**Page description appears here**

“Path Generation for High-Performance Motion of ROVs Based on a Reference Model”

Authors: Daniel de A. Fernandes, Asgeir J. Sørensen and Decio C. Donha,
Affiliation: NTNU, Department of Marine Technology, Centre for Autonomous Marine Operations and Systems (AMOS,NTNU) and Polytechnic School of the University of Sao Paulo
Reference: 2015, Vol 36, No 2, pp. 81-101.

     Valid XHTML 1.0 Strict


Keywords: Guidance system, Path generation, Reference model, ROV, Trajectory tracking

Abstract: This paper deals with the generation of sufficiently smooth position, velocity, and acceleration references for guiding the motion of an ROV along purposefully defined curvature-continuous paths in automated missions. The references are meant to be employed in high-performance trajectory tracking and dynamic positioning applications. The path planning problem is not in the scope of this work. A reference model that synthesises references concerning a single Degree-of-Freedom (DoF) motion is initially described. Then, the use of the synthesised references as the parametrisation for other references concerning multiple DoF motion along curvature-continuous paths is exploited. Results from computer simulations and full-scale sea trials, both based on the NTNU's ROV Minerva, are presented and discussed.

PDF PDF (4107 Kb)        DOI: 10.4173/mic.2015.2.2



DOI forward links to this article:
  [1] Rida T Farouki, Carlotta Giannelli, Duccio Mugnaini and Alessandra Sestini (2017), doi:10.1177/0954410017690550


References:
[1] Aguiar, A. and Pascoal, A. (1997). Modeling and control of an autonomous underwater shuttle for the transport of benthic laboratories, In IEEE OCEANS 1997 --- Canada. pages 888--895. doi:10.1109/OCEANS.1997.624110
[2] Aicardi, M., Cannata, G., Casalino, G., and Indiveri, G. (2000). Guidance of 3D underwater non-holonomic vehicle via projection on holonomic solutions, In SURT 2000 / WAC 2000 --- USA. pages 11--16.
[3] Aastroem, K.J. and Haegglund, T. (2011). PID controllers: theory, design, and tuning, Instrument Society of America, North Carolina, 2nd edition.
[4] Aastroem, K.J. and Wittenmark, B. (1997). Computer-controlled systems: theory and design, Prentice Hall, Inc., Upper Saddle River, 2nd edition.
[5] Breivik, M. and Fossen, T.I. (2009). Guidance laws for autonomous underwater vehicles, In A.V. Inzartsev, editor, Underwater vehicles, chapter4, pages 51--76. I-Tech, Vienna, Austria.
[6] van Brunt, B. (2004). The calculus of variations, Springer-Verlag, New York.
[7] Caccia, M. (2006). Low-cost high-precision motion control for ROVs, In G.N. Roberts and R.Sutton, editors, Advances in unmanned marine vehicles, volume69 of IEE Control Series, chapter9, pages 187--215. IEE --- The Institution of Electrical Engineers, Stevenage, UK, 2006.
[8] Caccia, M., Casalino, G., Cristi, R., and Veruggio, G. (1998). Acoustic motion estimation and control for an unmanned underwater vehicle in a structured environment, IFAC Control Engineering Practice. 6(5):661--670. doi:10.1016/S0967-0661(98)00057-4
[9] Caccia, M. and Veruggio, G. (2000). Guidance and control of a reconfigurable unmanned underwater vehicle, IFAC Control Engineering Practice. 8(1):21--37. doi:10.1016/S0967-0661(99)00125-2
[10] Caharija, W. (2014). Integral line-of-sight guidance and control of underactuated marine vehicles, PhD thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics.
[11] Caharija, W., Pettersen, K.Y., Sorensen, A.J., Candeloro, M., and Gravdahl, J.T. (2014). Relative velocity control and integral line of sight for path following of autonomous surface vessels: merging intuition with theory, Journal of Engineering for the Maritime Environment (Part M), 2014. 228(2):180--191. doi:10.1177/1475090213512293
[12] Christ, R.D. and Wernli, R.L. (2007). The ROV manual: a user guide for observation class remotely operated vehicles, Butterworth-Heinemann, Oxford, UK.
[13] Christ, R.D. and Wernli, R.L. (2014). The ROV manual: a user guide for remotely operated vehicles, Butterworth-Heinemann, Oxford, UK, 2nd edition.
[14] Chyba, M., Haberkorn, T., Smith, R.N., and Choi, S.K. (2008). Design and implementation of time efficient trajectories for autonomous underwater vehicles, Ocean Engineering. 35(1):63--76. doi:10.1016/j.oceaneng.2007.07.007
[15] Dukan, F. (2014). ROV motion control systems, PhD thesis, Norwegian University of Science and Technology, Department of Marine Technology.
[16] Dukan, F., Ludvigsen, M., and Sorensen, A.J. (2011). Dynamic positioning system for a small size ROV with experimental results, In IEEE OCEANS 2011 --- Spain. pages 1--10. doi:10.1109/Oceans-Spain.2011.6003399
[17] Egeland, O., Dalsmo, M., and Sordalen, O.J. (1996). Feedback control of a nonholonomic underwater vehicle with constant desired configuration, The International Journal of Robotics Research. 15(1):24--35. doi:10.1177/027836499601500102
[18] Farouki, R.T. (1997). Pythagorean-hodograph quintic transition curves of monotone curvature, Computer-Aided Design. 29(9):601--606. doi:10.1016/S0010-4485(97)00004-3
[19] Farouki, R.T. (2008). Pythagorean-hodograph curves: algebra and geometry inseparable, volume1 of Geometry and Computing, Springer-Verlag, Berlin, Germany.
[20] Farouki, R.T. (2012). The Bernstein polynomial basis: a centennial retrospective, Computer-Aided Geometric Design. 29(6):379--419. doi:10.1016/j.cagd.2012.03.001
[21] Farouki, R.T. and Sakkalis, T. (1990). Pythagorean hodographs, IBM Journal of Research and Development. 34(5):736--752. doi:10.1147/rd.345.0736
[22] Fernandes, D.A., Dukan, F., and Sorensen, A.J. (2012). Reference model for high performance and low energy consumption motions, In IFAC NGCUV 2012 --- Portugal. pages 217--222. doi:10.3182/20120410-3-PT-4028.00036
[23] Fernandes, D.A., Sorensen, A.J., Pettersen, K.Y., and Donha, D.C. (2015). Output feedback motion control system for observation class ROV based on a high-gain state observer: theoretical and experimental results, IFAC Control Engineering Practice. 39(0):90--102. doi:10.1016/j.conengprac.2014.12.005
[24] Forsyth, A.R. (1960). Calculus of variations, Dover Publications, Inc., New York. Originally published: Cambridge University Press, 1927. New York.
[25] Fossen, T.I. (2011). Handbook of marine craft hydrodynamics and motion control, John Wiley & Sons Ltd., Chichester, UK. doi:10.1002/9781119994138
[26] Fossen, T.I. and Pettersen, K.Y. (2014). On uniform semiglobal exponential stability (USGES) of proportional line-of-sight guidance laws, IFAC Automatica. 50(11):2912--2917 doi:10.1016/j.automatica.2014.10.018
[27] Guo, J., Chiu, F.-C., and Huang, C.-C. (2003). Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle, Ocean Engineering. 30(16):2137--2155. doi:10.1016/S0029-8018(03)00048-9
[28] Harary, G. and Tal, A. (2012). 3D Euler spirals for 3D curve completion, Computational Geometry. 45(3):115--126. doi:10.1016/j.comgeo.2011.10.001
[29] Healey, A.J. and Lienard, D. (1993). Multivariable sliding-mode control for autonomous diving and steering of unmanned underwater vehicles, IEEE Journal of Oceanic Engineering. 18(3):327--339. doi:10.1109/JOE.1993.236372
[30] Ho, G., Pavlovic, N., and Arrabito, R. (2011). Human factors issues with operating unmanned underwater vehicles, Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 55(1):429--433. doi:10.1177/1071181311551088
[31] Hsu, L., Costa, R.R., Lizarralde, F., and daCunha, J. P. V.S. (2000). Dynamic positioning of remotely operated underwater vehicles, IEEE Robotics and Automation Magazine. 7(3):21--31. doi:10.1109/100.876908
[32] Huo, F. and Poo, A.-N. (2012). Improving contouring accuracy by using generalized cross-coupled control, International Journal of Machine Tools & Manufacture. 63(0):49--57. doi:10.1016/j.ijmachtools.2012.07.012
[33] Kavraki, L.E. and LaValle, S.M. (2008). Motion planning, In B.Siciliano and O.Khatib, editors, Springer handbook of robotics, chapter 5, part A, pages 109--131. Springer-Verlag, Berlin, Germany.
[34] Kumar, R.P., Dasgupta, A., and Kumar, C.S. (2005). Real-time optimal motion planning for autonomous underwater vehicles, Ocean Engineering. 32(11--12):1431--1447. doi:10.1016/j.oceaneng.2004.11.010
[35] Lai, X.C., Al-Mamun, A., and Ge, S.S. (2007). Polar polynomial curve for smooth, collision-free path generation between two arbitrary configurations for nonholonomic robots, In IEEE ISIC 2007 --- Singapore. pages 59--64. doi:10.1109/ISIC.2007.4450861
[36] Landau, I.D. (1974). A survey of model reference adaptive techniques --- theory and applications, IFAC Automatica. 10(4):353--379. doi:10.1016/0005-1098(74)90064-8
[37] LaValle, S.M. (2006). Planning algorithms, Cambridge University Press, New York.
[38] Lekkas, A.M. (2014). Guidance and path-planning systems for autonomous vehicles, PhD thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics.
[39] Lekkas, A.M., Dahl, A.R., Breivik, M., and Fossen, T.I. (2013). Continuous-curvature path generation using Fermat's spiral, Modeling, Identification and Control. 34(4):183--198. doi:10.4173/mic.2013.4.3
[40] Levien, R. (2008). The Euler spiral: a mathematical history, Technical report UCB/EECS-2008-111, EECS Department, University of California, Berkeley, Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-111.htm.
[41] Mahony, R., Hamel, T., and Pflimlin, J.-M. (2008). Nonlinear complementary filters on the special orthogonal group, IEEE Transactions on Automatic Control. 53(5):1203--1218. doi:10.1109/TAC.2008.923738
[42] Matsubara, A., Nagaoka, K., and Fujita, T. (2011). Model-reference feedforward controller design for high-accuracy contouring control of machine tool axes, CIRP Annals --- Manufacturing Technology. 60(1):415--418. doi:10.1016/j.cirp.2011.03.029
[43] Minguez, J., Lamiraux, F., and Laumond, J.-P. (2008). Motion planning and obstacle avoidance, In B.Siciliano and O.Khatib, editors, Springer handbook of robotics, chapter 35, part E, pages 827--852. Springer-Verlag, Berlin, Germany.
[44] Naeem, W., Sutton, R., Ahmad, S.M., and Burns, R.S. (2003). A review of guidance laws applicable to unmanned underwater vehicles, The Journal of Navigation. 56(1):15--29. doi:10.1017/S0373463302002138
[45] Nelson, W. (1989). Continuous-curvature paths for autonomous vehicles, In IEEE ICRA 1989 --- USA, volume3. pages 1260--1264. doi:10.1109/ROBOT.1989.100153
[46] Omerdic, E., Toal, D., Nolan, S., and Ahmad, H. (2012). ROV LATIS: next generation smart underwater vehicle, In G.N. Roberts and R.Sutton, editors, Further advances in unmanned marine vehicles, volume77 of IET Control Engineering Series, chapter2, pages 9--44. IET --- The Institution of Engineering and Technology, Stevenage, UK.
[47] Raade, L. and Westergren, B. (2004). Mathematics handbook for science and engineering, Studentlitteratur, Lund, Sweden, 5th edition.
[48] Seidel, H.-P. (1993). An introduction to polar forms, IEEE Computer Graphics and Applications. 13(1):38--46. doi:10.1109/38.180116
[49] Slotine, J.-J.E. and Li, W. (2005). Applied nonlinear control, Pearson Education Taiwan Ltd., Taipei, Taiwan.
[50] SNAME. (1950). The Society of Naval Architects and Marine Engineers, Nomenclature for treating the motion of a submerged body through a fluid. In Technical and research bulletin No. 1--5 --- New York. pages 1--15.
[51] Sorensen, A.J. (2013). Marine control systems: propulsion and motion control of ships and ocean structures, Lecture notes. Marine Technology Centre, Trondheim, Norway, 3rd edition.
[52] Sorensen, A.J., Dukan, F., Ludvigsen, M., Fernandes, D.A., and Candeloro, M. (2012). Development of dynamic positioning and tracking system for the ROV Minerva, In G.N. Roberts and R.Sutton, editors, Further advances in unmanned marine vehicles, volume77 of IET Control Engineering Series, chapter6, pages 113--128. IET --- The Institution of Engineering and Technology, Stevenage, UK.
[53] Tsourdos, A., White, B., and Shanmugavel, M. (2011). Cooperative path planning of unmanned aerial vehicles, Aerospace Series. John Wiley & Sons Ltd., Chichester, UK.
[54] Vasilijevic, A., Miskovic, N., and Vukic, Z. (2013). Comparative assessment of human machine interfaces for ROV guidance with different levels of secondary visual workload, In IEEE MED 2013 --- Greece. pages 1292--1297 doi:10.1109/MED.2013.6608886


BibTeX:
@article{MIC-2015-2-2,
  title={{Path Generation for High-Performance Motion of ROVs Based on a Reference Model}},
  author={Fernandes, Daniel de A. and Sørensen, Asgeir J. and Donha, Decio C.},
  journal={Modeling, Identification and Control},
  volume={36},
  number={2},
  pages={81--101},
  year={2015},
  doi={10.4173/mic.2015.2.2},
  publisher={Norwegian Society of Automatic Control}
};

News

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.