**Page description appears here**

“Relative Vessel Motion Tracking using Sensor Fusion, Aruco Markers, and MRU Sensors”

Authors: Sondre Sanden TÝrdal and Geir Hovland,
Affiliation: University of Agder
Reference: 2017, Vol 38, No 2, pp. 79-93.

     Valid XHTML 1.0 Strict


Keywords: Sensor fusion, vision, offshore motion compensation, Kalman filter, Aruco

Abstract: This paper presents a novel approach for estimating the relative motion between two moving offshore vessels. The method is based on a sensor fusion algorithm including a vision system and two motion reference units (MRUs). The vision system makes use of the open-source computer vision library OpenCV and a cube with Aruco markers placed onto each of the cube sides. The Extended Quaternion Kalman Filter (EQKF) is used for bad pose rejection for the vision system. The presented sensor fusion algorithm is based on the Indirect Feedforward Kalman Filter for error estimation. The system is self-calibrating in the sense that the Aruco cube can be placed in an arbitrary location on the secondary vessel. Experimental 6-DOF results demonstrate the accuracy and efficiency of the proposed sensor fusion method compared with the internal joint sensors of two Stewart platforms and the industrial robot. The standard deviation error was found to be 31mm or better when the Arcuo cube was placed at three different locations.

PDF PDF (3526 Kb)        DOI: 10.4173/mic.2017.2.3





References:
[1] Baillot, Y., Julier, S.J., Brown, D., and Livingston, M.A. (2003). Baillot, Y, , Julier, S.J., Brown, D., and Livingston, M.A. A tracker alignment framework for augmented reality. Proceedings - 2nd IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR 2003. pages 142--150. doi:10.1109/ISMAR.2003.1240697
[2] Braden, B. (1986). Braden, B, The Surveyor's Area Formula. The College Mathematics Journal. 17(4):326--337. doi:10.2307/2686282
[3] Garrido-Jurado, S., Munoz-Salinas, R., Madrid-Cuevas, F.J., and Marin-Jimenez, M.J. (2014). Garrido-Jurado, S, , Mu oz-Salinas, R., Madrid-Cuevas, F.J., and Marin-Jimenez, M.J. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition. 47(6):2280--2292. doi:10.1016/j.patcog.2014.01.005
[4] Guennebaud, G. and Jacob, B. (2010). Guennebaud, G, and Jacob, B. Eigen v3. 2010. http://eigen.tuxfamily.org, .
[5] Itseez. (2015). Itseez, Open Source Computer Vision Library. 2015. https://github.com/itseez/opencv, doi:10.1016/j.cell.2011.11.001
[6] Kjelland, M.B. (2016). Kjelland, M, B. Offshore Wind Turbine Access Using Knuckle Boom Cranes. Ph.D. thesis. .
[7] Kraft, E. (2003). Kraft, E, A Quaternion-base Unscented Kalman Filter for Orientation Tracking. Proceedings of the Sixth International Conference of Information Fusion. 1(1):47--54. doi:10.1109/ICIF.2003.177425
[8] Kuchler, S., Eberharter, J.K., Langer, K., Schneider, K., and Sawodny, O. (2011). Kuchler, S, , Eberharter, J.K., Langer, K., Schneider, K., and Sawodny, O. Heave motion estimation of a vessel using acceleration measurements. IFAC Proceedings Volumes (IFAC-PapersOnline), 2011. 18(PART 1):14742--14747. doi:10.3182/20110828-6-IT-1002.01935
[9] Kuchler, S., Pregizer, C., Eberharter, J.K., Schneider, K., and Sawodny, O. (2011). Kuchler, S, , Pregizer, C., Eberharter, J.K., Schneider, K., and Sawodny, O. Real-Time Estimation of a Ship's Attitude. IEEE American Control Conference, 2011. pages 2411--2416. .
[10] Marins, J., Yun, X.Y., Bachmann, E.R., McGhee, R.B., and Zyda, M.J. (2001). Marins, J, , Yun, X.Y., Bachmann, E.R., McGhee, R.B., and Zyda, M.J. An extended Kalman filter for quaternion-based orientation estimation using MARG sensors. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180). 4:2003--2011. doi:10.1109/IROS.2001.976367
[11] Markley, F.L., Cheng, Y., Crassidis, J.L., and Oshman, Y. (2007). Markley, F, L., Cheng, Y., Crassidis, J.L., and Oshman, Y. Averaging quaternions. Journal of Guidance, Control, and Dynamics. 30(4):1193--1197. doi:10.2514/1.28949
[12] Mirzaei, F.M. and Roumeliotis, S.I. (2008). Mirzaei, F, M. and Roumeliotis, S.I. A Kalman Filter-based Algorithm for IMU-Camera Calibration. IEEE Transactions on Robotics and Automation. 25(4):1143--1156. doi:10.1109/IROS.2007.4399342
[13] Park, F.C. and Martin, B.J. (1994). Park, F, C. and Martin, B.J. Robot Sensor Calibration: Solving AX = XB on the Euclidean Group. IEEE Transactions on Robotics and Automation. 10(5):717--721. doi:10.1109/70.326576
[14] Pawlus, W., Kandukuri, S.T., Hovland, G., Choux, M., and Hansen, M.R. (2016). Pawlus, W, , Kandukuri, S.T., Hovland, G., Choux, M., and Hansen, M.R. EKF-based estimation and control of electric drivetrain in offshore pipe racking machine. Proceedings of the IEEE International Conference on Industrial Technology. 2016-May:153--158. doi:10.1109/ICIT.2016.7474742
[15] Pierson, W.J. and Moskowitz, L. (1964). Pierson, W, J. and Moskowitz, L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. Journal of Geophysical Research. 69(24):5181--5190. doi:10.1029/JZ069i024p05181
[16] Richter, M., Schneider, K., Walser, D., and Sawodny, O. (2014). Richter, M, , Schneider, K., Walser, D., and Sawodny, O. Real-Time Heave Motion Estimation Using Adaptive Filtering Techniques. The International Federation of Automatic Control (IFAC) World Congress.‏. 19(1):10119--10125. doi:10.3182/20140824-6-ZA-1003.00111
[17] Sasiadek, J. and Hartana, P. (2000). Sasiadek, J, and Hartana, P. Sensor data fusion using Kalman filter. Information Fusion. FUSION 2000. Proceedings of the Third International Conference on. 2:941--952. doi:10.1109/IFIC.2000.859866
[18] Tordal, S.S., Lovsland, P.-O., and Hovland, G. (2016). Tordal, S, S., Lovsland, P.-O., and Hovland, G. Testing of Wireless Sensor Performance in Vessel-to-Vessel Motion Compensation. 42st Annual Conference of the IEEE Industrial Electronics Society. doi:10.1109/IECON.2016.7793951


BibTeX:
@article{MIC-2017-2-3,
  title={{Relative Vessel Motion Tracking using Sensor Fusion, Aruco Markers, and MRU Sensors}},
  author={TÝrdal, Sondre Sanden and Hovland, Geir},
  journal={Modeling, Identification and Control},
  volume={38},
  number={2},
  pages={79--93},
  year={2017},
  doi={10.4173/mic.2017.2.3},
  publisher={Norwegian Society of Automatic Control}
};

News

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.