“Structured modeling of fish physiology”

Authors: Odd A. Olsen and Jens G. Balchen,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1993, Vol 14, No 1, pp. 3-26.

Keywords: Metabolism, respiration, feeding behaviour, gills, kidneys, gastric evacutation, fish physiology, mathematical biology

Abstract: The use of models in simulation and state estimation has proved useful in diverse applications, especially in industrial process control. The project presented here looked into the modeling of fish physiology for applications in fish physiology research and aquaculture. The models deal with gastric evacuation, metabolism, kidneys, gills, the cardiovascular system, and feeding behaviour and are based on data from the literature. Model responses are mostly in accord with real responses in principle, but, as with most models of complex biological systems, the numerical accuracy is low in several cases. However, these structured models enable researchers to test hypotheses by altering the submodels and parameters.

PDF PDF (2866 Kb)        DOI: 10.4173/mic.1993.1.1

DOI forward links to this article:
[1] Jens G. Balchen (2000), doi:10.4173/mic.2000.1.1
[1] BALCHEN, J.G. (1979). Modeling, prediction, and control of fish behavior, In Control and Dynamic Systems, Vol. 15, C. T. Leondes, Ed..Academic, New York pp. 99-146.
[2] BALCHEN, J.G. (1989). Instrumentation, information and control in aquaculture, AguacultureĀ“89, World Aquaculture Society Congress, Los Angeles, Feb. 15, 1989.
[3] BRETT, J.R., GROVES, T.D.D. (1979). Physiological energetics, In Fish Physiology, Vol. 8, W. S. Hoar, D. J. Randall, and J. R. Brett, Eds..Academic, Orlando, Fla., pp. 280-352.
[4] ELLIOTT, J.M. (1975). Number of meals in a day, maximum weight of food consumed in a day and maximum rate of feeding for brown trout, Salmo trutta L., Freshwat. Biol., 5, 287-303 doi:10.1111/j.1365-2427.1975.tb00142.x
[5] FROM, J. RASMUSSEN, G. (1984). A growth model, gastric evacuation, and body composition in rainbow trout, Salina gairdneri Richardson, 1836. Dana 3, 61-139.
[6] GROVE, D.J., LOIZIDES, L.G. NOTT, J. (1978). Satiation amount, frequency of feeding and gastric emptying rate in Salmo gairdneri, J. Fish Biol., 12, 507-516 doi:10.1111/j.1095-8649.1978.tb04195.x
[7] HOLMGREN, S., GROVE, D.J. FLETCHER, D.J. (1983). Digestion and the control of gastrointestinal motility, In Control Processes in Fish Physiology, J.C. Rankin, T.J. Pitcher, and R. Duggan, Eds..Croom Helm, London, pp. 23-40.
[8] JOBLING, M. (1981). Mathematical models of gastric emptying and the estimation of daily rates of food consumption for fish, J. Fish Biol., 19, 245-257 doi:10.1111/j.1095-8649.1981.tb05829.x
[9] JOBLING, M. (1987). Influences of food particle size and dietary energy content on patterns of gastric evacuation in fish: test of a physiological model of gastric emptying, J. Fish Biol., 30,299-314 doi:10.1111/j.1095-8649.1987.tb05754.x
[10] KENYON, C.J., MCKEEVER, A, OLIVER, J.A. HENDERSON, I.W. (1985). Control of renal and adrenocortical function by the renin-angiotensin system in two euryhaline teleost fishes, Gen. Comp. Endocrinol. 58, 91-100 doi:10.1016/0016-6480(85)90140-6
[11] KICENIUK, J.W. JONES, D.R. (1977). The oxygen transport system in trout, Salmo gairdneri during sustained exercise. J. Exp. Biol., 69, 247-260.
[12] MACHIELS, M.A.M. HENKEN, A.M. (1986). A dynamic simulation model for growth of the African catfish, Clarias gariepinus (Burchell 1822). I. Effect of feeding level on growth and energy metabolism. Aquaculture, 56, 29-52 (1986) doi:10.1016/0044-8486(86)90288-7
[13] MALTE, H. WEBER, R.E. (1985). A mathematical model for gas exchange in the fish gill based on non-linear blood gas equilibrium curves, Resp. Physiol., 62, 359-374 doi:10.1016/0034-5687(85)90091-X
[14] OLSEN, O.A. BALCHEN, J.G. (1988). Simulation applied to state estimation in aquaculture, Proc. IMACS 12th World Congr. Sci. Comput. III, Paris, July 18-22, pp. 655-659.
[15] PIIPER, J. (1982). Respiratory gas exchange at lungs, gills and tissues: mechanisms and adjustments, J. Exp. Biol., 100, 5-22.
[16] PIIPER, J. SCHEID, P. (1984). Model analysis of gas transfer in fish gills in Fish Physiology, Vol. 10A, Gills, W. S. Hoar and D. J. Randall, Eds..Academic, Orlando, Fla., pp. 229-262.
[17] PRESS, W.H., FLANNERY, B.P., TEUKOLSKY, S.A. VETTERLING, W.T. (1989). Numerical Recipes in Pascal, Cambridge Univ. Press, Cambridge.
[18] RUOHONEN, K. (1986). Production planning and whole farm simulations in aquaculture, In Proc. IFAC Automation and Data Processing in Aquaculture, J.G. Balchen, Ed., Trondheim, Norway, 18-21 Aug. 1986, pp. 75-80.
[19] RUOHONEN, K. (1988). Production planning and whole farm simulations in aquaculture, Proc. IMACS 12th World Congr. Sci. Comput. III, Paris, July 18-22, pp. 660-662.
[20] SCHULZ, A.R. (1978). Simulation of energy metabolism in the simple-stomached animal, Br. J. Nutr., 39, 235-254 doi:10.1079/BJN19780034
[21] STEVENS, E.D. RANDALL, D.J. (1967). Changes in blood pressure, heart rate and breathing rate during moderate swimming activity in rainbow trout, J. Exp. Biol., 46, 307-315.
[22] STEVENS, E.D. RANDALL, D.J. (1967). Changes of gas concentrations in blood and water during moderate swimming activity in rainbow trout, J. Exp. Biol., 46, 329-337.
[23] SUNDBY, A., ELIASSEN, K., BLOM, A. AASGAARD, T. (1991). Plasma insulin, glucagon, glucagon-like peptide and glucose levels in response to feeding, starvation and life long restricted feed ration in salmonids, Fish Physiol. Biochem., 9, 253-259 doi:10.1007/BF02265146
[24] TAYLOR, W., HOUSTON, A.H. HORGAN, J.D. (1968). Development of a computer model simulating some aspects of the cardiovascular-respiratory dynamics of the salmonid fish, J. Exp. Biol., 49, 477-493.
[25] WANKOWSKI, J.W.J. (1979). Morphological limitations, prey size selectivity, and growth response of juvenile Atlantic salmon, Salmo solar. J. Fish Biol., 14, 89-100 doi:10.1111/j.1095-8649.1979.tb03530.x

  title={{Structured modeling of fish physiology}},
  author={Olsen, Odd A. and Balchen, Jens G.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}