## “Dynamic Interaction of a Heavy Crane and a Ship in Wave Motion”Authors: Geir Ole Tysse and Olav Egeland,
Affiliation: NTNU
Reference: 2018, Vol 39, No 2, pp. 45-60. |

**Keywords:**Force RAO, ship-crane modeling, vehicle-manipulator system, screw theory, Kane's equation of motion

**Abstract:**Previous work on the dynamics of vehicle-manipulator systems is extended to offshore ships with heavy cranes. The proposed method is based on a Newton-Euler formulation where the forces of constraint are eliminated using projection matrices based on the method of Kane's equations of motion. This leads to an efficient method for developing the equations of motion of a ship with a heavy crane so that the motion of the crane influences the motion of the ship and vice versa. The calculation of the projection matrices is made efficient and intuitive by observing that the columns of the projection matrices are the screw axes of the joint twists in Plucker coordinates. Wave excitation of the ship is modeled with force RAOs based on established wave spectra. This gives a model that is well suited for design and testing of crane control systems, and for studying the feasibility of demanding crane operations in different weather conditions.The resulting equations of motion have been validated in simulation experiments for a ship with a 3 DOF heavy crane with a payload, where the ship is excited by a JONSWAP wave spectrum using a simple controller based on feedback linearization. The simulations clearly demonstrated that the ship responded in a physically meaningful way to the motion of the crane.

PDF (974 Kb) DOI: 10.4173/mic.2018.2.1

**References:**

[1] Angeles, J. (1988). Angeles, J, Rational Kinematics (vol. 34 of Springer Tracts in Natural Philosophy). New York: Springer-Verlag. .

[2] Chu, Y., Hatledal, L., Aesoy, V., Ehlers, S., and Zhang, H. (2017). Chu, Y, , Hatledal, L., Aesoy, V., Ehlers, S., and Zhang, H. An object-oriented modeling approach to virtual prototyping of marine operation systems based on functional mock-up interface co-simulation. ASME. J. Offshore Mech. Arct. Eng.. 140(2):021601--2 -- 021601--9. doi:10.1115/1.4038346

[3] Cummins, W.E. (1962). Cummins, W, E. The impulse response function and ship motions. Schiffstechnik. 47:101--109. .

[4] DNV GL. (2017). DNV GL, Environmental conditions and environmental loads. Recommended practie DNVGL-RP-C205, DNV GL. .

[5] Egeland, O. and Gravdahl, J.T. (2002). Egeland, O, and Gravdahl, J.T. Modeling and Simulation for Automatic Control. Marine Cybernetics, Trondheim. .

[6] Egeland, O. and Sagli, J.R. (1993). Egeland, O, and Sagli, J.R. Coordination of motion in a spacecraft/ manipulator system. The International Journal of Robotics Research. 12:366–379. doi:10.1177/027836499301200404

[7] Faltinsen, M. (1990). Faltinsen, M, Sea Loads on Ships and Offshore Structures. Cambridge University Press. .

[8] Fossen, T.I. (2011). Fossen, T, I. Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley. .

[9] Fossen, T.I. and Perez, T. (2004). Fossen, T, I. and Perez, T. Marine Systems Simulator (MSS). 2004. http://www.marinecontrol.org, .

[10] Fossen, T.I. and Perez, T. (2007). Fossen, T, I. and Perez, T. Kinematic models for manoeuvring and seakeeping of marine vessels. Modeling, Identification and Control. 28(1):19--30. doi:10.4173/mic.2007.1.3

[11] From, P.J., Duindam, V., Pettersen, K.Y., Gravdahl, J.T., and Sastry, S. (2010). From, P, J., Duindam, V., Pettersen, K.Y., Gravdahl, J.T., and Sastry, S. Singularity-free dynamic equations of vehicle-manipulator systems. Simulation Modelling Practice and Theory. 18(6):712--731. doi:10.1016/j.simpat.2010.01.012

[12] From, P.J., Gravdahl, J.T., and Pettersen, K.Y. (2014). From, P, J., Gravdahl, J.T., and Pettersen, K.Y. Vehicle-Manipulator Systems: Modeling for Simulation, Analysis, and Control. Springer. doi:10.1007/978-1-4471-5463-1

[13] Hasselmann, K. etal. (1973). Hasselmann, K, etal. Measurements of wind-wave growth and swell decay during the joint north sea wave project (JONSWAP). Deutches Hydrographisches Zeitschrift. .

[14] Journee, J. M.J. and Massie, W.W. (2001). Journee, J, M.J. and Massie, W.W. Offshore Hydrodynamics. Delft University of Technology. .

[15] Kane, T.R. and Levinson, D.A. (1985). Kane, T, R. and Levinson, D.A. Dynamics: Theory and applications. McGraw-Hill. .

[16] Kristiansen, E., Hjulstad, Aa., and Egeland, O. (2005). Kristiansen, E, , Hjulstad, Aa., and Egeland, O. State-space representation of radiation forces in time-domain vessel models. Ocean Engineering. 32:2195--2216. doi:10.1016/j.oceaneng.2005.02.009

[17] Love, L.J., Jansen, J.F., and Pin, F.G. (2004). Love, L, J., Jansen, J.F., and Pin, F.G. On the modeling of robots operating on ships. In Proc. IEEE International Conference on Robotics and Automation. IEEE, pages 2436--2443. doi:10.1109/ROBOT.2004.1307426

[18] Masoud, Z.N., Nayfeh, A.H., and Al-Mousa, A. (2003). Masoud, Z, N., Nayfeh, A.H., and Al-Mousa, A. Delayed position-feedback controller for the reduction of payload pendulations of rotary cranes. Journal of Vibration and Control. 9:257--277. doi:10.1177/107754603030750

[19] McCarthy, J.M. and Soh, G.S. (2011). McCarthy, J, M. and Soh, G.S. Geometric design of linkages. Springer Verlag. doi:10.1007/978-1-4419-7892-9

[20] Murray, R.M., Sastry, S.S., and Zexiang, L. (1994). Murray, R, M., Sastry, S.S., and Zexiang, L. A Mathematical Introduction to Robotic Manipulation. CRC Press, Inc., Boca Raton, FL, USA, 1st edition. .

[21] Ogilvie, T.F. (1964). Ogilvie, T, F. Recent progress towards the understanding and prediction of ship motions. In The Fifth Symposium on Naval Hydrodynamics. pages 3--128, 1964. .

[22] Oppenheim, A.V. and Verghese, G.C. (2016). Oppenheim, A, V. and Verghese, G.C. Signals, Systems and Inference. Pearson. .

[23] Perez, T. (2005). Perez, T, Ship Motion Control: Course Keeping and roll stabilisation using rudder and fins. Springer Verlag. doi:10.1007/1-84628-157-1

[24] Perez, T., Fossen, T.I., and Sorensen, A. (2004). Perez, T, , Fossen, T.I., and Sorensen, A. A discussion about seakeeping and manoeuvring models for surface vessels. Technical report MSS-TR-001, Centre for Ships and Ocean Structures (CESOS). .

[25] Ross, A., Perez, T., and Fossen, T. (2006). Ross, A, , Perez, T., and Fossen, T. Clarification of the low-frequency modelling concept for marine craft. In Conference on Maneouvring and Control of Marine Craft (MCMC). 2006. .

[26] Sagatun, S.I. and Fossen, T.I. (1991). Sagatun, S, I. and Fossen, T.I. Lagrangian formulation of underwater vehicles' dynamics. In Proceedings Systems, Man, and Cybernetics, 1991. pages 1029--1034. doi:10.1109/ICSMC.1991.169823

[27] Smogeli, O., Perez, T., Fossen, T.I., and Sorensen, A. (2005). Smogeli, O, , Perez, T., Fossen, T.I., and Sorensen, A. The marine systems simulator state-space model representation for dynamically positioned surface vessels. In Proceedings International Maritime Association of the Mediterranean IMAM Conference. 2005. .

**BibTeX:**

@article{MIC-2018-2-1,

title={{Dynamic Interaction of a Heavy Crane and a Ship in Wave Motion}},

author={Tysse, Geir Ole and Egeland, Olav},

journal={Modeling, Identification and Control},

volume={39},

number={2},

pages={45--60},

year={2018},

doi={10.4173/mic.2018.2.1},

publisher={Norwegian Society of Automatic Control}

};