**Page description appears here**

“Composite modelling in 3-D mechanics utilizing Transmission Line Modelling (TLM) and Functional Mock-up Interface (FMI)”

Authors: Dag Fritzson, Robert Braun and Jan Hartford,
Affiliation: AB SKF and Linköping University
Reference: 2018, Vol 39, No 3, pp. 179-190.

     Valid XHTML 1.0 Strict


Keywords: Master Simulation Tool (MST), Functional Mockup Interface (FMI), Transmission Line Modelling (TLM), co-simulation, composite modelling, BEAST

Abstract: Composite modelling and simulation is a solution to utilize investments in models and tools, use the right tool for the right task, increase the accuracy by means of more accurate modelled boundary conditions, switch between levels in model complexity for a specific sub-system, and facilitate co-operation in organizations. With the new Functional Mock-up Interface (FMI) standardization, efforts are increasing to make this happen. SKF BEAST is an advanced dynamic simulation tool for rolling bearings and other mechanical systems with contacts. The tool incorporates a framework for composite modelling and co-simulation, i.e., a Master Simulation Tool (MST). It uses Transmission Line Modelling (TLM) to ensure robust numerical behaviour of the complete composite system model and supports the Functional Mock-up Interface (FMI) for model import, including both model exchange and co-simulation. In this paper, the tools and the techniques for composite modelling are discussed in further detail and application examples are given.

PDF PDF (1307 Kb)        DOI: 10.4173/mic.2018.3.4





References:
[1] Anders, J., Stacke, L.-E., and Leslie, P. (2013). Anders, J, , Stacke, L.-E., and Leslie, P. Rotor drop simulations and validation with focus on internal contact mechanisms of hybrid ball bearings. In Proc. of ASME Turbo Expo. San Antonio, Texas, USA. doi:10.1115/GT2013-95816
[2] Auslander, D. (1968). Auslander, D, Distributed system simulation with bilateral delay-line models. Journal of Basic Engineering. pages 195--200. doi:10.1115/1.3605079
[3] Awais, M.U., Palensky, P., Mueller, W., Widl, E., and Elsheikh, A. (2013). Awais, M, U., Palensky, P., Mueller, W., Widl, E., and Elsheikh, A. Distributed hybrid simulation using the hla and the functional mock-up interface. Industrial Electronics Society, IECON. pages 7564--7569. doi:10.1109/IECON.2013.6700393
[4] Bastian, J., Clauss, C., Wolf, S., and Schneider, P. (2011). Bastian, J, , Clauss, C., Wolf, S., and Schneider, P. Master for co-simulation using FMi. In 8th International Modelica Conference, Dresden. Citeseer, 2011. Permalink: http://publica.fraunhofer.de/documents/N-162331.html, .
[5] Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Clauss, C., Elmqvist, H., Junghanns, A., Mauss, J., Monteiro, M., Neidhold, T., Neumerkel, D., Olsson, H., Peetz, J.-V., and Wolf, S. (2011). Blochwitz, T, , Otter, M., Arnold, M., Bausch, C., Clauss, C., Elmqvist, H., Junghanns, A., Mauss, J., Monteiro, M., Neidhold, T., Neumerkel, D., Olsson, H., Peetz, J.-V., and Wolf, S. The Functional Mockup Interface for tool independent exchange of simulation models. In 8th International Modelica Conference. Como, Italy. doi:10.3384/ecp12076173
[6] Braun, R., Ericsson, L., and Krus, P. (2015). Braun, R, , Ericsson, L., and Krus, P. Full vehicle simulation of forwarder with semi active suspension using co-simulation. In ASME/BATH 2015 Symposium on Fluid Power and Motion Control. 2015. doi:10.1115/FPMC2015-9588
[7] Braun, R., Hallquist, R., and Fritzson, D. (2017). Braun, R, , Hallquist, R., and Fritzson, D. TLM-based Asynchronous Co-simulation with the Functional Mockup Interface. In Proceedings of IUTAM Symposium on Co-simulation and Solver coupling. Darmstadt, Germany. .
[8] Braun, R. and Krus, P. (2013). Braun, R, and Krus, P. Tool-independent distributed simulations using transmission line elements and the functional mock-up interface. In SIMS 54th Conference. 2013. doi:10.1145/2666202.2666212
[9] Dassault Systemes Dymola. (0). Dassault Systemes Dymola, 2018. On-line: http://www.3ds.com, .
[10] Elsheikh, A., Awais, M.U., Widl, E., and Palensky, P. (2013). Elsheikh, A, , Awais, M.U., Widl, E., and Palensky, P. Modelica-enabled rapid prototyping of cyber-physical energy systems via the functional mockup interface. In Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), 2013 Workshop on. IEEE, pages 1--6. doi:10.1109/MSCPES.2013.6623315
[11] Fritzson, D., Stacke, L.-E., and Anders, J. (2014). Fritzson, D, , Stacke, L.-E., and Anders, J. Dynamic simulation --- Building knowledge in product development. SKF Evolution. 1(1):21--26. .
[12] Functional Mock-up Interface (FMI). (0). Functional Mock-up Interface (FMI), 2018. On-line: http://www.fmi-standard.org, .
[13] Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., and Woodward, C.S. (2005). Hindmarsh, A, C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., and Woodward, C.S. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software (TOMS). 31(3):363--396. doi:10.1145/1089014.1089020
[14] Hopsan project. (0). Hopsan project, 2018. On-line: http://www.iei.liu.se/flumes/system-simulation/hopsan, .
[15] Hui, S. and Christopoulos, C. (1990). Hui, S, and Christopoulos, C. Numerical simulation of power circuits using transmission-line modelling. IEE Proceedings A (Physical Science, Measurement and Instrumentation, Management and Education). 137:379--384(5). doi:10.1049/ip-a-2.1990.0060
[16] Johns, P.B. and O'Brien, M.A. (1980). Johns, P, B. and O'Brien, M.A. Use of the transmission-line modelling (t.l.m.) method to solve non-linear lumped networks. The Radio and Electronic Engineer. 50(1/2):59--70. .
[17] Krus, P. (2007). Krus, P, Distributed modelling techniques for system simulation. Technical report, Linkoping University, The Institute of Technology. .
[18] MathWorks Simulink. (0). MathWorks Simulink, 2018. On-line: http://www.mathworks.com, .
[19] Modelica and the Modelica Association. (0). Modelica and the Modelica Association, 2018. On-line: http://www.modelica.org, .
[20] MSC Adams. (0). MSC Adams, 2018. On-line: http://www.mscsoftware.com, .
[21] Nakhimovski, I. (2006). Nakhimovski, I, Contributions to the Modeling and Simulation of Mechanical Systems with Detailed Contact Analysis. Ph.D. thesis, Linkoepings universitet, Sweden. oai:DiVA.org:liu-6342. Linkoeping Studies in Science and Technology, Dissertation No. 1009, ISBN: 91-85497-43-X, ISSN: 0345-7524. .
[22] Neema, H., Gohl, J., Lattmann, Z., Sztipanovits, J., Karsai, G., Neema, S., Bapty, T., Batteh, J., Tummescheit, H., and Sureshkumar, C. (2014). Neema, H, , Gohl, J., Lattmann, Z., Sztipanovits, J., Karsai, G., Neema, S., Bapty, T., Batteh, J., Tummescheit, H., and Sureshkumar, C. Model-based integration platform for fmi co-simulation and heterogeneous simulations of cyber-physical systems. In Proceedings of the 10 th International Modelica Conference; March 10-12; 2014; Lund; Sweden, 096. Linkoeping University Electronic Press, pages 235--245. doi:10.3384/ECP14096235
[23] Open Source Modelica Consortium (OSMC). (0). Open Source Modelica Consortium (OSMC), 2018. On-line: http://www.openmodelica.org, .
[24] Schierz, T., Arnold, M., and Clauss, C. (2012). Schierz, T, , Arnold, M., and Clauss, C. Co-simulation with communication step size control in an FMi compatible master algorithm. In 9th Int. Modelica Conference, Munich, Germany. pages 205--214. doi:10.3384/ecp12076205
[25] Schweizer, B., Lu, D., and Li, P. (2016). Schweizer, B, , Lu, D., and Li, P. Co-simulation method for solver coupling with algebraic constraints incorporating relaxation techniques. Multibody System Dynamics. 36(1):1--36. doi:10.1007/s11044-015-9464-9
[26] Siemers, A. (2010). Siemers, A, Contributions to the Modeling and Visualisation of Multibody Systems Simulations with Detailed Contact Analysis. Ph.D. thesis, Linkoepings universitet, Sweden. oai:DiVA.org:liu-60303. Linkoeping Studies in Science and Technology, Dissertation No. 1337, ISBN: 978-91-7393-317-9, ISSN: 0345-7524. .
[27] Siemers, A., Fritzson, D., and Nakhimovski, I. (2009). Siemers, A, , Fritzson, D., and Nakhimovski, I. General meta-model based co-simulations applied to mechanical systems. Simulation Modelling Practice and Theory. 17(4):612--624. doi:10.1016/j.simpat.2008.10.006
[28] Viersma, T.J. (1980). Viersma, T, J. Analysis, synthesis, and design of hydraulic servosystems and pipelines. Elsevier Scientific Pub. Co.. .
[29] Wolfram SystemModeler. (0). Wolfram SystemModeler, 2018. On-line: http://www.wolfram.com, .


BibTeX:
@article{MIC-2018-3-4,
  title={{Composite modelling in 3-D mechanics utilizing Transmission Line Modelling (TLM) and Functional Mock-up Interface (FMI)}},
  author={Fritzson, Dag and Braun, Robert and Hartford, Jan},
  journal={Modeling, Identification and Control},
  volume={39},
  number={3},
  pages={179--190},
  year={2018},
  doi={10.4173/mic.2018.3.4},
  publisher={Norwegian Society of Automatic Control}
};

News

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.