“Mathematical modeling of a rotary hearth coke calciner”

Authors: Hilde C. Meisingset and Jens G. Balchen,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1995, Vol 16, No 4, pp. 193-212.

Keywords: First principles modeling, distributed process, coke calcination, combustion, heat transfer

Abstract: A mathematical model of a rotary hearth coke calciner is developed. The model is based on first principles including the most important dynamic phenomena. The model is a thermodynamic model involving heat and mass transfer and chemical reactions. Fundamental mass and energy balance equations for the coke phase, the gas phase and the lining are formulated. For the gas phase, a stationary model is used. The equations are solved numerically, and simulated temperature profiles are shown in this paper.

PDF PDF (2757 Kb)        DOI: 10.4173/mic.1995.4.2

DOI forward links to this article:
[1] Aleksi Eskelinen, Alexey Zakharov, Sirkka-Liisa Jämsä-Jounela and Jonathan Hearle (2015), doi:10.1002/aic.14903
[2] Aleksi Eskelinen, Alexey Zakharov, Jonathan Hearle and Sirkka-Liisa Jämsä-Jounela (2016), doi:10.1016/j.ifacol.2016.10.120
[3] Sirkka-Liisa Jämsä-Jounela, Jose Valentin Gomez Fuentes, Jonathan Hearle, David Moseley and Alexander Smirnov (2018), doi:10.1016/j.conengprac.2018.08.020
[4] Jindi Huang, Jing Li, Mingzhou Li and Kang Yan (2019), doi:10.1252/jcej.18we128
[1] BRANDT, H. (1986). Petroleum coke calcining technology, In J. Bacha, J. Newman and J. White (eds), Petroleum Derived Carbons, number 303 in ACS Symposium Series (American Chemical Society, Washington DC).
[2] CHARETTE, A., KOCAEFE, D., CASTONGUAY, L. (1992). Study of green coke calcination, Light Metals, 619-622.
[3] COULSON, J. RICHARDSON, J. (1988). Chemical Engineering, Vol. 1.Pergamon Press, New York.
[4] DERNEDDE, E, CHARETTE, A., BOURGEOIS, T., CASTONGUAY, L. (1986). Kinetic phenomena of the volatiles in ring furnaces, Light Metals, 105, 589-592.
[5] FROMENT, G., BISCHOFF, K. (1990). Chemical Reactor Analysis and Design, John Wiley and Sons.
[6] GILCHRIST, J. (1977). Fuels, Furnaces and Refractories, Vol. 21 of International Series on Materials Science and Technology.Pergamon Press, New York.
[7] HOTTEL, H., SAROFIM, A. (1967). Radiative Transfer, McGraw-Hill Book Company.
[8] JONES, S. (1986). Anode carbon usage in the aluminium industry, In J. Bacha, J. Newman and J. White (eds), Petroleum Derived Carbons, number 303 in ACS Symposium Series (American Chemical Society, Washington DC).
[9] KANURY, A. (1977). Introduction to Combustion Phenomena, Vol. 2 of Combustion Science and Technology Book Series.Gordon and Breach Science Publishers.
[10] KOLBEINSEN, L. (1994). Personal communication, .
[11] KREITH, F., BLACK, W. (1980). Basic Heat Transfer, Harper and Row, New York.
[12] LI, K., FRIDAY, J. (1974). Simulation of coke calciners, Carbon, 12, 225-231 doi:10.1016/0008-6223(74)90064-5
[13] MARSH, H., (ed.) (1989). Introduction to Carbon Science, Butterworths, London.
[14] MODAK, A. (1978). Radiation from products of combustion, Fire research, 1, 339-361.
[15] PATANKAR, S. (1980). Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Company, New York.
[16] PERRON, J., BUI, R., NGUYEN, T. (1992). Modelisation d´un dour de calcination du coke de parole: I le modele, The Canadian Journal of Chemical Engineering, 70, 1108-1119 doi:10.1002/cjce.5450700611
[17] PERRON, J., POTOCNIK, V., BUI, R. (1988). Modelling of the coke calcining kiln, Proc. Int. Symp. Reduction and Casting of Aluminium.
[18] PERRY, R., GREEN, D. (1984). Perry´s Chemical Engineers´ Handbook, McGraw-Hill Book Company, New York.
[19] RHEDEY, P. (1967). Structural changes in petroleum coke during calcination, Transactions of Metallurgical Society of AIME, 239, 1084-1091.
[20] SÆLID, S. (1976). Modelling, estimation and control of a rotary cement kiln, Dr. lng. Thesis, The Norwegian Institute of Technology, Division of Engineering Cybernetics.
[21] SINGSTAD, P. (1992). Modeling and multivariable control of high pressure autoclave reactors for polymerization of ethene, Dr. Ing. Thesis, The Norwegian Institute of Technology. Division of Engineering Cybernetics.
[22] STORAKER, D. (1989). Måling og beregning av utslepp til luft frå oljeraffineri, Master´s thesis, The Norwegian Institute of Technology, Department of Mechanical Engineering, Thermal Energy Division. In Norwegian.

  title={{Mathematical modeling of a rotary hearth coke calciner}},
  author={Meisingset, Hilde C. and Balchen, Jens G.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}