“Internal Decoupling in Nonlinear Process Control”

Authors: Jens G. Balchen, Bernt Lie and Ingar Solberg,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1988, Vol 9, No 3, pp. 137-148.

Keywords: Non-linear control, linearization by transformation, multi-variable control, stability, robustness analysis

Abstract: A simple method has been investigated for the total or partial removal of the effect of non-linear process phenomena in multi-variable feedback control systems. The method is based upon computing the control variables which will drive the process at desired rates. It is shown that the effect of model errors in the linearization of the process can be partly removed through the use of large feedback gains. In practice there will be limits on how large gains can he used. The sensitivity to parameter errors is less pronounced and the transient behaviour is superior to that of ordinary PI controllers.

PDF PDF (1022 Kb)        DOI: 10.4173/mic.1988.3.3

DOI forward links to this article:
[1] Noel C. Jacob and Ramdhane Dhib (2011), doi:10.1016/j.jprocont.2011.06.013
[2] Bernt Lie and Jens G. Balchen (1993), doi:10.4173/mic.1993.3.1
[3] Michael Ramseier, Pramod Agrawal and Duncan A. Mellichamp (1992), doi:10.1016/0959-1524(92)85002-E
[4] Jens G. Balchen and Bjarne Sandrib (1995), doi:10.1016/0959-1524(95)00016-J
[5] Michael A. Henson and Dale E. Seborg (1991), doi:10.1016/0959-1524(91)85001-Y
[6] Yudi Samyudia and Peter L. Lee (2004), doi:10.1016/j.conengprac.2003.12.002
[7] Noel C. Jacob and Ramdhane Dhib (2012), doi:10.1016/j.jiec.2012.04.001
[8] Ching Tien Liou and Tzu Hu Hsiue (1995), doi:10.1080/02533839.1995.9677750
[9] R.M. Ansari and M.O. Tadé (2000), doi:10.1205/026387600527563
[10] B. Lie and J.G. Balchen (1993), doi:10.1016/B978-0-08-041711-0.50030-1
[11] Elbert Hendricks and Thomas Vesterholm (1992), doi:10.4271/920682
[12] L.B. Lyngmo, H. Nordhus, P. Singstad and K. Strand (1989), doi:10.1109/ICCON.1989.770509
[13] K.E. Häggblom (1993), doi:10.1016/S1474-6670(17)48444-8
[14] B. Lie and J.G. Balchen (1992), doi:10.1016/S1474-6670(17)50989-1
[15] B. Lie and J.G. Balchen (1989), doi:10.1016/S1474-6670(17)53333-9
[16] Jens G. Balchen and Bjarne Sandrib (1994), doi:10.1016/S1474-6670(17)48198-5
[17] M.A. Henson and D.E. Seborg (1990), doi:10.1016/S1474-6670(17)51842-X
[18] Fabrizio Caccavale, Mario Iamarino, Francesco Pierri and Vincenzo Tufano (2011), doi:10.1007/978-0-85729-195-0_5
[19] Peter L. Lee (1993), doi:10.1007/978-1-4471-2079-7_1
[20] Peter L. Lee (1993), doi:10.1007/978-1-4471-2079-7_2
[21] Cristina Zotic , Nicholas Alsop and Sigurd Skogestad (2020), doi:10.1016/j.ifacol.2020.12.2331
[22] Michael A. Henson and Dale E. Seborg (1990), doi:10.1002/aic.690361118
[1] HUNT, L.R., SU R. MEYER, G. (1983). Global transformations of non-linear systems, IEEE Trans. Autom. Control, 28, 24-31 doi:10.1109/TAC.1983.1103137
[2] JUBA, M.R. HAMER, J.W. (1986). Progress and challenges in batch process control, 3rd Int. Conf Proc. Cont..CPC III, Asilomar Calif. Jan 1986.
[3] PAUL, R.C. (1972). Modeling trajectory calculation and servoing of a computer-controlled arm, Ph.D. thesis, Stanford Art. Int. Lab, Stanford Univ., Stanford, California.
[4] PERLMUTTER, D.D. (1972). Example 2,3 in Stability of chemical reactors, Prentice-Hall, Inc; Englewood Cliffs, New Jersey.

  title={{Internal Decoupling in Nonlinear Process Control}},
  author={Balchen, Jens G. and Lie, Bernt and Solberg, Ingar},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}