“A Model of the Dynamics of Plankton Patchiness”

Authors: Wolfgang Ebenhöh,
Affiliation: University of Oldenburg
Reference: 1980, Vol 1, No 2, pp. 69-91.

Keywords: Modelling, phytoplankton, zooplankton, patchiness, simulation, ecosystem, density distribution, spatial distribution

Abstract: A mathematical model of the dynamics of plankton patchiness in the intermediate scale (1 km-10 km) was developed. Mechanisms that may be important in the creation and destruction of patches were selected and modelled. Such mechanisms are: horizontal turbulent diffusion, noise in the vertical turbulence, vertical migration of the zooplankton combined with a velocity profile and consumption of zooplankton by fish in schools. Patchiness is described by thc usc of the moments of density distributions, coherence lengths and correlations of phytoplankton and zooplankton. These parameters are investigated as functions of time and, also, for their dependence on the parameters of the patch creation mechanisms.

PDF PDF (4787 Kb)        DOI: 10.4173/mic.1980.2.2

DOI forward links to this article:
[1] TOSHIO MATSUMURA and YOSHIYUKI SAKAWA (1981), doi:10.1080/00207728108963766
[2] Alexander B. Medvinsky, Sergei V. Petrovskii, Irene A. Tikhonova, Horst Malchow and Bai-Lian Li (2002), doi:10.1137/S0036144502404442
[3] Knut L. Seip (1981), doi:10.4173/mic.1981.3.2
[4] Benjamin H. Letcher and James A. Rice (1997), doi:10.1016/S0304-3800(96)00015-4
[5] Sergei Petrovskii, Horst Malchow and Alexander Medvinsky (2003), doi:10.1201/9780203489550.ch25
[6] Jens G. Balchen (2000), doi:10.4173/mic.2000.1.1
[7] Horst Malchow, Birgit Radtke, Malaak Kallache, Alexander B. Medvinsky, Dmitry A. Tikhonov and Sergei V. Petrovskii (2000), doi:10.1016/S0362-546X(99)00393-4
[8] D.A. Tikhonov, J. Enderlein, H. Malchow and Alexander B. Medvinsky (2001), doi:10.1016/S0960-0779(00)00049-7
[9] Franck Touratier, Louis Legendre and Alain Vézina (2000), doi:10.1016/S0924-7963(00)00061-0
[10] H.G. Fransz, J.P. Mommaerts and G. Radach (1991), doi:10.1016/0077-7579(91)90005-L
[11] Dag Slagstad (1981), doi:10.4173/mic.1981.3.1
[12] Mark Reed and Jens G. Balchen (1982), doi:10.4173/mic.1982.2.1
[13] A. B. Medvinsky, S. V. Petrovskii, D. A. Tikhonov, I. A. Tikhonova, G. R. Ivanitsky, E. Venturino and H. Malchow (2001), doi:10.1007/BF02708983
[14] Wolfgang Ebenhöh (1981), doi:10.4173/mic.1981.2.3
[15] Horst Malchow, Sergei V Petrovskii and Alexander B Medvinsky (2002), doi:10.1016/S0304-3800(01)00467-7
[16] Aleksandr B. Medvinskii, Sergei V. Petrovskii, Irina A. Tikhonova, D.A. Tikhonov, B.L. Li, E. Venturino, H. Malchow and Genrikh R. Ivanitskii (2002), doi:10.3367/UFNr.0172.200201b.0031
[17] M. Reed, K. Jayko, T. Isaji and J. Rosen (1984), doi:10.1109/OCEANS.1984.1152320
[18] HORST MALCHOW (2000), doi:10.1046/j.1365-2427.2000.00550.x
[1] BALCHEN, J.G. (1979). Mathematical and numerical modeling of physical and biological processes in the Barents Sea, Statistical Ecology Series, ed. G. P. Patil.Burtonsville, MD, U.S.A., International Cooperative Publishing House.
[2] BALCHEN, J.G. (1979). The need for computer-aided design in modeling and control of nontechnical systems, IFAC Symposium on Computer Aided Design of Control Systems, Zurich.
[3] CUSHING, D.H., WALSH, J.J. (1976). The Ecology of the Seas, Blackwell Scientific Publications, pp. 98 and 137.
[4] DENMAN, K.L., OKUBO, A., PLATT, T. (1977). The chlorophyll fluctuation spectrum in the sea, Limnol. Oceanogr., 22, 1033-1038.
[5] DUBOIS, D.M. CLOSSET, P.L. (1975). Patchiness in primary and secondary production in the Southern Bight: a mathematical theory, 10th European Symposium on Marine Biology, Ostend, Belgium, 2, 211.
[6] FASHAM, M.J.R. (1978). The statistical and mathematical analysis of plankton patchiness, Oceanogr. Mar. Biol. Am. Rev., 16, 43-79.
[7] GREVE, W. (1977). Inter-specific interaction: The analysis of complex structures in carnivorous zooplankton populations, Heloländer wiss. Meeresunters., 30, 83-91.
[8] ISAACS, J.D., TONT, S.A., WICK, G.L. (1974). Deep scattering layers: Vertical migration as a tactic for finding food, Deep Sea Res., 21, 651-656.
[9] KIERSTEAD, M., SLOBODKIN, L.B. (1953). The size of watermasses containing plankton blooms, J. Mar. Res., 12, 141-147.
[10] MANDELBROT, B.B. (1977). Fractals, W. H. Freeman and Company.
[11] O´BRIEN, J.J., WROBLEWSKI, J.S. (1973). A simulation of the mesoscale distribution of the lower marine trophic levels off West Florida, Investigation Pesquera, Barcelona, 37, 193-244.
[12] OKUBO, A. (1971). Oceanic diffusion diagrams, Deep Sea Res., 18, 789-802.
[13] PARSONS, T.R., LERRASSEUR, R.J., FULTON, J.D. (1967). Some observations on the dependence of zooplankton grazing on cell size and concentration of phytoplankton blooms, J. oceanogr. Soc. Japan, 23, 10-17.
[14] PARSONS, T.R., TAKAHASHI, M., HARGRAVE, B. (1977). Biological Oceanographic Processes, 2nd Ed..Pergamon Press.
[15] PLATT, T. (1972). Local phytoplankton abundence and turbulence, Deep Sea Res., 19, 183-187.
[16] PLATT, T. (1975). The physical environment and spatial structure of phytoplankton populations, Mem. Soc. r. Sci. Liege, VII, 9-17.
[17] PLATT, T., DENMAN, K.L. (1975). Spectral analysis in ecology, Am. Rev. Ecol. Syst., 6, 189.
[18] PLATT, T., DENMAN, K.L., JASSBY, A.D. (1975). The mathematical representations and prediction of phytoplankton productivity, Fisheries and Marine Services, Environment Canada, Technical Report No. 523.
[19] SLAGSTAD, D. (1980). A modelling of zooplankton in an ocean, Dr.ing. Thesis. Div. of Engineering Cybernetics, Norway, Inst. of Technology, Trondheim.in press.
[20] SONNTAG, N.C., GREVE, W. (1977). Investigation of the impact of mercury on enclosed water columns using a zooplankton simulation model, J. Fish. Res. Bd of Can., 34, 2295-2307.
[21] STEELE, J.H. (1974). The Structure of Marine Ecosystems, Harvard University Presss.
[22] WALSH, J.J. (1976). Herbivory as a factor in patterns of nutrient utilization in the sea, Limnol. Oceanogr., 21, 1.
[23] WROBLEWSKI, J.S. (1976). A model of the spatial structure and productivity of phytoplankton populations during variable upwelling off the coast of Oregon, Florida State University, Dept. of Oceanography, Mesoscale Air-Sea Interaction Group, Techn. Report.
[24] WROBLEWSKI, J.S., O´BRIEN, J.J. (1976). A spatial model of phytoplankton patchiness, Marine Biology, 35, 161-175 doi:10.1007/BF00390938

  title={{A Model of the Dynamics of Plankton Patchiness}},
  author={Ebenhöh, Wolfgang},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}