“Robust adaptive control of underwater vehicles: A comparative study”

Authors: Thor I. Fossen and Ola-Erik Fjellstad,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1996, Vol 17, No 1, pp. 47-61.

Keywords: ROV, AUV, adaptive control, nonlinear velocity observer, marine systems

Abstract: Robust adaptive control of underwater vehicles in 6 DOF is analysed in the context of measurement noise. The performance of the adaptive control laws of Sadegh and Harowitz (1990) and Slotine and Benedetto (1990) are compared. Both these schemes require that all states are measured, that is the velocities and positions in surge, sway, heave, roll, pitch and yaw. However, for underwater vehicles it is difficult to measure the linear velocities whereas angular velocity measurements can be obtained by using a 3 axes angular rate sensor. This problem is addressed by designing a nonlinear observer for linear velocity state estimation. The proposed observer requires that the position and the attitude are measured, e.g. by using a hydroacoustic positioning system for linear positions, two gyros for roll and pitch and a compass for yaw. In addition angular rate measurements will be assumed available from a 3-axes rate sensor or a state estimator. It is also assumed that the measurement rate is limited to 2 Hz for all the sensors. Simulation studies with a 3 DOF AUV model are used to demonstrate the convergence and robustness of the adaptive control laws and the velocity state observer.

PDF PDF (1275 Kb)        DOI: 10.4173/mic.1996.1.5

DOI forward links to this article:
[1] M. Caccia, G. Indiveri and G. Veruggio (2000), doi:10.1109/48.838986
[2] G. Antonelli, F. Caccavale, S. Chiaverini and L. Villani (2000), doi:10.1109/48.855403
[3] G. Antonelli, F. Caccavale, S. Chiaverini and L. Villani (1998), doi:10.1109/CDC.1998.762047
[4] Yuqian Liu, Jiaxing Che, Hongli Xu and Chengyu Cao (2015), doi:10.1145/2831296.2831343
[5] Mauro Candeloro, Asgeir J. Sørensen, Sauro Longhi and Fredrik Dukan (2012), doi:10.3182/20120919-3-IT-2046.00015
[6] Divine Maalouf, Vincent Creuze, Ahmed Chemori, Ivan Torres Tamanaja, Eduardo Campos Mercado, Jorge Torres Muñoz, Rogelio Lozano and Olivier Tempier (2015), doi:10.5772/59185
[7] Mohammad Reza Ramezani-al and Zahra Tavanaei-Sereshki (2018), doi:10.1177/0142331218790791
[8] Charita D. Makavita, Shantha G. Jayasinghe, Hung D. Nguyen and Dev Ranmuthugala (2019), doi:10.1016/j.apor.2019.02.016
[9] Divine Maalouf, Ahmed Chemori and Vincent Creuze (2015), doi:10.1016/j.oceaneng.2015.02.002
[10] Charita D. Makavita, Shantha G. Jayasinghe, Hung D. Nguyen and Dev Ranmuthugala (2021), doi:10.1007/s11804-021-00225-y
[11] Charita Darshana Makavita, Shantha Gamini Jayasinghe, Hung Duc Nguyen and Dev Ranmuthugala (2020), doi:10.1109/JOE.2018.2869508
[12] Charita Darshana Makavita, Shantha Gamini Jayasinghe, Hung Duc Nguyen and Dev Ranmuthugala (2019), doi:10.1109/TCST.2017.2757021
[13] Evan Wilt and Timothy Sands (2022), doi:10.3390/s22228723
[14] Erlend A. Basso, Henrik M. Schmidt-Didlaukies, Kristin Y. Pettersen and Asgeir J. Sorensen (2023), doi:10.1109/TAC.2022.3161372
[1] BERGHUIS, H. (1993). Model-Based Robot Control: From Theory to Practice, PhD thesis. University of Twente, Enschede, The Netherlands.
[2] FOSSEN, T.I. (1993). Comments on Hamiltonian Adaptive Control of Spacecraft, IEEE Transactions on Automatic Control, AC-38, 671-672 doi:10.1109/9.250547
[3] FOSSEN, T. I. (1994). Guidance and Corntol of Ocean Vehicles, John Wiley and Sons Ltd.
[4] FOSSEN, T.I. SAGATUN, O.E. (1995). Nonlinear modelling of marine vehicles in 6 degrees of freedom, International Journal of Mathematical Modelling of Systems, JMMS-1.
[5] FOSSEN, T.I. SAGATUN, S.I. (1991). Adaptive control of nonlinear systems: A case study of underwater robotic systems, Journal of Robotic Systems, JRS-8, 393-412 doi:10.1002/rob.4620080307
[6] GELB, A., KASPER, J.F. JR., NASH, R. A. JR., PRICE, C.F. SUTHERLAND, A.A. JR. (1988). Applied Optimal Estimation, MIT Press, Boston, Massachusetts.
[7] HEALEY, A.J. LIENARD, D. (1993). Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles, IEEE Journal of Ocean Engineering, OE-18, 327-339 doi:10.1109/JOE.1993.236372
[8] NARENDRA, K.S. ANNASWAMY, A.M. (1987). A new adaptive law for robust adaption without persistent excitation, IEEE Transactions on Automatic Control, AC-32, 134-145 doi:10.1109/TAC.1987.1104543
[9] SADEGH, N. HOROWITZ, R. (1990). Stability and robustness analysis of a class of adaptive controllers for robotic manipulators, International Journal of Robotics Research. 9,74-94 doi:10.1177/027836499000900305
[10] SAGATUN, S.I. FOSSEN, T.I. (1991). Lagrangian formulation of underwater vehicles´ dynamics, In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. Charlottesville, VA. pp. 1029-1034.
[11] SLOTINE, J.J.E. DI BENEDETTO, M.D. (1990). Hamiltonian adaptive control of spacecraft, IEEE Transactions on Automatic Control, AC-35, 848-852 doi:10.1109/9.57028
[12] SNAME The Society of Naval Architects Marine Engineers. (1950). Nomenclature for Treating the Motion of a Submerged Body Through a Fluid, In: Technical and Research Bulletin Nos 1-5.

  title={{Robust adaptive control of underwater vehicles: A comparative study}},
  author={Fossen, Thor I. and Fjellstad, Ola-Erik},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}