**Page description appears here**

“Modeling and Design of a Spring-loaded, Cable-driven, Wearable Exoskeleton for the Upper Extremity”

Authors: Lelai Zhou, Shaoping Bai, Michael Skipper Andersen and John Rasmussen,
Affiliation: Vestas Wind Systems A/S and Aalborg University
Reference: 2015, Vol 36, No 3, pp. 167-177.

     Valid XHTML 1.0 Strict


Keywords: Exoskeleton, cable-driven, musculoskeletal model, optimization, biomechanics

Abstract: An approach to the design of wearable exoskeletons on the basis of simulation of the exoskeleton and a human body model is proposed in this paper. The new approach, addressing the problem of physical human-exoskeleton interactions, models and simulates the mechanics of both the exoskeleton and the human body, which allows designers to effectively analyze and evaluate an exoskeleton design for their function in concert with the human body. A simulation platform is developed by integrating a biomechanical model of the human body and the exoskeleton. With the proposed approach, an exoskeleton is designed for assisting patients with neuromuscular injuries. Results of the analysis and optimization are included.

PDF PDF (1474 Kb)        DOI: 10.4173/mic.2015.3.4



DOI forward links to this article:
  [1] S. Bai and S. Christensen (2017), doi:10.1016/B978-0-12-803137-7.00010-0
  [2] Xinyu Guan, Linhong Ji, Rencheng Wang and Wenjie Huang (2016), doi:10.1109/EMBC.2016.7591857
  [3] Shaoping Bai, Simon Christensen and Muhammad Raza Ul Islam (2017), doi:10.1109/AIM.2017.8014156


References:
[1] Agrawal, S.K., Dubey, V.N., Gangloff, J.J., Brackbill, Y., Mao, Y., and Sangwan, V. (2009). Design and optimization of a cable driven upper arm exoskeleton, Journal of Medical Devices. 3:031004--1--031004--8. doi:10.1115/1.3191724
[2] Bai, S. and Rasmussen, J. (2011). Modelling of physical human-robot interaction for exoskeleton designs, In J.C. Samin and P.Fisette, editors, Proc. of Multibody Dynamics 2011, ECCOMAS Thematic Conference. Brussels, Belgium, pages 1--7, 2011.
[3] Box, M.J. (1965). A new method of constrained optimization and a comparison with other methods, Computer Journal. 8:42--52. doi:10.1093/comjnl/8.1.42
[4] Carignan, C., Tang, J., and Roderick, S. (2009). Development of an exoskeleton haptic interface for virtual task training, In Proc. of IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems. pages 3697--3702. doi:10.1109/IROS.2009.5354834
[5] Damsgaard, M., Rasmussen, J., Christensen, S.T., Surma, E., and Zee, M.d. (2006). Analysis of musculoskeletal systems in the Anybody Modeling System, Simulation Modelling Practice and Theory. 14:1100--1111. doi:10.1016/j.simpat.2006.09.001
[6] Gallagher, W., Ding, M., and Ueda, J. (2013). Relaxed individual control of skeletal muscle forces via physical human-robot interaction, Multibody System Dynamics. 30:77--99. doi:10.1007/s11044-013-9362-y
[7] Garrec, P., Friconneau, J.P., Measson, Y., and Perrot, Y. (2008). ABLE, an innovative transparent exoskeleton for the upper-limb, In Proc. of IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems. pages 1483--1488. doi:10.1109/IROS.2008.4651012
[8] Glanze, W.D., Anderson, K.N., and Anderson, L.E. (1990). Mosby's Medical, Nursing, and Allied Health Dictionary (3rd ed, ). The C.V. Mosby Co., St. Louis, Missouri, USA.
[9] Guin, J.A. (1968). Modification of the complex method of constrained optimization, Computer Journal. 10:416--417. doi:10.1093/comjnl/10.4.416
[10] Haumont, T., Rahman, T., Sample, W., King, M.M., Church, C., Henley, J., and Jayakumar, S. (2011). Wilmington robotic exoskeleton: a novel device to maintain arm improvement in muscular disease, Journal of Pediatric Orthopedics. 31(5):e44--e49. doi:10.1097/BPO.0b013e31821f50b5
[11] Lee, L.F., Narayanan, M.S., Kannan, S., Mendel, F., and Krovi, V.N. (2009). Case studies of musculoskeletal-simulation-based rehabilitation program evaluation, IEEE Transactions on Robotics. 25(3):634--638. doi:10.1109/TRO.2009.2019780
[12] Lenzi, T., Vitiello, N., Rossi, S. M. M.D., Roccella, S., Vecchi, F., and Carrozza, M.C. (2011). NEUROExos: a variable impedance powered elbow exoskeleton, In Proc. of IEEE Inter. Conf. on Robotics and Automation. Shanghai, China, pages 1419--1426. doi:10.1109/ICRA.2011.5979866
[13] Lo, H.S. and Xie, S.Q. (2012). Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects, Medical Engineering & Physics. 34(3):261--268. doi:10.1016/j.medengphy.2011.10.004
[14] Mao, Y. and Agrawal, S.K. (2012). Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation, IEEE Transactions on Robotics. 28(4):922--931. doi:10.1109/TRO.2012.2189496
[15] Moore, K.L. and Agur, A.M. (2007). Essential Clinical Anatomy (3rd ed, ). Lippincott Williams & Wilkins, Baltimore, USA.
[16] Nef, T., Guidali, M., and Riener, R. (2009). ARMinIII - arm therapy exoskeleton with an ergonomic shoulder actuation, Applied Bionics and Biomechanics. 6(2):127--142. doi:10.1080/11762320902840179
[17] Perry, J.C., Rosen, J., and Burns, S. (2007). Upper-limb powered exoskeleton design, IEEE/ASME Transactions on Mechatronics. 12(4):408--417. doi:10.1109/TMECH.2007.901934
[18] Rahman, T. and etal. (2006). Passive exoskeletons for assisting limb movement, Journal of Rehabilitation Research & Development. 43(5):583--590. doi:10.1682/JRRD.2005.04.0070
[19] Rasmussen, J., Damsgaard, M., and Voigt, M. (2001). Muscle recruitment by the min/max criterion: A comparative numerical study, Journal of Biomechanics. 34(3):409--415. doi:10.1016/S0021-9290(00)00191-3
[20] Ren, Y., Park, H.S., and Zhang, L.Q. (2009). Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation, In Proc. of IEEE Inter. Conf. on Rehabilitation Robotics. pages 761--765. doi:10.1109/ICORR.2009.5209482
[21] Shveiky, D., Aseff, J.N., and Iglesia, C.B. (2010). Brachial plexus injury after laparoscopic and robotic surgery, The Journal of Minimally Invasive Gynecology. 17(4):414--420. doi:10.1016/j.jmig.2010.02.010
[22] Vertechy, R., Frisoli, A., Dettori, A., Solazzi, M., and Bergamasco, M. (2009). Development of a new exoskeleton for upper limb rehabilitation, In Proc. of IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems. pages 188--193. doi:10.1109/ICORR.2009.5209502
[23] Wolbrecht, E.T., Chan, V., Reinkensmeyer, D.J., and Bobrow, J.E. (2008). Optimizing compliant, model-based robotic assistance to promote neurorehabilitation, IEEE Transactions on Neural Systems and Rehabilitation Engineering. 16(3):286--297. doi:10.1109/TNSRE.2008.918389
[24] Wu, T.M., Wang, S.Y., and Chen, D.Z. (2011). Design of an exoskeleton for strengthening the upper limb muscle for overextension injury prevention, Mechanism and Machine Theory. 46(12):1825--1839. doi:10.1016/j.mechmachtheory.2011.08.003


BibTeX:
@article{MIC-2015-3-4,
  title={{Modeling and Design of a Spring-loaded, Cable-driven, Wearable Exoskeleton for the Upper Extremity}},
  author={Zhou, Lelai and Bai, Shaoping and Andersen, Michael Skipper and Rasmussen, John},
  journal={Modeling, Identification and Control},
  volume={36},
  number={3},
  pages={167--177},
  year={2015},
  doi={10.4173/mic.2015.3.4},
  publisher={Norwegian Society of Automatic Control}
};

News

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.