“Flow over complex terrain estimated by a general purpose Navier-Stokes solver”

Authors: L.K. Alm and T.A. Nygaard,
Affiliation: Institute for Energy Technology (IFE)
Reference: 1995, Vol 16, No 3, pp. 169-176.

Keywords: Wind power, terrain models, Navier-Stokes solver

Abstract: A general purpose Navier - Stokes solver has been applied to atmospheric flow on microscale. For flat terrain the model produces the well known logarithmic profile in the surface layer and describes the effect of roughness change. At Askervein Hill, good agreement between model results and measurements is observed also behind the hilltop, where linearized models overpredict the wind speed.

PDF PDF (844 Kb)        DOI: 10.4173/mic.1995.3.5

DOI forward links to this article:
[1] O. Undheim, H. I. Andersson and E. Berge (2006), doi:10.1007/s10546-006-9065-5
[2] A.M.G. Lopes (2003), doi:10.1016/S1364-8152(02)00024-5
[3] J.J. Sharples, R.H.D. McRae and R.O. Weber (2010), doi:10.1016/j.envsoft.2010.03.016
[4] Jason M. Forthofer, Bret W. Butler and Natalie S. Wagenbrenner (2014), doi:10.1071/WF12089
[5] A. Kormas, J.M. Prospathopoulos, P.K. Chaviaropoulos and K. Yakinthos (2016), doi:10.1016/j.jweia.2016.06.003
[6] Aleksei Kangash, Muhammad Shakeel Virk and Pavel Maryandyshev (2022), doi:10.1177/0309524X221130110
[7] M. S. Korkmaz and A. D. Sahin (2023), doi:10.1007/s13762-023-04961-2
[1] ANDERSSON, I. (1988). Introduction to turbulence modelling, Lecture notes in Turbulent Flow.NTH, Trondheim.
[2] BELJAARS, A.C.M., WALMSLEY, J.L. TAYLOR, P.A. (1987). A mixed spectral finite-difference model for neutrally stratified boundary-layer flow over roughness changes and topography, Boundary Layer Meteorology, 38, 273-303 doi:10.1007/BF00122448
[3] NYGAARD, T.A. (1992). Estimating energy capture at potential wind turbine sites in Norway, Journal of Wind Engineering and Industrial Aerodynamics, 39, 385-393 (Elsevier Science Publishers B.V., Amsterdam) doi:10.1016/0167-6105(92)90562-O
[4] PANOFSKY, H.A. DUTTON, J.A. (1984). Atmospheric Turbulence: Models and Methods for Engineering Applications, John Wiley and Sons, New York.
[5] PATANKAR, S.V. (1980). Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation, New York.
[6] SPALDING, D.B. (1991). The PHOENICS beginnerĀ“s guide/TR100, Concentration. Heat and Momentum Limited, London.
[7] TAYLOR, P.A. TEUNISSEN, H.W. (1987). The Askervein Hill Project; overview and background data, Boundary Layer Meteorology, 39, 15-39 doi:10.1007/BF00121863
[8] TROEN, I. LUNDTANG, PETERSEN, E. (1988). Siting of wind turbines; EC Wind Energy Conference, Herning, Denmark.Published by Stephens and Associates, Bedford, England.
[9] WALMSLEY, J.L. SALMON, J.R. (1984). A boundary layer model for wind flow over hills, Comparison of model results with Askervein 1983 data. European Wind Energy Conference and Exhibition, Hamburg.Published by Stephens and Associates, Bedford, England.

  title={{Flow over complex terrain estimated by a general purpose Navier-Stokes solver}},
  author={Alm, L.K. and Nygaard, T.A.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}