**Page description appears here**

“Modeling and Simulation of Multi-Room Buildings”

Authors: D.W.U. Perera and Nils-Olav Skeie,
Affiliation: University College of Southeast Norway
Reference: 2016, Vol 37, No 2, pp. 99-111.

     Valid XHTML 1.0 Strict


Keywords: Multi-floor, Multi-room, Physical models, Single-zone

Abstract: Buildings are one of the largest energy consumers in the world which accounts for nearly 40% of the total global energy consumption. In the countries where cold climate conditions predominate, space heating is the key contributor to the increased energy consumption. Today there is a growing trend to use Building Energy Management Systems (BEMS) to control the energy consumption of buildings in an efficient manner. BEMS require a good heating model of the building to be integrated for better control purposes. This article refers to the development of different types of physics based buillding heating models, regarding single-zone, multi-floor and multi-room buildings. They address the propriety of each model in building heating control concerning the prediction accuracy and the prediction time. These models are verified for a residential building having three floors. According to the results, the multi-floor model is recognized to have the best qualifications obliged as a model for control.

PDF PDF (637 Kb)        DOI: 10.4173/mic.2016.2.2





References:
[1] Allard, F., Bienfait, D., Haghighat, F., Liebecq, G., Mass, K., Pelletret, R., Vandaele, L., and Walker, R. (1992). Allard, F, , Bienfait, D., Haghighat, F., Liebecq, G., Mass, K., Pelletret, R., Vandaele, L., and Walker, R. Air flow through large openings in buildings. Technical report, International Energy Agency. .
[2] Allard, F. and Utsumi, Y. (1992). Allard, F, and Utsumi, Y. Airflow through large openings. Energy and Buildings. 18(2):133 -- 145. doi:10.1016/0378-7788(92)90042-F
[3] Brown, W. and Solvason, K. (1962). Brown, W, and Solvason, K. Natural convection through rectangular openings in partitions—1. International Journal of Heat and Mass Transfer. 5(9):859 -- 868. doi:10.1016/0017-9310(62)90184-9
[4] Desta, T.Z., Brecht, A.V., Quanten, S., Buggenhout, S.V., Meyers, J., Baelmans, M., and Berckmans, D. (2005). Desta, T, Z., Brecht, A.V., Quanten, S., Buggenhout, S.V., Meyers, J., Baelmans, M., and Berckmans, D. Modelling and control of heat transfer phenomena inside a ventilated air space. Energy and Buildings. 37(7):777 -- 786. doi:10.1016/j.enbuild.2004.10.006
[5] EBPD. (2010). EBPD, On the energy performance of buildings. Official Journal of European Union, Directive 2010/31/EU of the European Parliament and of the council. pages 13--34. .
[6] EU. (2013). EU, Energy efficiency trends in the eu. Technical report, European Commission. .
[7] Foucquier, A., Robert, S., Suard, F., Stéphan, L., and Jay, A. (2013). Foucquier, A, , Robert, S., Suard, F., Stéphan, L., and Jay, A. State of the art in building modelling and energy performances prediction: A review. Renewable and Sustainable Energy Reviews. 23:272 -- 288. doi:10.1016/j.rser.2013.03.004
[8] IEA. (2011). IEA, Energy policies for iea countries, norway. Technical report, IEA. .
[9] Khoury, Z.A., Riederer, P., Couillaud, N., Simon, J., and Raguin, M. (2005). Khoury, Z, A., Riederer, P., Couillaud, N., Simon, J., and Raguin, M. A multizone building model for matlab/simulink environment. In Ninth International IBPSA Conference2005: Montreal, Canada. 2005. .
[10] Kramer, R., van Schijndel, J., and Schellen, H. (2012). Kramer, R, , van Schijndel, J., and Schellen, H. Simplified thermal and hygric building models: A literature review. Frontiers of Architectural Research. 1(4):318 -- 325. doi:10.1016/j.foar.2012.09.001
[11] Kusuda, T. (1977). Kusuda, T, Fundamentals of building heat transfer. Journal of Research of the National Bureau of Standards. 82(2):97--106. .
[12] Lin, Y., Middelkoop, T., and Barooah, P. (2012). Lin, Y, , Middelkoop, T., and Barooah, P. Issues in identification of control-oriented thermal models of zones in multi-zone buildings. In Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. pages 6932--6937. doi:10.1109/CDC.2012.6425958
[13] Lu, X., Clements-Croome, D., and Viljanen, M. (2009). Lu, X, , Clements-Croome, D., and Viljanen, M. Past, present and future mathematical models for buildings. Intelligent Buildings International. 1(2):131--141. doi:10.3763/inbi.2009.0024
[14] Lu, X., Lu, T., Kibert, C.J., and Viljanen, M. (2014). Lu, X, , Lu, T., Kibert, C.J., and Viljanen, M. A novel dynamic modeling approach for predicting building energy performance. Applied Energy. 114:91 -- 103. doi:10.1016/j.apenergy.2013.08.093
[15] Mendes, N., Oliveira, G. H.C., Araújo, H.X., and Coelho, L.S. (2003). Mendes, N, , Oliveira, G. H.C., Araújo, H.X., and Coelho, L.S. A matlab based simulation tool for building thermal performance analysis. In Eighth International IBPSA Conference. 2003. Eindhoven, Netherlands. 2003. .
[16] Paulou, J., Lonsdale, J., Jamieson, M., Neuweg, I., Trucco, P., Maio, P., Blom, M., and Warringa, G. (2014). Paulou, J, , Lonsdale, J., Jamieson, M., Neuweg, I., Trucco, P., Maio, P., Blom, M., and Warringa, G. Financing the energy renovation of buildings with cohesion policy funding. Technical report, European Commission. .
[17] Peppes, A., Santamouris, M., and Asimakopoulos, D. (2002). Peppes, A, , Santamouris, M., and Asimakopoulos, D. Experimental and numerical study of buoyancy-driven stairwell flow in a three storey building. Building and Environment. 37(5):497 -- 506. doi:10.1016/S0360-1323(01)00060-9
[18] Perera, D. W.U., Pfeiffer, C., and Skeie, N.-O. (2014). Perera, D, W.U., Pfeiffer, C., and Skeie, N.-O. Modelling the heat dynamics of a residential building unit: Application to norwegian buildings. Modeling, Identification and Control, 2014. 35(1):43--57. doi:10.4173/mic.2014.1.4
[19] Perera, W., Pfeiffer, C.F., and Skeie, N.-O. (2014). Perera, W, , Pfeiffer, C.F., and Skeie, N.-O. Modeling and simulation of multi-zone buildings for better control. In 55th Conference on Simulation and Modelling, Aalborg, Denmark: Linköping University Electronic Press. 2014. .
[20] Riffat, S. (1991). Riffat, S, Algorithms for airflows through large internal and external openings. Applied Energy. 40(3):171 -- 188. doi:10.1016/0306-2619(91)90056-4
[21] Rosa, M.D., Bianco, V., Scarpa, F., and Tagliafico, L.A. (2014). Rosa, M, D., Bianco, V., Scarpa, F., and Tagliafico, L.A. Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach. Applied Energy. 128:217 -- 229. doi:10.1016/j.apenergy.2014.04.067
[22] Spindler, H.C. and Norford, L.K. (2009). Spindler, H, C. and Norford, L.K. Naturally ventilated and mixed-mode buildings—part i: Thermal modeling. Building and Environment. 44(4):736 -- 749. doi:10.1016/j.buildenv.2008.05.019
[23] Virk, G., Cheung, J., and Loveday, D. (1991). Virk, G, , Cheung, J., and Loveday, D. The development of adaptive control techniques for bems. In Control 1991. Control '91., International Conference on. pages 329--334 vol.1. .
[24] Yao, Y., Yang, K., Huang, M., and Wang, L. (2013). Yao, Y, , Yang, K., Huang, M., and Wang, L. A state-space model for dynamic response of indoor air temperature and humidity. Building and Environment. 64:26 -- 37. doi:10.1016/j.buildenv.2013.03.009
[25] Zhao, H. and Magoulès, F. (2012). Zhao, H, and Magoulès, F. A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews. 16(6):3586 -- 3592. doi:10.1016/j.rser.2012.02.049


BibTeX:
@article{MIC-2016-2-2,
  title={{Modeling and Simulation of Multi-Room Buildings}},
  author={Perera, D.W.U. and Skeie, Nils-Olav},
  journal={Modeling, Identification and Control},
  volume={37},
  number={2},
  pages={99--111},
  year={2016},
  doi={10.4173/mic.2016.2.2},
  publisher={Norwegian Society of Automatic Control}
};

News

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.