**Page description appears here**

“On-off and PI Control of Methane Gas Production of a Pilot Anaerobic Digestion Reactor”

Authors: Finn Haugen, Rune Bakke and Bernt Lie,
Affiliation: Telemark University College
Reference: 2013, Vol 34, No 3, pp. 139-156.

     Valid XHTML 1.0 Strict


Keywords: Anaerobic digestion, bioreactor, gas flow control, on-off control, PI control, feedback

Abstract: A proposed feedback control system for methane flow control of a real pilot anaerobic digestion reactor fed with dairy waste is designed and analyzed using the modified Hill model, which has previously been adapted to the reactor. Conditions for safe operation of the reactor are found using steady-state responses of dynamic simulations, taking into account the upper limit of the volatile fatty acids (VFA) concentration recommended in the literature. The controllers used are standard process controllers, namely the on-off controller and the PI controller. Several PI controller tuning methods are evaluated using simulations. Two methods are favoured, namely the Skogestad method, which is an open loop method, and the Relaxed Ziegler-Nichols closed loop method. The two methods give approximately the same PI settings. Still, the Skogestad method is ranged first as it requires less tuning time, and because it is easier to change the PI settings at known changes in the process dynamics. Skogestad's method is successfully applied to a PI control system for the real reactor. Using simulations, the critical operating point to be used for safe controller tuning is identified.

PDF PDF (674 Kb)        DOI: 10.4173/mic.2013.3.4



DOI forward links to this article:
  [1] Finn Haugen, Rune Bakke and Bernt Lie (2014), doi:10.1155/2014/572621


References:
[1] Angelidaki, I., Ellegaard, L., and Ahring, B.K. (1993). A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: Focusing on ammonia inhibition, Biotechnology and Bioengineering. 42:159--166. doi:10.1002/bit.260420203
[2] Aastrom, K.J. and Haegglund, T. (1995). PID Controllers: Theory, Design and Tuning, ISA.
[3] Aastrom, K.J. and Wittenmark, B. (1994). Adaptive Control, Prentice Hall.
[4] Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlovstahis, S.G., Rozzi, A., Sanders, W. T.M., Siegrist, H., and Vavilin, V.A. (2002). Anaerobic Digestion Model No, 1, Scientific and Technical Report 15. IWA Publising.
[5] Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A., and Steyer, J. (2001). Dynamical model development and parameter identification for an anaerobic wastewater treatment process, Biotechnology and Bioengineering, 2001. 75(4). doi:10.1002/bit.10036
[6] Bernard, O., Polit, M., Hadj-Sadok, Z., Pengov, M., Dochain, D., Estaben, M., and Labat, P. (2001). Advanced monitoring and control of anaerobic wastewater treatment plants: software sensors and controller for an anaerobic digester, Water Science and Technology, 2001. 43(7).
[7] Deublein, D. and Steinhauser, A. (2010). Biogas from Waste and Renewable Resources, Wiley. doi:10.1002/9783527632794
[8] Dochain, D. (2008). Bioprocess Control, Wiley. doi:10.1002/9780470611128
[9] Edgar, T.F., Himmelblau, D., and Lasdon, L. (2001). Optimization of Chemical Processes, McGraw-Hill.
[10] Gavala, H.N., Angelidaki, I., and Ahring, B.K. (2003). Kinetics and Modeling of Anaerobic Digestion Process, Advances in Biochemical Engineering/Biotechnology, Springer-Verlag. 81.
[11] Haugen, F., Bakke, R., and Lie, B. (2013). Adapting dynamic mathematical models to a pilot anaerobic digestion reactor, Modeling, Identification and Control, 2013. 34(2):35--54. doi:10.4173/mic.2013.2.1
[12] Haugen, F., Bakke, R., and Lie, B. (2013). Temperature control of a pilot anaerobic digestion reactor, Modeling, Identification and Control, 2013. 34(3). doi:10.4173/mic.2013.3.1
[13] Haugen, F., Bakke, R., Vasdal, K., and Bergland, W. (2013). Foss Biolab, http://fossbiolab.no, 2013.
[14] Haugen, F. and Lie, B. (2013). Relaxed Ziegler-Nichols Closed Loop Tuning of PI Controllers, Modeling, Identification and Control. 34(2):83--97. doi:10.4173/mic.2013.2.4
[15] Hill, D.T. (1983). Simplified monod kinetics of methane fermentation of animal wastes, Agric. Wastes. 5. doi:10.1016/0141-4607(83)90009-4
[16] Hill, D.T., Cobb, S.A., and Bolte, J.P. (1987). Using volatile fatty acid relationships to predict anaerobic digester failure, Trans. ASAE. 30:496--501. doi:10.13031/2013.31977
[17] Husain, A. (1998). Mathematical models of the kinetics of anaerobic digestion - a selected review, Biomass and Bioenergy. 14(5/6):561--571. doi:10.1016/S0961-9534(97)10047-2
[18] Johnson, C.D. (2000). Process Control Instrumentation Control Technology, Prentice-Hall.
[19] Liu, J., Olsson, G., and Mattiasson, B. (2006). Extremum-seeking with variable gain control for intensifying biogas production in anaerobic fermentation, Water Science and Technology. 53(4-5):35--44. doi:10.2166/wst.2006.108
[20] Mendez-Acosta, H.O., Campos-Delgado, D.U., Femat, R., and Gonzalez-Alvarez, V. (2005). A robust feedforward/feedback control for an anaerobic digester, Computers and Chemical Engineering. 29:1613--1623. doi:10.1016/j.compchemeng.2005.01.005
[21] Mendez-Acosta, H.O., Palacios-Ruiz, B., Alcaraz-Gonzalez, V., Gonzalez-Alvarez, V., and Garcia-Sandoval, J.P. (2010). A robust control scheme to improve the stability of anaerobic digestion processes, Journal of Process Control. 20:375--383. doi:10.1016/j.jprocont.2010.01.006
[22] Punal, A., Palazzotto, L., Bouvier, J.C., Conte, T., and Steyer, J.P. (2003). Automatic control of volatile fatty acids in anaerobic digestion using a fuzzy logic based approach, Water Science and Technology. 48(6).
[23] Rodriguez, L., Ruiz, G., Molina, F., Roca, E., and Lema, J.M. (2006). A hydrogen-based variable-gain controller for anaerobic digestion processes, Water Science and Technology. 54(2):57--62. doi:10.2166/wst.2006.486
[24] Seborg, D.E., Edgar, T.F., and Mellichamp, D.A. (2004). Process Dynamics and Control, John Wiley and Sons.
[25] Simon, D. (2006). Optimal State Estimation, Wiley. doi:10.1002/0470045345
[26] Skogestad, S. (2004). Simple analytic rules for model reduction and PID controller tuning, Modeling, Identification and Control. 25(2):85--120. doi:10.4173/mic.2004.2.2
[27] Steyer, J.P., Buffière, P., Rolland, D., and Moletta, R. (1999). Advanced control of anaerobic digestion processes through disturbance monitoring, Water, Science and Technology. 33(9):2059--2068.
[28] Stroemberg, S. (2010). Development and Evaluation of Numerical Models for Anaerobic Digestion, M.Sc. thesis. Lund Univ., Sweden.
[29] Stroemberg, S., Possfelt, M.O., and Liu, J. (2013). Computer simulation of control strategies for optimal anaerobic digestion, Water Science and Technology. 67(3).
[30] Tchobanoglous, G., Burton, F.G., and Stensel, H.D. (2003). Wastewater Engineering: Treatment and Reuse, Metcalf and Eddy, McGraw Hill.
[31] Tyreus, B.D. and Luyben, W.L. (1992). Tuning PI Controllers for Integrator/Dead Time Processes, Ind. Eng. Chem. 31(31).
[32] Ziegler, J. and Nichols, N. (1942). Optimum settings for automatic controllers, Trans. ASME. 64(3):759--768. doi:10.1115/1.2899060


BibTeX:
@article{MIC-2013-3-4,
  title={{On-off and PI Control of Methane Gas Production of a Pilot Anaerobic Digestion Reactor}},
  author={Haugen, Finn and Bakke, Rune and Lie, Bernt},
  journal={Modeling, Identification and Control},
  volume={34},
  number={3},
  pages={139--156},
  year={2013},
  doi={10.4173/mic.2013.3.4},
  publisher={Norwegian Society of Automatic Control}
};

News

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.