**Page description appears here**

“PD/PID controller tuning based on model approximations: Model reduction of some unstable and higher order nonlinear models”

Authors: Christer Dalen and David Di Ruscio,
Affiliation: University College of Southeast Norway
Reference: 2017, Vol 38, No 4, pp. 185-197.

     Valid XHTML 1.0 Strict

Keywords: PD and PID controllers, tuning, double integrating system, time delay, maximum time delay error, relative time delay margin, robustness, performance, Pareto Optimal

Abstract: A model reduction technique based on optimization theory is presented, where a possible higher order system/model is approximated with an unstable DIPTD model by using only step response data. The DIPTD model is used to tune PD/PID controllers for the underlying possible higher order system. Numerous examples are used to illustrate the theory, i.e. both linear and nonlinear models. The Pareto Optimal controller is used as a reference controller.

PDF PDF (1988 Kb)        DOI: 10.4173/mic.2017.4.3

[1] Aastrom, K. and Haegglund, T. (1995). Aastrom, K, and Haegglund, T. PID Controllers: Theory, Design, and Tuning. Instrument Society of America. .
[2] Aastrom, K.J., Panagopoulos, H., and Haegglund, T. (1998). Aastrom, K, J., Panagopoulos, H., and Haegglund, T. Design of pi controllers based on non-convex optimization. Automatica. 34(5):585--601. doi:10.1016/S0005-1098(98)00011-9
[3] Balchen, J. (1958). Balchen, J, A Performance Index for Feedback Control Systems Based on the Fourier Transform of the Control Deviation. Acta polytechnica Scandinavica: Mathematics and computing machinery series. Norges tekniske vitenskapsakademi. .
[4] Boubaker, O. (2012). Boubaker, O, The inverted pendulum: A fundamental benchmark in control theory and robotics. 2012. pages 1--6. doi:10.1109/ICEELI.2012.6360606
[5] DiRuscio, D. (1996). DiRuscio, D, Combined Deterministic and Stochastic System Identification and Realization: DSR - A Subspace Approach Based on Observations. Modeling, Identification and Control. 17(3):193--230. doi:10.4173/mic.1996.3.3
[6] DiRuscio, D. (2009). DiRuscio, D, Closed and Open Loop Subspace System Identification of the Kalman Filter. Modeling, Identification and Control. 30(2):71--86. doi:10.4173/mic.2009.2.3
[7] DiRuscio, D. (2010). DiRuscio, D, On Tuning PI Controllers for Integrating Plus Time Delay Systems. Modeling, Identification and Control. 31(4):145--164. doi:10.4173/mic.2010.4.3
[8] DiRuscio, D. (2012). DiRuscio, D, Pi controller tuning based on integrating plus time delay models: Performance optimal tuning. 2012. In Proceedings of the IASTED Control and Applications Conference. Crete Greece June 18-21. .
[9] DiRuscio, D. and Dalen, C. (2017). DiRuscio, D, and Dalen, C. Tuning PD and PID Controllers for Double Integrating Plus Time Delay Systems. Modeling, Identification and Control. 38(2):95--110. doi:10.4173/mic.2017.2.4
[10] Fossen, T.I. and Perez, T. (2004). Fossen, T, I. and Perez, T. Marine Systems Simulator (MSS). 2004. http://www.marinecontrol.org, .
[11] Garpinger, O. and Haegglund, T. (2014). Garpinger, O, and Haegglund, T. Modeling for optimal pid design. 2014. pages 6929--6934. Preprints of the 19th World Congress. .
[12] Jahanshahi, E. and Skogestad, S. (2013). Jahanshahi, E, and Skogestad, S. Closed-loop model identification and pid/pi tuning for robust anti-slug control. IFAC Proceedings Volumes. 46(32):233 -- 240. 10th IFAC International Symposium on Dynamics and Control of Process Systems. doi:10.3182/20131218-3-IN-2045.00009
[13] Lee, J., Cho, W., and Edgar, T.F. (2014). Lee, J, , Cho, W., and Edgar, T.F. Simple analytic pid controller tuning rules revisited. Industrial & Engineering Chemistry Research. 53(13):5038--5047. 10.1021/ie4009919, doi:10.1021/ie4009919
[14] L’Ingenieur, S. I.P. (2005). L’Ingenieur, S, I.P. Comportement dynamique d'un vehicule auto-balance de type segway. Concours Centrale-Supélec. https://www.concours-centrale-supelec.fr/CentraleSupelec/2005/PSI/sujets/SI.pdf. In french. Accessed 01.05.17. .
[15] Ljung, L. (1999). Ljung, L, System Identification (2nd ed.): Theory for the User. Prentice Hall PTR, Upper Saddle River, NJ, USA. .
[16] MATLAB. (2016). MATLAB, Version (R2016b). The MathWorks Inc., Natick, Massachusetts, USA. Control System Toolbox, Version 9.3. Optimization Toolbox, Version 6.2. .
[17] Pareto, V. (1894). Pareto, V, Il massimo di utilità dato dalla libera concorrenza. Giornale degli Economisti,luglio, 1894b. pages 48--66. .
[18] SchmidtZ., J. P. .B., Brill. (1979). SchmidtZ, , J. P. .B., Brill. Choking can eliminate severe pipeline slugging. 1979. 312:230--238. .
[19] Seborg, D., Edgar, T., and Mellichamp, D. (1989). Seborg, D, , Edgar, T., and Mellichamp, D. Process Dynamics and Control. Number v. 1 in Chemical Engineering Series. Wiley. .
[20] Seborg, D., Edgar, T., and Mellichamp, D. (2004). Seborg, D, , Edgar, T., and Mellichamp, D. Process dynamics and control. Wiley series in chemical engineering. Wiley. .
[21] Shannon, C.E. (1949). Shannon, C, E. Communication in the presence of noise. Proceedings of the IRE. 37(1):10--21. doi:10.1109/JRPROC.1949.232969
[22] Silva, G., Datta, A., and Bhattacharyya, S. (2005). Silva, G, , Datta, A., and Bhattacharyya, S. PID Controllers for Time-Delay Systems. Control Engineering. Birkhauser Boston. .
[23] Skogestad, S. (2003). Skogestad, S, Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control. 13(13):291--309. doi:10.1016/S0959-1524(02)00062-8
[24] Skogestad, S., Havre, K., and Larsson, T. (2002). Skogestad, S, , Havre, K., and Larsson, T. Control limitations for unstable plants. IFAC Proceedings Volumes. 35(1):485 -- 490. 15th IFAC World Congress. doi:10.3182/20020721-6-ES-1901.00330
[25] Skogestad, S. and Postlethwaite, I. (1996). Skogestad, S, and Postlethwaite, I. Multivariable feedback control: analysis and design. Wiley. .
[26] Son, K.H. and Nomoto, K. (1982). Son, K, H. and Nomoto, K. On the Coupled Motion of Steering and Rolling of a High Speed Container Ship. Naval Architect of Ocean Engineering. 20:73--83. .
[27] Yocum, B. (1973). Yocum, B, Offshore Riser Slug Flow Avoidance: Mathematical Models for Design and Optimization. Society of Petroleum Engineers of AIME. .
[28] Ziegler, J. and Nichols, N.B. (1942). Ziegler, J, and Nichols, N.B. Optimum settings for automatic controllers. Trans. of the A.S.M.E.. 64(64):759--768. .

  title={{PD/PID controller tuning based on model approximations: Model reduction of some unstable and higher order nonlinear models}},
  author={Dalen, Christer and Di Ruscio, David},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}


May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.

July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.

Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.

Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.

Jan 2012: Follow MIC on your smartphone by using the RSS feed.


July 2011: MIC passes 1000 ISI Web of Science citations.

Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.

Dec 2009: A MIC group is created at LinkedIn and Twitter.

Oct 2009: MIC is now fully updated in ISI Web of Knowledge.