**Page description appears here**

“Using Autonomous Underwater Vehicles as Sensor Platforms for Ice-Monitoring”

Authors: Petter Norgren and Roger Skjetne,
Affiliation: NTNU, Department of Marine Technology
Reference: 2014, Vol 35, No 4, pp. 263-277.

     Valid XHTML 1.0 Strict


Keywords: AUV; Arctic technology; Ice management; Ice intelligence; Ice monitoring

Abstract: Due to the receding sea-ice extent in the Arctic, and the potentially large undiscovered petroleum resources present north of the Arctic circle, offshore activities in ice-infested waters are increasing. Due to the presence of drifting sea-ice and icebergs, ice management (IM) becomes an important part of the offshore operation, and an important part of an IM system is the ability to reliably monitor the ice conditions. An autonomous underwater vehicle (AUV) has a unique capability of high underwater spatial and temporal coverage, making it suitable for monitoring applications. Since the first Arctic AUV deployment in 1972, AUV technology has matured and has been used in complex under-ice operations. This paper motivates the use of AUVs as an ice-monitoring sensor platform. It discusses relevant sensor capabilities and challenges related to communication and navigation. This paper also presents experiences from a field campaign that took place in Ny-Aalesund at Svalbard in January 2014, where a REMUS 100 AUV was used for sea-floor mapping and collection of oceanographic parameters. Based on this, we discuss the experiences related to using AUVs for ice-monitoring. We conclude that AUVs are highly applicable for ice-monitoring, but further research is needed.

PDF PDF (1443 Kb)        DOI: 10.4173/mic.2014.4.4



DOI forward links to this article:
  [1] Asgeir J. Sørensen and Martin Ludvigsen (2015), doi:10.1016/j.ifacol.2015.06.018
  [2] Petter Norgren and Roger Skjetne (2015), doi:10.1016/j.ifacol.2015.10.262
  [3] Martin Ludvigsen and Asgeir J. Sørensen (2016), doi:10.1016/j.arcontrol.2016.09.013
  [4] Gérard Pergent, Briac Monnier, Philippe Clabaut, Gilles Gascon, Christine Pergent-Martini and Audrey Valette (2017), doi:10.1016/j.ecss.2017.05.016
  [5] Christian Katlein, Martin Schiller, Hans J. Belter, Veronica Coppolaro, David Wenslandt and Marcel Nicolaus (2017), doi:10.3389/fmars.2017.00281


References:
[1] Bellingham, J.G., Cokelet, E.D., and Kirkwood, W.J. (2008). Observation of warm water transport and mixing in the Arctic basin with the ALTEX AUV, In IEEE/OES Autonomous Underwater Vehicles. Woods Hole, MA, USA, pages 1--5. doi:10.1109/AUV.2008.5290527
[2] Bellingham, J.G., Goudey, C.A., Consi, T.R., Bales, J.W., Atwood, D.K., Leonard, J.J., and Chryssostomidis, C. (1994). A second generation survey AUV, In Proceedings of IEEE Symposium on Autonomous Underwater Vehicle Technology. Cambridge, MA, USA, pages 148--155. doi:10.1109/AUV.1994.518619
[3] Blondel, P. (2010). The handbook of sidescan sonar, Springer.
[4] Britting, K.R. (1971). Inertial navigation system analysis, John Wiley & Sons Inc.
[5] Carre o, S., Wilson, P., Ridao, P., and Petillot, Y. (2010). A survey on terrain based navigation for AUVs, In OCEANS. Seattle, WA, USA, pages 1--7. doi:10.1109/OCEANS.2010.5664372
[6] Cruz, N.A. and Matos, A.C. (2010). Reactive AUV motion for thermocline tracking, In OCEANS. Sydney, Australia, pages 1--6. doi:10.1109/OCEANSSYD.2010.5603883
[7] Eik, K. (2008). Review of experiences within ice and iceberg management, Journal of Navigation. 61(4):557. doi:10.1017/S0373463308004839
[8] Eik, K. and Loset, S. (2009). Specifications for a subsurface ice intelligence system, In Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu, HI, USA, pages 103--109, 2009. doi:10.1115/OMAE2009-79606
[9] Farmer, G.T. and Cook, J. (2013). Climate change trends, In: Climate change science: A modern synthesis, volume 1 - The Physical Climate. Springer. doi:10.1007/978-94-007-5757-8 extunderscore 5
[10] Ferguson, J. (1998). The Theseus autonomous underwater vehicle, Two successful missions. In Proceedings of International Symposium on Underwater Technology. Tokyo, Japan, pages 109--114. doi:10.1109/UT.1998.670072
[11] Ferguson, J. (2008). Adapting AUVs for use in under-ice scientific missions, In OCEANS. Quebec City, QC, Canada, pages 1--5. doi:10.1109/OCEANS.2008.5152025
[12] Ferguson, J. (2011). 1000 km under ice with an AUV - Setting the stage for future achievement, In IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies. Tokyo, Japan, pages 1--5. doi:10.1109/UT.2011.5774171
[13] Forrest, A.L., Hamilton, A.K., Schmidt, V., Laval, B.E., Mueller, D., Crawford, A., Brucker, S., and Hamilton, T. (2012). Digital terrain mapping of Petermann Ice Island fragments in the Canadian High Arctic, In Proceedings of the 21st IAHR International Symposium on Ice. Dalian, China, pages 710--721.
[14] Forrest, A.L., Laval, B., Doble, M.J., Yeo, R., and Magnusson, E. (2008). AUV measurements of under-ice thermal structure, In OCEANS. Quebec City, QC, Canada, pages 1--10. doi:10.1109/OCEANS.2008.5152046
[15] Francois, R. and Nodland, W. (1972). Unmanned Arctic research submersible (UARS) system development and test report, Technical Report No. APL-UW 7219, University of Washington.
[16] Freitag, L., Koski, P., Morozov, A., Singh, S., and Partan, J. (2012). Acoustic communications and navigation under Arctic ice, In OCEANS. Hampton Roads, VA, USA, pages 1--8. doi:10.1109/OCEANS.2012.6405005
[17] Gade, K. (2004). NavLab, a generic simulation and post-processing tool for navigation, European Journal of Navigation. 2(4):1--9.
[18] Hagen, P.E., Midtgaard, O., and Hasvold, O. (2007). Making AUVs Truly Autonomous, In OCEANS. Vancouver, BC, Canada, pages 1--4. doi:10.1109/OCEANS.2007.4449405
[19] Haugen, J., Imsland, L., Loset, S., and Skjetne, R. (2011). Ice observer system for ice management operations, In Proceedings of the 21th International Offshore and Polar Engineering Conference. Maui, HI, USA, pages 1120--1127.
[20] Imagenex. (2011). Model 837/A/B DeltaT Multibeam Sonar System (operator manual and supporting documents), Imagenex Technology Corp.
[21] Jalving, B., Gade, K., Svartveit, K., Willumsen, A., and Sorhagen, R. (2004). DVL velocity aiding in the HUGIN 1000 integrated inertial navigation system, Modeling, Identification and Control. 25(4):223--236. doi:10.4173/mic.2004.4.2
[22] Johnson, M., Herold, D., and Catipovic, J. (1994). The design and performance of a compact underwater acoustic network node, In OCEANS, volume3. Brest, France, pages 467--471. doi:10.1109/OCEANS.1994.364243
[23] Jorgensen, U. and Skjetne, R. (2015). Online reconstruction of drifting underwater ice topography: The 2D case, Asian Journal of Control. Accepted for publication.
[24] Kaminski, C., Crees, T., Ferguson, J., Forrest, A., Williams, J., Hopkin, D., and Heard, G. (2010). 12 days under ice -- an historic AUV deployment in the Canadian High Arctic, In IEEE/OES Autonomous Underwater Vehicles. Monterey, CA, USA, pages 1--11. doi:10.1109/AUV.2010.5779651
[25] Kimball, P. and Rock, S. (2008). Sonar-based iceberg-relative AUV navigation, In IEEE/OES Autonomous Underwater Vehicles. Woods Hole, MA, USA, pages 1--6. doi:10.1109/AUV.2008.5290534
[26] King, P., Lewis, R., Mouland, D., and Walker, D. (2009). CATCHY An AUV ice dock, In OCEANS. Biloxi, MS, USA, pages 1--6.
[27] Kinsey, J.C., Eustice, R.M., and Whitcomb, L.L. (2006). A survey of underwater vehicle navigation: Recent advances and new challenges, In Conference of Manoeuvering and Control of Marine Craft. Lisbon, Portugal, pages 1--12.
[28] Kunz, C., Murphy, C., Singh, H., Pontbriand, C., Sohn, R.A., Singh, S., Sato, T., Roman, C., Nakamura, K.-i., Jakuba, M., Eustice, R., Camilli, R., and Bailey, J. (2009). Toward extraplanetary under-ice exploration: Robotic steps in the Arctic, Journal of Field Robotics. 26(4):411--429. doi:10.1002/rob.20288
[29] L-3 Communications. (2000). Multibeam sonar theory of operation, 2000. http://www.ldeo.columbia.edu/res/pi/MB-System/sonarfunction/SeaBeamMultibeamTheoryOperation.pdf.
[30] Lubin, D. and Massom, R. (2006). Polar remote sensing: Volume1: Atmosphere and oceans, Springer.
[31] McEwen, R., Thomas, H., Weber, D., and Psota, F. (2005). Performance of an AUV navigation system at Arctic latitudes, IEEE Journal of Oceanic Engineering. 30(2):443--454. doi:10.1109/JOE.2004.838336
[32] Milne, P.H. (1983). Underwater acoustic positioning system, E. & F. N. Spon Ltd, London.
[33] Moline, M.A., Blackwell, S.M., von Alt, C., Allen, B., Austin, T., Forrester, N., Goldsborough, R., Purcell, M., and Stokey, R. (2005). Remote environmental monitoring units: An autonomous vehicle for characterizing coastal environments, Journal of Atmospheric and Oceanic Technology. 22:1797--1808. doi:10.1175/JTECH1809.1
[34] National Snow and Ice Data Center. (2014). Arctic sea ice reaches minimum extent for 2014, 2014. http://nsidc.org/arcticseaicenews/2014/09/arctic-minimum-reached/, (Accessed: 07 Nov. 2014).
[35] Nilssen, I., Odegaard, O., Sorensen, A.J., Johnsen, G., Moline, M.A., and Berge, J. (2015). Integrated environmental mapping and monitoring: a methodological approach to optimise knowledge gathering and sampling strategy through use of a case study from Svalbard, Norway, To be pubished.
[36] Norgren, P., Lubbad, R., and Skjetne, R. (2014). Unmanned underwater vehicles in Arctic operations, In Proceedings of the 22nd IAHR International Symposium on Ice. Singapore, pages 89--101. doi:10.3850/978-981-09-0750-1 extunderscore 1146
[37] O'Connell, B.J. (2008). Marine radar for improved ice detection, Technical report, Canadian Coast Guard, Ottawa, Ontario, Canada, 2008. http://www.dfo-mpo.gc.ca/library/343421.pdf.
[38] O'Hara, C.A. and Collis, J.M. (2011). Acoustics in Arctic environments, In 162nd Acoustical Society of America Meeting. San Diego, CA, USA, pages 1--2. http://inside.mines.edu/jcollis/Pekerice\_Lay\_Language\_Paper.pdf.
[39] Rice, J. (2005). SeaWeb acoustic communication and navigation networks, In Proceedings of the International Conference on Underwater Acoustic Measurements: Technologies and Results. Heraklion, Greece, pages 1--7.
[40] Santos, N., Matos, A., and Cruz, N. (2008). Navigation of an autonomous underwater vehicle in a mobile network, In OCEANS. Quebec City, QC, Canada, pages 1--5. doi:10.1109/OCEANS.2008.5151980
[41] Sear, C.B. and Wadhams, P. (1992). Statistical properties of Arctic sea-ice morphology derived from sidescan sonar images, Progress in Oceanography. 29(2):133--160. doi:10.1016/0079-6611(92)90022-R
[42] Stojanovic, M. (1996). Recent advances in high-speed underwater acoustic communications, IEEE Journal of Oceanic Engineering. 21(2):125--136. doi:10.1109/48.486787
[43] Teledyne RD Instruments. (2011). Acoustic Doppler current profiler: Principles of operation: A practical primer, 2011. http://www.rdinstruments.com/support/SoftwareFirmware/x/cs/files/Manuals/BBPRIME.pdf.
[44] Thomson, J. and Rogers, W.E. (2014). Swell and sea in the emerging Arctic Ocean, Geophysical Research Letters. 41(9):3136--3140. doi:10.1002/2014GL059983
[45] Thorleifson, J., Davies, T., Black, M., Hopkin, D., Verrall, R., Pope, A., Monteith, I., Den Hertog, V., and Butler, B. (1997). The Theseus autonomous underwater vehicle, A Canadian success story. In OCEANS. Halifax, NS, Canada, pages 1001--1006. doi:10.1109/OCEANS.1997.624127
[46] Timco, G. and Burden, R. (1997). An analysis of the shapes of sea ice ridges, Cold Regions Science and Technology. 25(1):65--77. doi:10.1016/S0165-232X(96)00017-1
[47] Wadhams, P. (1978). Sidescan sonar imagery of sea ice in the Arctic Ocean, Canadian Journal of Remote Sensing. 4(2):161--173. doi:10.1080/07038992.1978.10854978
[48] Wadhams, P., Wilkinson, J.P., and Kaletzky, A. (2004). Sidescan sonar imagery of the winter marginal ice zone obtained from an AUV, Journal of Atmospheric and Oceanic Technology. 21(9):1462--1470. doi:10.1175/1520-0426(2004)021<1462:SSIOTW>2.0.CO;2
[49] Wadhams, P., Wilkinson, J.P., and McPhail, S.D. (2006). A new view of the underside of Arctic sea-ice, Geophysical Research Letters. 33(4):L04501. doi:10.1029/2005GL025131
[50] Wiig, M.S., Krogstad, T.R., and Midtgaard, O. (2012). Autonomous identification planning for mine countermeasures, In IEEE/OES Autonomous Underwater Vehicles (AUV). IEEE, Southampton, U.K., pages 1--8. doi:10.1109/AUV.2012.6380733


BibTeX:
@article{MIC-2014-4-4,
  title={{Using Autonomous Underwater Vehicles as Sensor Platforms for Ice-Monitoring}},
  author={Norgren, Petter and Skjetne, Roger},
  journal={Modeling, Identification and Control},
  volume={35},
  number={4},
  pages={263--277},
  year={2014},
  doi={10.4173/mic.2014.4.4},
  publisher={Norwegian Society of Automatic Control}
};

News

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.