**Page description appears here**

“Analysis of Offshore Knuckle Boom Crane - Part One: Modeling and Parameter Identification”

Authors: Morten K. Bak and Michael R. Hansen,
Affiliation: University of Agder
Reference: 2013, Vol 34, No 4, pp. 157-174.

     Valid XHTML 1.0 Strict

Keywords: Hydraulic crane, multi-body system, flexibility, directional control valve, counterbalance valve

Abstract: This paper presents an extensive model of a knuckle boom crane used for pipe handling on offshore drilling rigs. The mechanical system is modeled as a multi-body system and includes the structural flexibility and damping. The motion control system model includes the main components of the crane's electro-hydraulic actuation system. For this a novel black-box model for counterbalance valves is presented, which uses two different pressure ratios to compute the flow through the valve. Experimental data and parameter identification, based on both numerical optimization and manual tuning, are used to verify the crane model. The demonstrated modeling and parameter identification techniques target the system engineer and takes into account the limited access to component data normally encountered by engineers working with design of hydraulic systems.

PDF PDF (764 Kb)        DOI: 10.4173/mic.2013.4.1

DOI forward links to this article:
  [1] Morten K. Bak and Michael R. Hansen (2013), doi:10.4173/mic.2013.4.2
  [2] Danilo Y. Nesin and Veronica R. Dushko (2015), doi:10.1016/j.proeng.2015.01.470
  [3] Sondre Sanden Tørdal, Andreas Klausen and Morten K. Bak (2015), doi:10.4173/mic.2015.4.3
  [4] Siamak Arbatani, Alfonso Callejo, József Kövecses, Masoud Kalantari, Nick R. Marchand and Javad Dargahi (2016), doi:10.1007/s00466-016-1274-2
  [5] Witold Pawlus, Martin Choux and Michael R. Hansen (2016), doi:10.4173/mic.2016.1.1
  [6] Yingguang Chu, Houxiang Zhang and Wei Wang (2016), doi:10.1007/978-3-319-42321-0_30
  [7] Jesper Kirk Sørensen, Michael R. Hansen and Morten K. Ebbesen (2016), doi:10.4173/mic.2016.4.1
  [8] Witold Pawlus, Fred Liland, Nicolai Nilsen, Sřren Řydna, Geir Hovland and Torstein K. Wroldsen (2016), doi:10.2118/184406-PA
  [9] Daniel Hagen, Witold Pawlus, Morten K. Ebbesen and Torben Ole Andersen (2017), doi:10.4173/mic.2017.2.2
  [10] Morten H. Rudolfsen, Teodor N. Aune, Oddgeir Auklend, Leif Tore Aarland and Michael Ruderman (2017), doi:10.1109/AIM.2017.8014077
  [11] J. A. Diosdado-De la Peńa, A. J. Balvantín, P. A. Limón-Leyva and P. A. Pérez-Olivas (2017), doi:10.1007/s11223-017-9880-6
  [12] Heikki Hyyti, Ville V. Lehtola and Arto Visala (2018), doi:10.1002/rob.21793
  [13] Hye-Won Lee and Myung-Il Roh (2018), doi:10.1016/j.oceaneng.2018.08.022
  [14] Iwona Adamiec-Wójcik, ukasz Dr g, Marek Metelski, Kamil Nadratowski and Stanis aw Wojciech (2018), doi:10.1016/j.apm.2018.09.006
  [15] Henrik C. Pedersen, Torben O. Andersen and Brian K. Nielsen (2015), doi:10.1115/1.4030801

[1] Abdel-Rahman, E.M., Nayfeh, A.H., and Masoud, Z.N. (2003). Dynamics and control of cranes: A review, Journal of Vibration and Control. 67(7):863--908. doi:10.1177/1077546303009007007
[2] Adams, V. and Askenazi, A. (1999). Building better products with finite element analysis, OnWord Press.
[3] Bak, M.K. and Hansen, M.R. (2012). Modeling, performance testing and parameter identification of pressure compensated proportional directional control valves, In Proceedings of the 7th FPNI PhD Symposium on Fluid Power. Reggio Emilia, Italy, pages 889--908.
[4] Bak, M.K., Hansen, M.R., and Nordhammer, P.A. (2011). Virtual prototyping - model of offshore knuckle boom crane, In Proceedings of the 24th International Congress on Condition Monitoring and Diagnostics Engineering Management. Stavanger, Norway, pages 1242--1252.
[5] Connelly, J. and Huston, R.L. (1994). The dynamics of flexible multibody systems: A finite segment approach --- I, Theoretical aspects. Computers and Structures, 1994. 50(2):255--258. doi:10.1016/0045-7949(94)90300-X
[6] Connelly, J. and Huston, R.L. (1994). The dynamics of flexible multibody systems: A finite segment approach --- II, Example problems. Computers and Structures, 1994. 50(2):259--262. doi:10.1016/0045-7949(94)90301-8
[7] Ellman, A., Kaeppi, T., and Vilenius, M.J. (1996). Simulation and analysis of hydraulically driven boom mechanisms, In Proceedings of the 9th Bath International Fluid Power Workshop. Bath, UK, pages 413--429.
[8] Esque, S., Kaeppi, T., and Ellman, A. (1999). Importance of the mechanical flexibility on behaviour of a hydraulic driven log crane, In Proceedings of the 2nd International Conference on Recent Advances in Mechatronics. Istanbul, Turkey, pages 359--365.
[9] Esque, S., Raneda, A., and Ellman, A. (2003). Techniques for studying a mobile hydraulic crane in virtual reality, International Journal of Fluid Power. 4(2):25--34.
[10] Hansen, M.R., Andersen, T., and Conrad, F. (2001). Experimentally based analysis and synthesis of hydraulically actuated loader crane, In Bath Workshop on Power Transmission and Motion Control. Bath, UK, pages 259--274.
[11] Henriksen, J., Bak, M.K., and Hansen, M.R. (2011). A method for finite element based modeling of flexible components in time domain simulation of knuckle boom crane, In Proceedings of the 24th International Congress on Condition Monitoring and Diagnostics Engineering Management. Stavanger, Norway, pages 1215--1224.
[12] Hiller, M. (1996). Modelling, simulation and control design for large and heavy manipulators, Robotics and Autonomous Systems. 19(2):167--177. doi:10.1016/S0921-8890(96)00044-9
[13] Huston, R.L. (1981). Multi-body dynamics including the effects of flexibility and compliance, Computers and Structures. 14(5-6):443--451. doi:10.1016/0045-7949(81)90064-X
[14] Huston, R.L. (1991). Computer methods in flexible multibody dynamics, International Journal for Numerical Methods in Engineering, 1991. 32(8):1657--1668. doi:10.1002/nme.1620320809
[15] Huston, R.L. and Wang, Y. (1993). Flexibility effects in multibody systems, In Computer Aided Analysis of Rigid and Flexible Mechanical Systems: Proceedings of the NATO Advanced Study Institute, pages 351--376. Troia, Portugal.
[16] Merritt, H.E. (1967). Hydraulic control systems, Wiley.
[17] Mikkola, A. and Handroos, H. (1996). Modeling and simulation of a flexible hydraulic-driven log crane, In Proceedings of the 9th Bath International Fluid Power Workshop. Bath, UK.
[18] Mostofi, A. (1999). The incorporation of damping in lumped-parameter modelling techniques, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. 213(1):11--17.
[19] Nielsen, B., Pedersen, H.C., Andersen, T.O., and Hansen, M.R. (2003). Modelling and simulation of mobile hydraulic crane with telescopic arm, 2003. pages 433--446.
[20] Nikravesh, P.E. (1988). Computer-aided analysis of mechanical systems, Prentice Hall.
[21] Ottestad, M., Nilsen, N., and Hansen, M.R. (2012). Reducing the static friction in hydraulic cylinders by maintaining relative velocity between piston and cylinder, In Proceedings of the 12th International Conference on Control, Automation and Systems. Jeju Island, Korea, pages 764--769.
[22] Shabana, A.A. (1997). Flexible multibody dynamics: Review of past and recent developments, Multibody System Dynamics. 1(2):189--222. doi:10.1023/A:1009773505418
[23] Than, T.K., Langen, I., and Birkeland, O. (2002). Modelling and simulation of offshore crane operations on a floating production vessel, In Proceedings of The Twelfth (2002) International Offshore and Polar Engineering Conference. Kitakyushu, Japan.

  title={{Analysis of Offshore Knuckle Boom Crane - Part One: Modeling and Parameter Identification}},
  author={Bak, Morten K. and Hansen, Michael R.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}


Oct 2018: MIC reaches 3000 DOI Forward Links. The last 1000 took 2 years and 5 months.

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.

July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.

Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.

Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.

Jan 2012: Follow MIC on your smartphone by using the RSS feed.


July 2011: MIC passes 1000 ISI Web of Science citations.

Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.

Dec 2009: A MIC group is created at LinkedIn and Twitter.

Oct 2009: MIC is now fully updated in ISI Web of Knowledge.