**Page description appears here**

“Observer Based Sliding Mode Attitude Control: Theoretical and Experimental Results”

Authors: Ulrik Jørgensen and Jan T. Gravdahl,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 2011, Vol 32, No 3, pp. 113-121.

     Valid XHTML 1.0 Strict

Keywords: attitude control, observer design, nonlinear control, experiments

Abstract: In this paper we present the design of a sliding mode controller for attitude control of spacecraft actuated by three orthogonal reaction wheels. The equilibrium of the closed loop system is proved to be asymptotically stable in the sense of Lyapunov. Due to cases where spacecraft do not have angular velocity measurements, an estimator for the generalized velocity is derived and asymptotic stability is proven for the observer. The approach is tested on an experimental platform with a sphere shaped Autonomous Underwater Vehicle SATellite: AUVSAT, developed at the Norwegian University of Science and Technology.

PDF PDF (1694 Kb)        DOI: 10.4173/mic.2011.3.3

DOI forward links to this article:
  [1] Honglei An, Jie Li, Jian Wang, Jianwen Wang and Hongxu Ma (2013), doi:10.1155/2013/328974
  [2] Lionel Magnis and Nicolas Petit (2016), doi:10.1109/TAC.2015.2501358
  [3] Lionel Magnis and Nicolas Petit (2017), doi:10.1016/j.automatica.2016.09.027

[1] Alfaro-Cid, E., McGookin, E.W., Murray-Smith, D.J., Fossen, T.I. (2005). Genetic algorithms optimization of decoupled sliding mode controllers: simulated and real results, Cont. Eng. Prac., 1.6:739 -- 748 doi:10.1016/j.conengprac.2004.07.004
[2] Bondhus, A.K., Pettersen, K.Y., Gravdahl, J.T. (2005). Leader/follower synchronization of satellite attitude without angular velocity measurements, In Proc. CDC-ECC. pp. 7270--7277 doi:10.1109/CDC.2005.1583334
[3] Caccavale, F. Villani, L. (1999). Output feedback control for attitude tracking, Systems and& Control Letters, 38(2):91 -- 98 doi:10.1016/S0167-6911(99)00050-X
[4] Costic, B.T., Dawson, D.M., DeQueiroz, M.S., Kapila, V. (2000). A quaternion-based adaptive attitude tracking controller without velocity measurements, In Proc. CDC, volume3. pp. 2424--2429 doi:10.1109/CDC.2000.914164
[5] Egeland, O. Gravdahl, J.T. (2002). Modeling and Simulation for Automatic Control, Marine Cyb.
[6] Fossen, T.I. (2002). Marine Control Systems, Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles, Marine Cybernetics.
[7] Hahn, W. (1967). Stability of Motion, Springer-Verlag.
[8] Hall, C.D. (1995). Spinup dynamics of gyrostats, J. Guidance, Control, and Dynamics, 1.5:1177--1183 doi:10.2514/3.21522
[9] Ismail, Z. Varatharajoo, R. (2010). A study of reaction wheel configurations for a 3-axis satellite attitude control, Advances in Space Research, 4.6:750 -- 759 doi:10.1016/j.asr.2009.11.004
[10] Jin, J., Ko, S., Ryoo, C.-K. (2008). Fault tolerant control for satellites with four reaction wheels, Cont. Eng. Prac., 1.10:1250 -- 1258 doi:10.1016/j.conengprac.2008.02.001
[11] Kia, T., Bayard, D.S., Tolivar, F. (1997). A precision pointing control system for the space infrared telescope facility, SIRTF. Technical Report AAS 97-067, American Astronautical Society.
[12] Kristiansen, R., Loria, A., Chaillet, A., Nicklasson, P.J. (2009). Spacecraft relative rotation tracking without angular velocity measurements, Automatica, 4.3:750--756 doi:10.1016/j.automatica.2008.10.012
[13] Krogstad, T.R. (2010). Attitude synchronization in spacecraft formations, Theoretical and experimental results. Ph.D. thesis, NTNU.
[14] Krogstad, T.R., Gravdahl, J.T., Børhaug, E., Pettersen, K.Y. (2008). AUVSAT: An experimental platform for spacecraft formation flying, In Proc. 59th Intl. Astronautical Cong., Glasgow.
[15] Krogstad, T.R., Gravdahl, J.T., Kristiansen, R. (2005). Coordinated control of satellites: The attitude case, In Proc. 56th Intl. Astron. Cong., Fukuoka.
[16] Lizarralde, F. Wen, J.T. (1996). Attitude control without angular velocity measurement: a passivity approach, IEEE Trans. on Automatic Control, 4.3:468 --472 doi:10.1109/9.486654
[17] Ma, S. Boukas, E.-K. (2009). A singular system approach to robust sliding mode control for uncertain markov jump systems, Automatica, 4.11:2708 -- 2713 doi:10.1016/j.automatica.2009.07.027
[18] Mayhew, C., Sanfelice, R., Teel, A. (2009). Robust global asymptotic attitude stabilization of a rigid body by quaternion-based hybrid feedback, In Proc. CDC/CCC. pp. 2522-2527 doi:10.1109/CDC.2009.5400431
[19] Nudehi, S.S., Farooq, U., Alasty, A., Issa, J. (2008). Satellite attitude control using three reaction wheels, In Proc. American Control Conf. pp. 4850--4855 doi:10.1109/ACC.2008.4587262
[20] Parlos, A.G. Sunkel, J.W. (1992). Adaptive attitude control and momentum management for large-angle spacecraft maneuvers, J. Guidance, Control, and Dynamics, 1.4:1018--1028 doi:10.2514/3.20937
[21] Perruquetti, W. Barbot, J.P. (2002). Sliding Mode Control in Engineering, Marcel Dekker, Inc doi:10.1201/9780203910856
[22] Salcudean, S. (1991). A globally convergent angular velocity observer for rigid body motion, IEEE Trans. on Automatic Control, 3.12:1493--1497 doi:10.1109/9.106169
[23] Shevitz, D. Paden, B. (1994). Lyapunov stability theory of nonsmooth systems, IEEE Trans. on Automatic Control, 3.9:1910--1914 doi:10.1109/9.317122
[24] Sunde, B.O. (2005). Sensor modelling and attitude determination for micro-satellite, Master´s thesis, NTNU.
[25] Wang, B., Gong, K., Yang, D., Li, J. (2003). Fine attitude control by reaction wheels using variable-structure controller, Acta Astronautica, 52(8):613--618 doi:10.1016/S0094-5765(02)00133-9
[26] Won, C.-H. (1999). Comparative study of various control methods for attitude control of a leo satellite, Aerospace Science and Technology, 3(5):323 -- 333 doi:10.1016/S1270-9638(00)86968-0
[27] Zee, R.E., Matthews, J., Grocott, S. C.O. (2002). The MOST microsatellite mission: All systems go for launch, In Proc. 12th CASI Conf. on Aeron.

  title={{Observer Based Sliding Mode Attitude Control: Theoretical and Experimental Results}},
  author={Jørgensen, Ulrik and Gravdahl, Jan T.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}


May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.

July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.

Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.

Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.

Jan 2012: Follow MIC on your smartphone by using the RSS feed.


July 2011: MIC passes 1000 ISI Web of Science citations.

Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.

Dec 2009: A MIC group is created at LinkedIn and Twitter.

Oct 2009: MIC is now fully updated in ISI Web of Knowledge.