**Page description appears here**

“On-line parameter and state estimation of an air handling unit model: experimental results using the modulating function method”

Authors: Ana Ionesi, M. Hossein Ramezani and Jerome Jouffroy,
Affiliation: Danfoss, University of Southern Denmark and University College Lillebaelt
Reference: 2019, Vol 40, No 3, pp. 161-176.

     Valid XHTML 1.0 Strict


Keywords: Modulating function method, heat flow, air-handling unit, parameter and state estimation

Abstract: This paper considers the on-line implementation of the modulating function method, for parameter and state estimation, for the model of an air-handling unit, central element of HVAC systems. After recalling the few elements of the method, more attention is paid on issues related to its on-line implementation, issues for which we use two different techniques. Experimental results are obtained after implementation of the algorithms on a heat flow experiment, and they are compared with conventional techniques (conventional tools from Matlab for parameter estimation, and a simple Luenberger observer for state estimation) for their validation.

PDF PDF (3510 Kb)        DOI: 10.4173/mic.2019.3.3





References:
[1] Afram, A., Fung, A.S., Janabi-Sharifi, F., and Raahemifar, K. (2018). Afram, A, , Fung, A.S., Janabi-Sharifi, F., and Raahemifar, K. Development and performance comparison of low-order black-box models for a residential hvac system. Journal of Building Engineering. 15:137--155. doi:https://doi.org/10.1016/j.jobe.2017.11.021
[2] Afram, A. and Janabi-Sharifi, F. (2014). Afram, A, and Janabi-Sharifi, F. Review of modeling methods for hvac systems. Applied Thermal Engineering. 67(1-2):507--519. doi:https://doi.org/10.1016/j.applthermaleng.2014.03.055
[3] Afram, A. and Janabi-Sharifi, F. (2015). Afram, A, and Janabi-Sharifi, F. Gray-box modeling and validation of residential hvac system for control system design. Applied Energy. 137:134--150. doi:https://doi.org/10.1016/j.apenergy.2014.10.026
[4] Afroz, Z., Shafiullah, G., Urmee, T., and Higgins, G. (2017). Afroz, Z, , Shafiullah, G., Urmee, T., and Higgins, G. Modeling techniques used in building hvac control systems: A review. Renewable and Sustainable Energy Reviews. doi:https://doi.org/10.1016/j.rser.2017.10.044
[5] Asiri, S., Elmetennani, S., and Laleg-Kirati, T.-M. (2017). Asiri, S, , Elmetennani, S., and Laleg-Kirati, T.-M. Moving-horizon modulating functions-based algorithm for online source estimation in a first-order hyperbolic partial differential equation. Journal of Solar Energy Engineering. 139(6):061007. doi:https://doi.org/10.1115/1.4037743
[6] Bergman, T.L. and Incropera, F.P. (2011). Bergman, T, L. and Incropera, F.P. Fundamentals of heat and mass transfer. John Wiley & Sons. .
[7] Bonvini, M., Sohn, M.D., Granderson, J., Wetter, M., and Piette, M.A. (2014). Bonvini, M, , Sohn, M.D., Granderson, J., Wetter, M., and Piette, M.A. Robust on-line fault detection diagnosis for hvac components based on nonlinear state estimation techniques. Applied Energy. 124:156 -- 166. doi:https://doi.org/10.1016/j.apenergy.2014.03.009
[8] Chen, Y. and Treado, S. (2014). Chen, Y, and Treado, S. Development of a simulation platform based on dynamic models for hvac control analysis. Energy and Buildings. 68:376--386. doi:https://doi.org/10.1016/j.enbuild.2013.09.016
[9] Co, T.B. and Ungarala, S. (1997). Co, T, B. and Ungarala, S. Batch scheme recursive parameter estimation of continuous-time systems using the modulating functions method. Automatica. 33(6):1185--1191. doi:https://doi.org/10.1016/S0005-1098(97)00020-4
[10] Crawley, D.B., Hand, J.W., Kummert, M., and Griffith, B.T. (2008). Crawley, D, B., Hand, J.W., Kummert, M., and Griffith, B.T. Contrasting the capabilities of building energy performance simulation programs. Building and Environment. Part Special: Building Performance Simulation. 43(4):661 -- 673. doi:https://doi.org/10.1016/j.buildenv.2006.10.027
[11] Daniel-Berhe, S. and Unbehauen, H. (1998). Daniel-Berhe, S, and Unbehauen, H. Experimental physical parameter estimation of a thyristor driven dc-motor using the hmf-method. Control Engineering Practice. 6(5):615--626. doi:https://doi.org/10.1016/S0967-0661(98)00036-7
[12] Dey, D. and Dong, B. (2016). Dey, D, and Dong, B. A probabilistic approach to diagnose faults of air handling units in buildings. Energy and Buildings. 130:177 -- 187. doi:https://doi.org/10.1016/j.enbuild.2016.08.017
[13] Edenhofer, O. and Seyboth, K. (2013). Edenhofer, O, and Seyboth, K. Intergovernmental panel on climate change (ipcc). In J.F. Shogren, editor, Encyclopedia of Energy, Natural Resource, and Environmental Economics, pages 48 -- 56. Elsevier, Waltham, 2013. doi:https://doi.org/10.1016/B978-0-12-375067-9.00128-5
[14] Fan, Y. and Xia, X. (2018). Fan, Y, and Xia, X. Building retrofit optimization models using notch test data considering energy performance certificate compliance. Applied Energy. 228:2140 -- 2152. doi:https://doi.org/10.1016/j.apenergy.2018.07.043
[15] Fraisse, G., Viardot, C., Lafabrie, O., and Achard, G. (2002). Fraisse, G, , Viardot, C., Lafabrie, O., and Achard, G. Development of a simplified and accurate building model based on electrical analogy. Energy and buildings. 34(10):1017--1031. doi:https://doi.org/10.1016/S0378-7788(02)00019-1
[16] Garnier, H., Mensler, M., and Richard, A. (2003). Garnier, H, , Mensler, M., and Richard, A. Continuous-time model identification from sampled data: implementation issues and performance evaluation. International journal of Control. 76(13):1337--1357. doi:https://doi.org/10.1080/0020717031000149636
[17] Gruber, M., Truschel, A., and Dalenback, J.-O. (2014). Gruber, M, , Truschel, A., and Dalenback, J.-O. Alternative strategies for supply air temperature control in office buildings. Energy and Buildings. 82:406--415. doi:https://doi.org/10.1016/j.enbuild.2014.06.056
[18] Ionesi, A. and Jouffroy, J. (2018). Ionesi, A, and Jouffroy, J. On-line parameter estimation of an air handling unit model: experimental results using the modulating function method. In 2018 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). 2018. doi:10.1109/AIM.2018.8452284
[19] Jouffroy, J. and Reger, J. (2015). Jouffroy, J, and Reger, J. Finite-time simultaneous parameter and state estimation using modulating functions. In Control Applications (CCA), 2015 IEEE Conference on. IEEE, pages 394--399. doi:10.1109/CCA.2015.7320661
[20] Khalil, H.K. (1996). Khalil, H, K. Adaptive output feedback control of nonlinear systems represented by input-output models. IEEE Transactions on Automatic Control. 41(2):177--188. doi:10.1109/9.481517
[21] Kheiri, F. (2018). Kheiri, F, A review on optimization methods applied in energy-efficient building geometry and envelope design. Renewable and Sustainable Energy Reviews. 92:897 -- 920. doi:https://doi.org/10.1016/j.rser.2018.04.080
[22] Li, X. and Wen, J. (2014). Li, X, and Wen, J. Review of building energy modeling for control and operation. Renewable and Sustainable Energy Reviews. 37:517--537. doi:https://doi.org/10.1016/j.rser.2014.05.056
[23] Liu, D.-Y. and Laleg-Kirati, T.-M. (2015). Liu, D, -Y. and Laleg-Kirati, T.-M. Robust fractional order differentiators using generalized modulating functions method. Signal Processing. 107:395--406. doi:https://doi.org/10.1016/j.sigpro.2014.05.016
[24] Liu, D.-Y., Laleg-Kirati, T.-M., Perruquetti, W., and Gibaru, O. (2014). Liu, D, -Y., Laleg-Kirati, T.-M., Perruquetti, W., and Gibaru, O. Non-asymptotic state estimation for a class of linear time-varying systems with unknown inputs. In the 19th World Congress of the International Federation of Automatic Control 2014. 2014. doi:https://doi.org/10.3182/20140824-6-ZA-1003.02036
[25] Ljung, L., editor. (1999). Ljung, L, , editor. System Identification (2Nd Ed.): Theory for the User. Prentice Hall PTR, Upper Saddle River, NJ, USA. .
[26] Ljung, L. (2007). Ljung, L, System identification toolbox for use with MATLAB. 2007. .
[27] Ljung, L. (2009). Ljung, L, Experiments with identification of continuous time models. Linkoeping University Electronic Press. .
[28] Malek, H., Luo, Y., and Chen, Y. (2013). Malek, H, , Luo, Y., and Chen, Y. Identification and tuning fractional order proportional integral controllers for time delayed systems with a fractional pole. Mechatronics. 1. Fractional Order Modeling and Control in Mechatronics 2. Design, control, and software implementation for distributed MEMS (dMEMS). 23(7):746 -- 754. doi:https://doi.org/10.1016/j.mechatronics.2013.02.005
[29] Mathew, A. and Fairman, F. (1972). Mathew, A, and Fairman, F. Identification in the presence of initial conditions. IEEE Transactions on Automatic Control. 17(3):394--396. doi:10.1109/TAC.1972.1099997
[30] Medvedev, A. (1996). Medvedev, A, Continuous least-squares observers with applications. IEEE Transactions on Automatic Control. 41(10):1530--1537. doi:10.1109/9.539439
[31] Noack, M., Botha, T., Hamersma, H.A., Ivanov, V., Reger, J., and Els, S. (2018). Noack, M, , Botha, T., Hamersma, H.A., Ivanov, V., Reger, J., and Els, S. Road profile estimation with modulation function based sensor fusion and series expansion for input reconstruction. In Advanced Motion Control (AMC), 2018 IEEE 15th International Workshop on. IEEE, pages 547--552. doi:10.1109/AMC.2019.8371152
[32] Pearson, A. and Lee, F. (1985). Pearson, A, and Lee, F. On the identification of polynomial input-output differential systems. IEEE Transactions on Automatic Control. 30(8):778--782. doi:10.1109/TAC.1985.1104051
[33] Reger, J. and Jouffroy, J. (2008). Reger, J, and Jouffroy, J. Algebraische ableitungsschatzung im kontext der rekonstruierbarkeit (algebraic time-derivative estimation in the context of reconstructibility). at-Automatisierungstechnik. 56(6 (2008)):324--331. doi:https://doi.org/10.1524/auto.2008.0711
[34] Reger, J. and Jouffroy, J. (2009). Reger, J, and Jouffroy, J. On algebraic time-derivative estimation and deadbeat state reconstruction. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference. pages 1740--1745. doi:10.1109/CDC.2009.5400719
[35] Rey-Hernandez, J.M., Yousif, C., Gatt, D., Velasco-Gomez, E., Jose-Alonso, J.S., and Rey-Martinez, F.J. (2018). Rey-Hernandez, J, M., Yousif, C., Gatt, D., Velasco-Gomez, E., Jose-Alonso, J.S., and Rey-Martinez, F.J. Modelling the long-term effect of climate change on a zero energy and carbon dioxide building through energy efficiency and renewables. Energy and Buildings. 174:85 -- 96. doi:https://doi.org/10.1016/j.enbuild.2018.06.006
[36] Saha, D.C. and Rao, G.P. (1980). Saha, D, C. and Rao, G.P. Identification of lumped linear systems in the presence of unknown initial conditions via poisson moment functionals. International Journal of Control. 31(4):637--644. doi:https://doi.org/10.1080/00207178008961071
[37] Satyavada, H. and Baldi, S. (2016). Satyavada, H, and Baldi, S. An integrated control-oriented modelling for hvac performance benchmarking. Journal of Building Engineering. 6:262--273. doi:https://doi.org/10.1016/j.jobe.2016.04.005
[38] Setayesh, H., Moradi, H., and Alasty, A. (2015). Setayesh, H, , Moradi, H., and Alasty, A. A comparison between the minimum-order & full-order observers in robust control of the air handling units in the presence of uncertainty. Energy and Buildings. 91:115--130. doi:https://doi.org/10.1016/j.enbuild.2015.01.016
[39] Shinbrot, M. (1957). Shinbrot, M, On the analysis of linear and nonlinear systems. Trans. ASME. 79(3):547--552. .
[40] Unbehauen, H. and Rao, P. (1997). Unbehauen, H, and Rao, P. Identification of continuous-time systems: a tutorial. IFAC Proceedings Volumes. 30(11):973--999. doi:https://doi.org/10.1016/S1474-6670(17)42970-3
[41] Yamada, K. (2005). Yamada, K, Modified pid controllers for minimum phase systems and their practical application. In Proceedings of the Electrical Engineering/Electronics, Computer, Telecommunication and Information Technology (ECTI) International Conference II. pages 457--460. .
[42] Zhou, Y. (2018). Zhou, Y, Evaluation of renewable energy utilization efficiency in buildings with exergy analysis. Applied Thermal Engineering. 137:430 -- 439. doi:https://doi.org/10.1016/j.applthermaleng.2018.03.064


BibTeX:
@article{MIC-2019-3-3,
  title={{On-line parameter and state estimation of an air handling unit model: experimental results using the modulating function method}},
  author={Ionesi, Ana and Ramezani, M. Hossein and Jouffroy, Jerome},
  journal={Modeling, Identification and Control},
  volume={40},
  number={3},
  pages={161--176},
  year={2019},
  doi={10.4173/mic.2019.3.3},
  publisher={Norwegian Society of Automatic Control}
};

News

Oct 2018: MIC reaches 3000 DOI Forward Links. The last 1000 took 2 years and 5 months.


May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.