**Page description appears here**

“The Norwegian Motion-Laboratory”

Authors: Sondre Sanden TÝrdal, Jan Thomas Olsen and Geir Hovland,
Affiliation: University of Agder
Reference: 2018, Vol 39, No 3, pp. 191-208.

     Valid XHTML 1.0 Strict


Keywords: Motion Compensation, Qualisys, Leica, Bosch-Rexroth, Comau, Robotics, Mechatronics, Lab Setup, Experiments, and Stewart Platforms

Abstract: This paper contains an overview of the equipment currently available in the Norwegian Motion Laboratory, a description of the IT networking infrastructure in the laboratory, a GitHub link to open source code developed, description of the PyQt-based graphical user interface, presentation of robot forward and inverse kinematics, presentation of equations of motion for the suspended load motion and a description of the full system kinematics. The paper ends with a list of research experiments and publications from the laboratory to date.

PDF PDF (5266 Kb)        DOI: 10.4173/mic.2018.3.5





References:
[1] Beckhoff. (2018). Beckhoff, Basic CPU Module. URL: https://www.beckhoff.com/CX2040/, 2018. Visited on Jul. 16. .
[2] Beckhoff. (2018). Beckhoff, Beckhoff CX2040. URL: https://www.beckhoff.com/english.asp?embedded_pc/cx2040.htm, 2018. Visited on Aug. 17. .
[3] Beckhoff. (2018). Beckhoff, Beckhoff Information System ADS. URL: https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_c/9007200630561931.html&id=, 2018. Visited on Jul. 16. .
[4] Beckhoff. (2018). Beckhoff, Beckhoff Information System TwinCAT 3. URL: http://www.beckhoff.com/english.asp?twincat/twincat-3-extended-automation-runtime.htm, 2018. Visited on Jul. 16. .
[5] Beckhoff. (2018). Beckhoff, Beckhoff Information System TwinCAT 3 XAR. URL: http://www.beckhoff.com/english.asp?twincat/twincat-3-extended-automation-runtime.htm?id=1893323218933308, 2018. Visited on Jul. 16. .
[6] Beckhoff. (2018). Beckhoff, Digital Compact Servo Drives. URL: https://www.beckhoff.com/ax51xx/, 2018. Visited on Jul. 16. .
[7] Beckhoff. (2018). Beckhoff, Servomotor. URL: https://www.beckhoff.com/am8532/, 2018. Visited on Jul. 16. .
[8] Comau Robotics. (2018). Comau Robotics, Nj 110-3.0. URL: http://www.comau.com/EN/our-competences/robotics/robot-team/nj-110-30, 2018. Visited on Jul. 16. .
[9] Denavit, J. and Hartenberg, R.S. (1955). Denavit, J, and Hartenberg, R.S. A kinematic notation for lower-pair mechanisms based on matrices. Trans ASME J. Appl. Mech. 23:215--221. .
[10] Fossen, T.I. (2011). Fossen, T, I. Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley. .
[11] Gustafsson, T. (1993). Gustafsson, T, Modelling and Control of Offshore Crane Systems. Ph.D. thesis, Luleaa University of Technology. .
[12] Hartenberg, R.S. and Denavit, J. (1964). Hartenberg, R, S. and Denavit, J. Kinematic synthesis of linkages. McGraw-Hill. .
[13] Heng, O. and Tordal, S.S. (2017). Heng, O, and Tordal, S.S. Calibration of the norwegian motion laboratory using conformal geometric algebra. In CGI. 2017. .
[14] Hexagon Manufacturing Intelligence. (2018). Hexagon Manufacturing Intelligence, Leica Absolute Tracker AT960. URL: http://www.hexagonmi.com/en-IN/products/laser-tracker-systems/, Visited on Jul. 16. .
[15] Kjelland, M.B. (2016). Kjelland, M, B. Offshore Wind Turbine Access Using Knuckle Boom Cranes. Ph.D. thesis, University of Agder, Grimstad, Norway. .
[16] Kongsberg Seatex. (2018). Kongsberg Seatex, Kongsberg Seatex Motion Reference Unit. URL: https://www.km.kongsberg.com/. Visited on Jul. 16. .
[17] Luxcey, N., Reinholdtsen, S.-A., Sauder, T., Fouques, S., Jin, J., Kauczynski, W., and Hovland, G. (2014). Luxcey, N, , Reinholdtsen, S.-A., Sauder, T., Fouques, S., Jin, J., Kauczynski, W., and Hovland, G. Influence of wave-induced skid motions on the launch of free-fall skid lifeboats from floating hosts: Experimental and numerical investigations. 2014. doi:10.1115/OMAE2014-24644
[18] Norwegian Motion Laboratory. (2018). Norwegian Motion Laboratory, URL: https://www.motion-lab.no/. Visited on Jul. 16. .
[19] Norwegian Research Council. (2016). Norwegian Research Council, Norwegian Roadmap for Research Infrastructure. URL: https://www.forskningsradet.no/prognett-infrastruktur/Norwegian_Roadmap_for_Research_Infrastructure/1253976312605, 2016. Visited on Aug. 17, 2018. .
[20] Qualisys. (2018). Qualisys, Qualisys. URL: https://www.qualisys.com/. Visited on Jul. 16. .
[21] Riverbank Computing Limited. (2018). Riverbank Computing Limited, Python PyQt5. URL: https://pypi.python.org/pypi/PyQt5/5.9.1. Visited on Jul. 27. .
[22] Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2010). Siciliano, B, , Sciavicco, L., Villani, L., and Oriolo, G. Robotics: Modelling, Planning and Control. Advanced Textbooks in Control and Signal Processing. Springer London, 2010. doi:10.1007/978-1-84628-642-1
[23] Spong, M., Hutchinson, S., and Vidyasagar, M. (2005). Spong, M, , Hutchinson, S., and Vidyasagar, M. Robot Modeling and Control. Wiley. doi:10.1108/ir.2006.33.5.403.1
[24] Tordal, S.S. and Hovland, G. (2017). Tordal, S, S. and Hovland, G. Inverse kinematic control of an industrial robot used in vessel-to-vessel motion compensation. In 2017 25th Mediterranean Conference on Control and Automation (MED). pages 1392--1397, 2017. doi:10.1109/MED.2017.7984313
[25] Tordal, S.S. and Hovland, G. (2017). Tordal, S, S. and Hovland, G. Relative Vessel Motion Tracking using Sensor Fusion, Aruco Markers, and MRU Sensors. Modeling, Identification and Control, 2017. 38(2):79--93. doi:10.4173/mic.2017.2.3
[26] Tordal, S.S., Hovland, G., and Tyapin, I. (2017). Tordal, S, S., Hovland, G., and Tyapin, I. Efficient implementation of inverse kinematics on a 6-dof industrial robot using conformal geometric algebra. Advances in Applied Clifford Algebras, 2017. 27(3):2067--2082. doi:10.1007/s00006-016-0698-2
[27] Tordal, S.S., Lovsland, P.-O., and Hovland, G. (2016). Tordal, S, S., Lovsland, P.-O., and Hovland, G. Testing of wireless sensor performance in vessel-to-vessel motion compensation. In Ind. Elec. Soc., IEEE IECON 2016-42nd Ann. Conf. pages 654--659. doi:10.1109/IECON.2016.7793951
[28] Tordal, S.S., Pawlus, W., and Hovland, G. (2017). Tordal, S, S., Pawlus, W., and Hovland, G. Real-time 6-dof vessel-to-vessel motion compensation using laser tracker. In OCEANS 2017 - Aberdeen. pages 1--9, 2017. doi:10.1109/OCEANSE.2017.8084756


BibTeX:
@article{MIC-2018-3-5,
  title={{The Norwegian Motion-Laboratory}},
  author={TÝrdal, Sondre Sanden and Olsen, Jan Thomas and Hovland, Geir},
  journal={Modeling, Identification and Control},
  volume={39},
  number={3},
  pages={191--208},
  year={2018},
  doi={10.4173/mic.2018.3.5},
  publisher={Norwegian Society of Automatic Control}
};

News

Oct 2018: MIC reaches 3000 DOI Forward Links. The last 1000 took 2 years and 5 months.


May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.