag.
[53] OGASAWARA, S., AKAGI, H. NABAE, A. (1988). The Generalized theory of Indirect Vector Control for AC Machines, IEEE Trans. Indust Appl., 24, 470-478 doi:10.1109/28.2898
[54] ORTEGA, R. (1991). Passivity properties for stabilization of cascaded nonlinear systems, Automatica, 27, 423-424 doi:10.1016/0005-1098(91)90094-I
[55] ORTEGA, R. SPONG, M. (1989). Adaptive motion control of rigid robots: A tutorial, Automatica, 25, 877-888 doi:10.1016/0005-1098(89)90054-X
[56] ORTEGA, R., NICKLASSON, P.J. ESPINOSA-PEREZ, G. (1996). On Speed Control of Induction Motors, Automatica, 32, 455-460 doi:10.1016/0005-1098(95)00171-9
[57] PANTELEY, E. ORTEGA, R. (1997). Output feedback global tracking of interconnected Lagrangian systems, Automatica.
[58] POZHARITSKII, G.K. (1962). On Asymptotic Stability of Equilibria and Stationary Motions of Mechanical Systems and Partial Dissipation, Prikl. Mat. i Mekh., 1961, 25, 657-667. Engl. transl. in J. Appl. Math. Mech., 25.
[59] SONTAG, E. (1995). State-space and I/O stability for nonlinear systems, Feedback Control, Nonlinear Systems, and Complexity, Lecture Notes in Control and Information Sciences, 202, (Berlin, Springer-Verlag). (Eds) B.A. FRANCIS and A.R. TANNENBAUM.
[60] RODRIGUEZ, A. ORTEGA, R. (1990). Adaptive control of nonfeedback linearizable systems, Proc.. 11th World IFAC Cong., Aug. 13-17, Tallinn, USSR, 4, 121-124.
[61] SEELY, S. (1962). Electromechanical Energy Conversion, McGraw-Hill.
[62] SERON, M.M., HILL, D.J. FRADKOV, A.L. (1995). Nonlinear adaptive control of feedback passive systems, Automatica, 31, 1053-1060 doi:10.1016/0005-1098(95)00004-G
[63] SIRA-RAMIREZ, H., ORTEGA, R., PEREZ., R. GARCIA, M. (1995). Passivity-based controllers for the stabilization of DC-to-DC power converters, Proc. 34th IEEE CDC, New Orleans, LA, 3471-3476..Also to appear in Automatica.
[64] SPONG, M. VIDYASAGAR, M. (1989). Robot dynamics and control, John Wiley and Sons.
[65] TAYLOR, D.G. (1994). Nonlinear Control of Electric Machines: An Overview, IEEE Control Systems Magazine, 14, 41-51 doi:10.1109/37.334414
[66] TAKEGAKI, M. ARIMOTO, S. (1981). A new feedback method for dynamic control of manipulators, ASME J. Dyn. Syst Meas. Cont., 102, 119-125.
[67] TOMEI, P. (1991). A simple PD controller for robots with elastic joints, IEEE Trans. Aut. Cont., 36, 1208-1213 doi:10.1109/9.90238
[68] VAN DER SCHAFT, A. (1996). L2-Gain and Passivity Techniques in Nonlinear Control, Vol. 218.Springer-Verlag, LNCINS.
[69] VAS, P. (1990). Vector Control of AC Machines, Oxford, Clarendon Press.
[70] VERGHESE, G.C., LANG, J.H. CASEY, L.F. (1986). Analysis of Instability in Electrical Machines, IEEE Trans. Indust. Appl., 22, 853-864 doi:10.1109/TIA.1986.4504804
[71] WHITE, D.C. WOODSON, H.H. (1959). Electromechanical Energy Conversion, New York, Wiley.
[72] WILLEMS, J.L. (1972). A system theory approach to unified electrical machine analysis, Int. J. Contr., 15, 401-418 doi:10.1080/00207177208932158
[73] DE WIT, R, ORTEGA, R. MAREELS, L (1995). Indirect Field Oriented Control of Induction Motors is Robustly Globally Stable, Proc. 34th IEEE CDC, New Orleans, LA, 2139-2144..Also to appear in Automatica.
[74] YOULA, D.C. BONGIORNO, J.J. (1980). A Floquet theory of the general rotating machine, IEEE Trans. Circuits Syst., CAS-27, 15-19 doi:10.1109/TCS.1980.1084714
[75] ZRIBI, M. CHIASSON, J. (1991). Position Control of a PM Stepper Motor by Exact Linearization, IEEE Trans. Aut. Cont., 36, 620-625 doi:10.1109/9.76368

  title={{Passivity-Based Control of a Class of Blondel-Park Transformable Electric Machines}},
  author={Nicklasson, Per J. and Ortega, Romeo and Espinosa-Perez, Gerardo},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}