“Computational fluid dynamics simulation of bioreactors”

Authors: Bjørn H. Hjertager and K. Morud,
Affiliation: Telemark University College and Telemark Technological R&D Centre (Tel-Tek)
Reference: 1995, Vol 16, No 4, pp. 177-191.

Keywords: Bioprocess, modeling, multiphase, chemical reactor

Abstract: Multi-dimensional models of flow processes in bioreactors are presented. Particular emphasis is given to models that use the two-fluid technique. The models use a two-equation turbuluence model and a Monod type kinetic reaction model. Predictions are given for both bubble column and mechanically stirred reactors.

PDF PDF (2257 Kb)        DOI: 10.4173/mic.1995.4.1

DOI forward links to this article:
[1] E. Delnoij, F.A. Lammers, J.A.M. Kuipers and W.P.M. van Swaaij (1997), doi:10.1016/S0009-2509(96)00515-5
[2] Xinyu Zhang and Goodarz Ahmadi (2005), doi:10.1016/j.ces.2005.04.033
[3] M. Rafique, P. Chen and M. P. Dudukovi (2004), doi:10.1515/REVCE.2004.20.3-4.225
[4] V. Vikas, C. Yuan, Z.J. Wang and R.O. Fox (2011), doi:10.1016/j.ces.2011.03.009
[5] A. Berzins, M. Toma, M. Rikmanis and U. Viesturs (2001), doi:10.1002/1521-3846(200105)21:2<155::AID-ABIO155>3.0.CO;2-Q
[6] E. Delnoij, J.A.M. Kuipers and W.P.M. van Swaaij (1997), doi:10.1016/S0009-2509(97)00268-6
[7] (2017), doi:10.1016/B978-1-78548-116-1.50008-2
[8] N. Panicker, A. Passalacqua and R.O. Fox (2020), doi:10.1016/j.ces.2020.115546
[9] Francesco Maluta, Maxime Pigou, Giuseppina Montante and Jérôme Morchain (2020), doi:10.1016/j.bej.2020.107536
[10] F. Nurhikmah, N. M. Zahari, M. H. Zawawi, Nurhanani A. Aziz and Aqil Azman (2020), doi:10.1063/5.0024634
[11] Hugo A. Jakobsen, Bente H. Sannas,, Sverre Grevskott and Hallvard F. Svendsen (1997), doi:10.1021/ie970276o
[1] AMARASOORIYA, W.H. THEOFANOUS, T.G. (1980). Premixing of steam explosions, A three-fluid model, Preprint.University of California, Santa Barbara.
[2] BAKKER, A. VAN DER AKKER, H.E. (1991). A computational study on dispersing gas in a stirred reactor, Proceedings of the European Congress on Mixing, pp. 199-208.
[3] BOYSAN, F. et al. (1988). The growth of Cathanranthus roseus in stirred tank bioreactors, In Bioreactor Fluid Dynamics.Elsevier Applied Science Publ. pp. 245-258.
[4] DAVIDSEN, M. (1991). Analysis of flow pattern in a bubble column MSc Thesis, in Norwegian. Telemark Institute of Technology.
[5] ENFORS, S.O., GEORGE, S. LARSON, G., KTH (1992). Private communications, .
[6] GOSMAN, A.D., LEKAKOU, C., POLITIS, S., ISSA, R.I. LOONEY, M.K. (1992). Multidimensional modeling turbulent two-phase flows in stirred vessels, AIChE Journal, 38, 1946-1956 doi:10.1002/aic.690381210
[7] GEORGE, S., LARSSON, G., ENFORS, S.O., MORUD, K. HJERTAGER, B.H. (1992). Large-scale test of hydrodynamic-microbial model predictability and comparison with scale down reactor, 215 m3 bubble column at Svenska Jästfabrik AB, Sollentuna, Sweden, Joint interim report TEL-TEK/KTH.
[8] HARVEY, P.S. GREAVES, M. (1982). Turbulent flow in an agitated vessel, Trans. Inst. of Chem. Eng., 60, 195-210.
[9] ISSA, R.I. GOSMAN, A.D. (1981). The computation of three-dimensional turbulent two-phase flows in mixer vessels, In Numerical methods in laminar and turbulent flow, pp. 827-838.
[10] JU, S.Y., MULVAHILL, T.M. PIKE, R.W. (1990). Three-dimensional turbulent flow in agitated vessels with a nonisotropic viscosity turbulence model, Canadian J. Chem. Eng., 68,3-16 doi:10.1002/cjce.5450680101
[11] KRESTA, S.M. WOOD, P. (1991). Prediction of the three-dimensional turbulent flow in stirred tanks, AIChE Journal, 37, 448-460 doi:10.1002/aic.690370314
[12] LAI, K.Y. SALCUDEAN, M. (1987). Computer analysis of multi-dimensional turbulent buoyancy-induced two phase flows in gas-agitated reactors, Computers and Fluids, 13, 215-295.
[13] LAUNDER, B.F. SPALDING, D.B. (1974). The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, 3, 269-289 doi:10.1016/0045-7825(74)90029-2
[14] LOPEZ DE BERTODANO, M., LEE, S.-J., LAHEY, R.T. JR. DREW, D.A. (1990). The prediction of two-phase distribution phenomena using a Reynolds stress model, Journal of Fluids Engineering, 112, 107 doi:10.1115/1.2909357
[15] MIGDAL, D. AGOSTA, V.D. (1967). A source flow model for continuum gas-particle flow, Appl. Mech., 35, 860-865.
[16] MORUD, K., SOLBERG, T. HJERTAGER, B.H. (1991). Turbulent two-phase air water flow in a bubble column, Paper XI in Proc. of the Bioprocess Engineering meeting in Sandnes, 2-4 April.Biotechnology Research Foundation, Lund, Sweden.
[17] MORUD, K. HJERTAGER, B.H. (1992). Multidimensional modelling of processes in bioreactors: Flow and biochemical reaction in a bubble column and flow in a stirred vessel, Proc. of the Bioprocess Engineering meeting in Stockholm, pp. 40-57.Biotechnology Research Foundation, Lund, Sweden.
[18] NORMAN, EL, ENFORS, S.-0, HJERTAGER, B.H., LARSSON, G., MORUD, D., TRÄGÅRDH, C. TÖRNKVIST, M. (1993). Verification of integrated microbial and fluid dynamics: Saccharomyces cerevisiae production on 30 m3 scale, In Progress in Biotechnology.Elsevier, Amsterdam, Holland, Vol. 9, Part II, pp. 935-938.
[19] NORMAN, H., MORUD, K., HJERTAGER, B. H., TRÄGÅRDH, C., LARSSON, G. ENFORS, S.-O. (1994). CFD modelling and verification of flow and conversion in a 1m3 bioreactor, 3rd Int. Conference on Bioreactor and Bioprocess Fluid Dynamics, Cambridge, UK, 14-16 September.MEP, London, UK, pp. 241-258.
[20] PATANKAR, S. V. (1980). Numerical Heat Transfer and Fluid Flow, McGraw-Hill.
[21] PATANKAR, S. V. SPALDLNG, D. B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. Journal of Heat and Mass Transfer, 15, 1787-1800 doi:10.1016/0017-9310(72)90054-3
[22] PLACEK, J., TAVLARIDES, L.L., SMITH, G.W. FORT, I. (1986). Turbulent flow in stirred tanks Part II: A twoscale model of turbulence, AIChE Journal, 32, 1771-1786 doi:10.1002/aic.690321103
[23] PERICLEOUS, K.A. PATEL, M.K. (1987). The source and sink approach in the modelling of stirred reactors, PCH PhysioChemical Hydrodynamics, 12, 279-97.
[24] RANADE, V.V. JOSHI, J.B. (1990). Flow generated by a disc turbine: Part II-Mathematical modelling and comparison with experimental data, Trans IChemE, 68, 34-50.
[25] SCHWARZ, M.P. TURNER, W.J. (1988). Applicability of the Standard k-epsilon Turbulence Model to Gas Stirred Baths, Appl. Math. Modelling, 12, 273-279 doi:10.1016/0307-904X(88)90034-0
[26] SMITH, T.J. REILLY, C.D. (1988). Predictions of the flow in fermentors and implications for scale-up, In Bioreactor Fluid Dynamics.Elsevier Applied Science Publ., pp. 431-441.
[27] SPALDING, D.B. (1985). Computer simulation of two-phase flows with special reference to nuclear reactor systems, In Computational Techniques in Heat Transfer, Eds: R. W. Lewis, K. Morgan, J. A. Johnson and W. R. Smith,.Pineridge Press, Swansea, UK, pp. 1-44.
[28] TORVIK, R. SVENDSEN, H.F. (1990). Modelling of slurry reactors: A fundamental approach, Chem. Eng. Sci., 45, 2325-2332 doi:10.1016/0009-2509(90)80112-R
[29] TRÄGÅRDH, C. (1988). A hydrodynamic model for the simulation of an aerated agitated fed-batch fermentor, In Bioreactor Fluid Dynamics.Elsevier Applied Science Publ., pp. 117-134.
[30] TRÄGÅRDH, C., HEINZLE, E. SANER, E.U. (1990). Mathematical modelling of mixing and biokinetics in agitated tank fermentors, Proc. of Fifth European Conference on Biotechnology, pp. 797-800.

  title={{Computational fluid dynamics simulation of bioreactors}},
  author={Hjertager, Bjørn H. and Morud, K.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}