“Process Modelling of Chemical Reactors: Zero- versus Multi-dimensional Models”

Authors: Bjørn H. Hjertager,
Affiliation: Telemark University College
Reference: 1997, Vol 18, No 1, pp. 19-59.

Keywords: Multiphase, multidimensional, gas/liquid, gas/particle, bioreactor, fluidized bed

Abstract: Trends in modelling of flow processes in the chemical reactors are presented. Particular emphasis is given to models that use the multi-dimensional multi-fluid techniques. Examples are given for both gas/liquid as well as gas/particle reators.

PDF PDF (4625 Kb)        DOI: 10.4173/mic.1997.1.2

DOI forward links to this article:
[1] Fabrice Guillard and Christian Trägårdh (1999), doi:10.1002/(SICI)1521-4125(199903)22:3<187::AID-CEAT187>3.0.CO;2-9
[2] Håvard Lindborg, Vegard Eide, Steffen Unger, Siren T. Henriksen and Hugo A. Jakobsen (2004), doi:10.1016/j.compchemeng.2003.12.009
References:
[1] AMARASOORIYA, W.H. THEOFANOUS, T.G. (1988). Premixing of Steam Explosions, A Three-fluid Model, Preprint, University of California, Santa Barbara.
[2] BAKKER A. VAN DEN AKKER, H.E. (1991). A computational study on dispersing gas in a stirred reactor, Proceedings of the 7th European Congress on Mixing, pp. 199-208.
[3] BAKKER, A. (1992). Hydrodynamics of Stirred Gas-Liquid Dispersions, PhD Thesis, Delft University of Technology, The Netherlands.
[4] BOYSAN, F. et al. (1988). The growth of Cathanranthus roseus in stirred tank bioreactors, In Bioreactor Fluid Dynamics.Elsevier Applied Science Publ., pp. 245-258.
[5] BRÖRING, S., FISCHER, J., KORTE, T., SOLLINGER, S. LÜBBERT, A. (1991). Flow Structure of the Dispersed Gasphase in Real Multiphase Chemical Reactors Investigated by a New Ultrasound-Doppler Technique, Canadian J. Chem. Eng., 69, 1247-1256 doi:10.1002/cjce.5450690604
[6] CHAPMAN, S. COWLING, T.G. (1970). The mathematical theory of non-uniform gases, Third edition. Cambridge University Press.
[7] COWFER, J.A. MAGISTRO, A.J. (1983). Vinyl chloride, Encyclopedia of chemical technology, Third Edition, Vol. 23, J. Wiley and Sons, pp. 865-885.
[8] DAVIDSEN, M. (1991). Analysis of flow pattern in a bubble column, MSc Thesis.in Norwegian, Telemark Institute of Technology.
[9] DEARDORFF, J.W. (1971). On the magnitude of the Sub Grid Seale Eddy Coefficient, Journal of Computational Physics, 7,120-133 doi:10.1016/0021-9991(71)90053-2
[10] DING, J. GIDASPOW, D. (1990). A bubbling fluidization model using kinetic theory of granular flow, AIChE Journal, 36, 523-538 doi:10.1002/aic.690360404
[11] DREW, D. A. (1992). Analytical Modeling of Multiphase Flows, In R. T. Lahey, Jr., editor, Boiling Heat Transfer.Elsevier Science Publishers, pp. 31-84.
[12] ELLUL, I.R. ISSA, R.I. (1987). Prediction of the Flow of Integrated Gas and Liquid Phases through Pipe Bends, Chem. Eng. Res. Des., 65, 84-96.
[13] ENFORS, S.O., GEORGE., S. LARSON, G., KTH (1992). Private communications, .
[14] FISCHER, J., BRÖRING, S. LÜBBERT, A. (1992). Gas-Phase Properties in Stirred Tank Bioreactors, Chem. Eng. Technol., 15, 390-394 doi:10.1002/ceat.270150605
[15] GELDART, D. editor, (1986). Gas Fluidization Technology, .
[16] GEORGE, S., LARSSON, G., ENFORS, S.O., MORUD, K. HJERTAGER, B.H. (1992). Large-scale test of hydrodynamic-microbial model predictability and comparison with scale down reactor, 215 m3 bubble column at Svenska Jästfabrik AB, Sollentuna, Sweden, Joint interim report Tel-Tek/KTH.
[17] GIDASPOW, D. (1986). Hydrodnamics of fluidization and heat transfer: Super-computer modeling, Appl. Mech. Rev., 39.1, 1-23.
[18] GIDASPOW, D., ETTEHADIEH, B. BOUILLARD, J. (1985). Hydrodynamics of fluidization: Bubbles and gas compositions in the U-gas process, AIChE Symposium Series, 80.241, 57-64.
[19] GIDASPOW, D. THERDTHIANWONG, A. (1993). Hydrodynamics and SO2 sorption in a CFB loop, Proceedings of the 4th International Conference on circulating fluid beds, pp. 351-358.
[20] GIDASPOW, D. (1994). Multiphase flow and fluidization, continuum and kinetic theory descriptions, Academic Press.
[21] GOSMAN, A.D., LEKAKOU, C., POLITIS, S., ISSA, R.I. LOONEY, M.K. (1992). Multidimensional Modeling of Turbulent Two-Phase Flows in Stirred Vessels, AIChE Journal, 38.12, 1946-1956 doi:10.1002/aic.690381210
[22] HARVEY, P. S. GREAVES, M. (1982). Turbulent flow in an agitated vessel, Trans. Inst. of Chem Eng., 60, 195-210.
[23] HJERTAGER, B. H. (1986). Three-Dimensional Modeling of Flow, Heat Transfer, and Combustion, In Handbook of Heat and Mass Transfer.Houston, Gulf Publishing Company, pp. 1303-1350.
[24] HJERTAGER, B. H. (1993). Numerical Analyses of Multiphase Flows, Lecture Notes, Telemark Institute of Technology, Porsgrunn.
[25] HJERTAGER, B. H. SAMUELSBERG, A. (1992). Computational simulation of flow processes in fluidized bed reactors, KONA Powder and Particle, 10, 96-103.
[26] HJERTAGER, B. H. MORUD, K. (1993). Computational fluid dynamics simulation of bioreactors, Proceedings of Bioreactor Performance Symposium, 15-17 March, Helsingør, Denmark, pp. 47-61.
[27] HJERTAGER, B. H. MORUD, K. (1993). Multi-dimensional computer modelling of two-phase flow processes in bioreactors, Proceedings of Modelling for Improved Bioreactor Performance, 27-28 September, Bratislava, Slovakia, pp. 13-18.
[28] HJERTAGER, B. H. MORUD, K. (1995). Computational fluid dynamics simulation of bioreactors, Modelling, Identification and Control, 16.4, 177-191.
[29] HUDCOVA, V., MACHON, V. NIENOW, A.W. (1989). Gas-Liquid Dispersion with Dual Rushton Turbine Impellers, Biotechnology and Bioengineering, 34, 617-628 doi:10.1002/bit.260340506
[30] ISSA, R.I. GOSMAN, A.D. (1981). The computation of three-dimensional turbulent two-phase flows in mixer vessels, In Numerical methods in laminar and turbulent flow, pp. 827-838.
[31] ISHII, M. ZUBER, N. (1979). Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows. AIChE Journal, 25.5, 843-855.
[32] JAKOBSEN, H.A. (1993). On the Modelling and Simulation of Bubble Column Reactors using a Two-fluid Model, Dr. ing. Thesis, Norwegian Institute of Technology, Norway.
[33] JENKINS, J.T. SAVAGE, S.B. (1983). A theory for the rapid flow of identical, nearly elastic, spherical particles, Journal of Fluid Mechanics, 130, 187-202 doi:10.1017/S0022112083001044
[34] JU, S.Y., MULVAHILL, T.M. PIKE, R.W. (1990). Three-dimensional turbulent flow in agitated vessels with a nonisotropic viscosity turbulence model, Canadian J. of Chem. Eng., 68, 3-16 doi:10.1002/cjce.5450680101
[35] KRESTA, S.M. WOOD, P. (1991). Prediction of the three-dimensional turbulent flow in stirred tanks, AIChE Journal, 37.3, 448-460 doi:10.1002/aic.690370314
[36] LAI, K.Y. SALCUDEAN, M. (1987). Computer analysis of multi-dimensional turbulent buoyancy-induced two-phase flows in gas-agitated reactors, Computers and Fluids, 15(3), 218-295 doi:10.1016/0045-7930(87)90011-9
[37] LAHEY, R.T., JR. (1992). The Prediction of Phase Distribution and Separation Phenomena using Two-fluid Models, In Boiling Heat Transfer.Elsevier Science Publishers B.V., pp. 85-122.
[38] LAUNDER, B.F. SPALDING, D.B. (1974). The Numerical Computation of Turbulent Flows, Computer Methods in Applied Mechanics and Engineering, 3, 269-289 doi:10.1016/0045-7825(74)90029-2
[39] LOPEZ DE BERTODANO, M., LEE, S-J., LAHEY, R.T. JR. DREW, D.A. (1990). The Prediction of Two-Phase Distribution Phenomena Using a Reynolds Stress Model, Journal of Fluids Engineering, 112, 107 doi:10.1115/1.2909357
[40] LOPEZ DE BERTODANO, M., LAHEY, R.T., JR. JONES, O.C. (1994). Development of a k-epsilon Model for Bubbly Two-phase Flow, Transactions of the ASME, 116, 128-134 doi:10.1115/1.2910220
[41] LUN, C.K.K., SAVAGE., S. B., JEFFREY, D.J. CHEPURNIY, N. (1984). Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield, Journal of Fluid Mechanics, 140, 223-256 doi:10.1017/S0022112084000586
[42] MA, D. AHMADI, G. (1990). A thermodynamical formulation for dispersed multiphase turbulent flows - I, Int. Journal of Multiphase Flows, 16 (2), 323-340 doi:10.1016/0301-9322(90)90063-O
[43] MA, D. AHMADI, G. (1990). A thermodynamical formulation for dispersed multiphase turbulent flows - Part II: Simple shear flows for dense mixtures, Int. J. Multiphase Flows, 16, 342-351 doi:10.1016/0301-9322(90)90063-O
[44] MAHMOUDI, S.M. YIANNESKIS, M. (1991). The Variation of Flow Pattern and Mixing Time with Impeller Spacing in Stiffed Vessels with two Rushton Impellers, 7th European Congress on Mixing, Brugge, pp. 17-24.
[45] MANGER, E., SOLBERG, T., HJERTAGER, B. H. VAREIDE, D. (1995). Numerical simulation of the ticking hour glass, Int. J Multiphase Flow, 21(4), 561-567 doi:10.1016/0301-9322(95)00006-J
[46] MANGER, E., SOLBERG, T. HJERTAGER, B. H. (199). Numerical simulation of a vertical lifter, Proceedings of the 5th International Conference on Bulk Materials Handling and Transportation, Newcastle, N.S.W., Australia, 9-12 July, Vol. 1, pp. 199-204.
[47] MANGER, E. (1996). Modelling and simulation of gas/particle flow using curvilinear coordinates, Dr. ing. Thesis, Telemark Institute of Technology, Porsgrum, Norway.
[48] MANGER, E., SOLBERG, T. HJERTAGER, B. H. (1996). Simulation of dense particle flow in a CFB riser, 5th International Conference on circulating fluidized beds, May 28-31, Beijing, China.
[49] MATHIESEN, V., SOLBERG, T., MANGER, E. HJERTAGER, B. H. (1996). Modelling and predictions of multiphase flow in a pilotscale circulating fluidized bed, 5th International Conference on circulating fluidized beds. May 28-31, Beijing, China.
[50] MILLER, A. GIDASPOW, G. (1992). Dense, vertical gas-solid flow in a pipe, AIChE Journal, 38.11, 1801-1815 doi:10.1002/aic.690381111
[51] MIGDAL, D. AGOSTA, V.D. (1967). A source flow model for continuum gas-particle flow, Appl. Mech., 35, 860-865.
[52] MORUD, K.E. (1994). Turbulent Two-phase Flow in Bubble Columns and Stirred Fermenters, Dr. ing. Thesis, Telemark Institute of Technology, Porsgrunn, Norway.
[53] MORUD, K., SOLBERG, T. HJERTAGER, B.H. (1991). Turbulent two-phase air water flow in a bubble column, Paper X in Proceedings of the Bioprocess Engineering meeting in Sandnes, 2-4 April, Biotechnology Research Foundation, Lund, Sweden.
[54] MORUD, K. HJERTAGER, B. H. (1992). Multi-dimensional modelling of processes in bioreactors: Flow and biochemical reaction in a bubble column and flow in a stirred vessel, Proceedings of the Bioprocess Engineering meeting in Stockholm, pp. 40-57, Biotechnology Research Foundation, Lund, Sweden.
[55] MORUD, K. HJERTAGER, B.H. (1996). LDA measurements and CFD modelling of gas-liquid flow in a stirred vessel, Chemical Engineering Science, 51(2), 233-249 doi:10.1016/0009-2509(95)00270-7
[56] NORMAN, H., ENFORS, S.-O., HJERTAGER, B. H., LARSSON, G., MORUD, K., TRÄGÅRDH, C. TÖRNKVIST, M. (1993). Verification of integrated microbial and fluid dynamics: Saccharomyces cerevisiae production on 30 m3 scale, In Progress in Biotechnology, editors: Alberghina, Frontali, Sensi, Elsevier Publisher, Vol. 9, Part II, pp. 935-938, 1994.
[57] NORMAN, H., MORUD K., HJERTAGER. B.H., TRÄGÅRDH, C., LARSSON, G. ENFORS, S.-O. (1993). CFD modelling and verification of flow and conversion in a 1 m3 bioreactor, 3rd International Conference on Bioreactor and Bioprocess Fluid Dynamics, 14-16 September, Cambridge, England, pp. 241-258, 1993.
[58] NORMAN, H., HJERTAGER, B.H., MORUD, K., TRÄGÅRDH, C., ENFORS, S.-O., LARSSON, G. TÖRNKVIST, M. (1993). Measurements and CFD Simulation of sacchromyces cervisiae Production in a 30 m3 Stirred Tank Reactor, Proceedings of Bioreactor Performance Symposium, 15-17 March, Helsingør, Denmark, pp. 243-259.
[59] OUYANG, S., LIN, J. POTTER, O.E. (1993). Ozone decomposition in a 0,254 m diameter circulating fluidized bed reactor, Powder Technology, 74, 73-78 doi:10.1016/0032-5910(93)80010-8
[60] OUYANG, S. POTTER, O.E. (1993). Modelling of chemical reaction in a 0,254 m ID circulating fluidized bed, Proceedings of the 4th International conference on circulating fluid beds, pp. 422-427.
[61] POTTER, O.E. (1993). Private communication, .
[62] PATANKAR, S.V. (1980). Numerical Heat Transfer and Fluid Flow, McGraw-Hill.
[63] PATANKAR, S.V. SPALDING, D.B. (1972). A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-dimensional Parabolic Flows, Int. Journal of Heat and Mass Transfer, 15, 1787-1800 doi:10.1016/0017-9310(72)90054-3
[64] PATTERSON, G.K. (1991). Measurements and Modelling of Flow in Gas Sparged, Agitated Vessels, 7th European Congress on Mixing, Brugge, pp. 209-215.
[65] PLACEK, J. AND TAVLARIDES, L.L. (1985). Turbulent Flow in Stirred Tanks, Part I: Turbulent Flow in the Turbine Impeller Region, AIChE Journal, 3.7, 1113-1120 doi:10.1002/aic.690310709
[66] PLACEK, J., TAVLARIDES, L.L., SMITH, G.W. FORT, I. (1986). Turbulent flow in stirred tanks Part II: A two-scale model of turbulence, AIChE Journal, 32.11, 1771-1786 doi:10.1002/aic.690321103
[67] PERICLEOUS, K.A. PATEL, M.K. (1987). The source and sink approach in the modelling of stirred reactors, PCH PhysioyChemical Hydrodynamics, 12, 279-297.
[68] RANADE, V.V. JOSHI, J.B. (1990). Flow generated by a disc turbine: Part II - Mathematical modelling and comparison with experimental data, Trans IChemE, 68.A, 34-50.
[69] RODI, W. (1984). Examples of Turbulence-model Applications, In Turbulence Models and their Applications, Vol. 2, Paris, pp. 295-401.
[70] SAMUELSBERG, A. (1994). Modelling and simulation of fluidized bed reactors, Dr. ing. Thesis, Telemark Institute of Technology, Porsgrunn, Norway.
[71] SAMUELSBERG, A. HJERTAGER, B.H. (1995). Simulation of two-phase gas/particle flow and ozone decomposition in a 0-25 m ID riser, In Advances in Multiphase Flow - 1995.Amsterdam, Elsevier, pp. 679-688.
[72] SAMUELSBERG, A. HJERTAGER, B.H. (1996). Computational fluid dynamic simulation of an oxy-chlorination reaction in a full-scale fluidized bed reactor, 5th International Conference on circulating fluidized beds, May 28-31, Beijing, China.
[73] SAMUELSBERG, A. HJERTAGER, B.H. (1996). An experimental and numerical study of flow patterns in a circulating fluidized bed reactor, Int. J. Multiphase flow, 22 (3), 575-591 doi:10.1016/0301-9322(95)00080-1
[74] SAMUELSBERG, A. HJERTAGER, B.H. (1996). Computational modelling of gas particle flow in a riser, AIChE Journal, 42.6, 1536-1546 doi:10.1002/aic.690420605
[75] SMITH, T.J. REILLY, C.D. (1988). Predictions of the flow in fermentors and implications for scale-up, In Bioreactor Fluid Dynamics.Elsevier Applied Science Publ., pp. 431-441.
[76] SCHWARZ, M.P. TURNER, W.J. (1988). Applicability of the Standard k-epsilon Turbulence Model to Gas Stirred Baths, Appl. Math Modelling, 12.
[77] SHIH, Y.T., GIDASPOW, D. WASAN, D.T. (1987). Hydrodynamics of sedimentation of multisized particles, Powder Technology, 50,201-215 doi:10.1016/0032-5910(87)80065-7
[78] SPALDING, D.B. (1977). The Calculation of Free-convection Phenomena in Gas-Liquid Mixtures, ICHMT seminar 1976. In Turbulent Buoyant Convection.Hemisphere, pp. 569-586.
[79] SPALDING, D.B. (1980). Numerical Computation of Multi-phase Fluid Flow and Heat Transfer, Recent Advances in Numerical Methods in Fluids.Pineridge Press, pp. 139-168.
[80] SPALDING, D.B. (1985). Computer Simulation of Two-phase Flows with Special Reference to Nuclear Reactor Systems, In R. W. Lewis, K. Morgan, J. A. Johnson and W. R. Smith, editors, Computational Techniques in Heat Transfer.Pineridge Press, pp. 1-44.
[81] TADRIST, L. AZARIO, E. (1993). Analyses of two-phase flow in a circulating fluidized bed: Local measurements using Phase Doppler analyser, Proceedings of the 4th International Conference on Circulating fluidized beds.
[82] THEOLOGOS, K.N. MARKATOS, N.C. (1992). Modelling of flow and heat transfer in fluidized catalytic cracking riser-type reactors, Trans. IChemE, 70.A, 239-245.
[83] THEOLOGOS, K.N. MARKATOS, N.C. (1993). Advanced modelling of fluid catalytic cracking riser-type reactors, AIChE Journal, 39.6, 1007-1017 doi:10.1002/aic.690390610
[84] TAKEDA, H., NARASAKI, K., KITAJIMA, H., SUDOH, S., ONOFUSA, M. IGUCHI, S. (1993). Numerical Simulation of Mixing Flows in Agitated Vessels with Impellers and Baffles, Computers Fluids, 22 (2/3), 223-228 doi:10.1016/0045-7930(93)90054-D
[85] TORVIK, R. SVENDSEN, H.F. (1990). Modelling of slurry reactors, A fundamental approach. Chem. Eng. Sci., 45 (8), 2325-2332 doi:10.1016/0009-2509(90)80112-R
[86] TSUO, Y.P. GIDASPOW, D. (1990). Computations of flow-patterns in circulating fluidized beds, AIChE Journal, 36,885-896 doi:10.1002/aic.690360610
[87] TRÄGÅRDH, C. (1988). A hydrodynamic model for the simulation of an aerated agitated fed-batch fermentor, In Bioreactor Fluid Dynamics.Elsevier Applied Science Publ., pp. 117-134.
[88] TRÄGÅRDH, C., HEINZLE, E. SANER, E.U. (1990). Mathematical modelling of mixing and biokinetics in agitated tank fermentors, Proceedings the Fifth European Conference on Biotechnology, pp. 797-800.
[89] VAN SWAAIJ, W.P.M. ZUIDERWEG, F.J. (1972). Investigation of ozone decomposition in fluidized beds on the basis of a two-phase model, Proceedings of the European Symposium on Chemical reaction engineering, pp. B 9-25-36.


BibTeX:
@article{MIC-1997-1-2,
  title={{Process Modelling of Chemical Reactors: Zero- versus Multi-dimensional Models}},
  author={Hjertager, Bjørn H.},
  journal={Modeling, Identification and Control},
  volume={18},
  number={1},
  pages={19--59},
  year={1997},
  doi={10.4173/mic.1997.1.2},
  publisher={Norwegian Society of Automatic Control}
};