**Page description appears here**

“Robot Control Overview: An Industrial Perspective”

Authors: Torgny Brogårdh,
Affiliation: ABB
Reference: 2009, Vol 30, No 3, pp. 167-180.

     Valid XHTML 1.0 Strict

Keywords: Robotics, control, models, learning, sensors, identification, diagnosis, assembly, machining

Abstract: One key competence for robot manufacturers is robot control, defined as all the technologies needed to control the electromechanical system of an industrial robot. By means of modeling, identification, optimization, and model-based control it is possible to reduce robot cost, increase robot performance, and solve requirements from new automation concepts and new application processes. Model-based control, including kinematics error compensation, optimal servo reference- and feed-forward generation, and servo design, tuning, and scheduling, has meant a breakthrough for the use of robots in industry. Relying on this breakthrough, new automation concepts such as high performance multi robot collaboration and human robot collaboration can be introduced. Robot manufacturers can build robots with more compliant components and mechanical structures without loosing performance and robots can be used also in applications with very high performance requirements, e.g., in assembly, machining, and laser cutting. In the future it is expected that the importance of sensor control will increase, both with respect to sensors in the robot structure to increase the control performance of the robot itself and sensors outside the robot related to the applications and the automation systems. In this connection sensor fusion and learning functionalities will be needed together with the robot control for easy and intuitive installation, programming, and maintenance of industrial robots.

PDF PDF (7592 Kb)        DOI: 10.4173/mic.2009.3.7

DOI forward links to this article:
  [1] Guido Sand and Peter Terwiesch (2013), doi:10.1016/j.ejcon.2013.05.020
  [2] Mohamed Slamani, Sébastien Gauthier and Jean-François Chatelain (2014), doi:10.1016/j.rcim.2014.03.007
  [3] Jingfu Jin and Nicholas Gans (2015), doi:10.1016/j.rcim.2014.06.004
  [4] Nicola Pedrocchi, Enrico Villagrossi, Claudio Cenati and Lorenzo Molinari Tosatti (2014), doi:10.1007/s00170-014-6501-4
  [5] A. Bechar, S.Y. Nof and J.P. Wachs (2015), doi:10.1016/j.arcontrol.2015.03.003
  [6] Syed Ali Ajwad, Jamshed Iqbal, Muhammad Imran Ullah and Adeel Mehmood (2015), doi:10.1007/s11465-015-0335-0
  [7] Mohamed Slamani, Ahmed Joubair and Ilian A. Bonev (2015), doi:10.1108/IR-05-2015-0088
  [8] Paulo Ferreira, Victoria Reyes and Joao Mestre (2011), doi:10.1109/ETFA.2011.6059204
  [9] Jian Chen, Ruifeng Li and Chuqing Cao (2014), doi:10.1109/ICInfA.2014.6932803
  [10] Horacio Ernesto and Jimoh O. Pedro (2015), doi:10.1155/2015/187948
  [11] Khelifa Baizid, Sa a ukovi , Jamshed Iqbal, Ali Yousnadj, Ryad Chellali, Amal Meddahi, Goran Deved i and Ionut Ghionea (2016), doi:10.1016/j.rcim.2016.06.003
  [12] Andrea Giusti and Matthias Althoff (2016), doi:10.1109/ACC.2016.7525375
  [13] Stepan S. Pchelkin, Anton S. Shiriaev, Anders Robertsson, Leonid B. Freidovich, Sergey A. Kolyubin, Leonid V. Paramonov and Sergey V. Gusev (2017), doi:10.1109/TCST.2016.2554520
  [14] António M. Lopes and E.J. Solteiro Pires (2011), doi:10.5772/45681
  [15] Wenxiang Wu, Shiqiang Zhu, Xuanyin Wang and Huashan Liu (2012), doi:10.5772/45818
  [16] Paulo Ferreira, Victoria Reyes and João Mestre (2013), doi:10.5772/54641

[1] Asyril. (2009). Link to miniature robot company, URL www.asyril.ch.
[2] ATI, Jr3, AMTI. (2009). Links to robot force sensor manufacturers, www.ati-ia.com, http://www.jr3.com´>www.jr3.com, www.amti.biz.
[3] Bao, X., Peng, W., Yin, X., Fang, X., Zhang, H. (2009). With a human touch - how robots have learned to polish, ABB Review special report. www.processonline.com.au/articles/31377-With-a-human-touch-how-robots-have-learned-to-polish.
[4] Björkman, M., Brogårdh, T., Hanssen, S., Lindström, S.-E., Moberg, S., Norrlöf, M. (2008). A new concept for motion control of industrial robots, In Proc. 17th IFAC World Congress. Seoul, Korea.
[5] Blomdell, A., Bolmsjö, G., Brogårdh, T., Cederberg, P., Isaksson, M., Johansson, R., Haage, M., Nilsson, K., Olsson, M., Robertsson, A., Wang, J. (2005). Extending an industrial root controller implementation and applications of a fast open sensor interface, IEEE Robotics and& Automation Magazine doi:10.1109/MRA.2005.1511872
[6] Braintech. (2008). Bin picking, URL www.braintech.com/videos-rbp.php.
[7] Bredin, C. (2005). Team-mates, ABB multimove functionality heralds a new era in robot applications, ABB Review, 1. URL www.abb.co.uk/global/abbzh/abbzh251.nsf!OpenDatabaseand&db=/global/gad/gad02077.nsfand&v=96DEand&e=usand&c=A86EAFECBB07B12AC1256FBE0055E7CE.
[8] Brogårdh, T. (2007). Present and future robot control development - an industrial perspective, Annual Reviews in Control, 3.1:69-79 doi:10.1016/j.arcontrol.2007.01.002
[9] Brogårdh, T. (2008). Machining with industrial robots - applications, technologies and trends, In Fertigungstechnisches Kolloquium. Stuttgart.
[10] Brogårdh, T. Hovland, G. (2008). The Tau PKM structures, In: Smart Devices and Machines for Advanced Manufacturing, Eds. L. Wang and F. Xi, Springer Verlag, London.
[11] Hirzinger, G., Albu-Schäffer, A., Hähnleand, M., Schaefer, I., Sporer, N. (2001). On a new generation of torque controlled lightweight robots, In IEEE Int. Conf. of Robotics and Automation. pp. 3356-3363 doi:10.1109/ROBOT.2001.933136
[12] KUKA Systems Group. (2009). Solutions for the aerospace industry, URL www.kuka-systems.com/en/branches/aerospace.
[13] Lauwers, B., Wallis, R., Haigh, P., Sohald, S. (2004). Development of robot based fettling cell for castings in low series, URL www.castingstechnology.com/secure/securedownload.asp?dID=378. News from Castings Technology International.
[14] Leica Geosystems. (2008). Case study: Lifelong absolute accuracy for industrial robots, URL www.leica-geosystems.es/es/Case_Study_ABB_Robotics_en.pdf. Hexagon Metrology.
[15] Moberg, S. (2008). On modeling and control of flexible manipulators, URL www.control.isy.liu.se/publications/doc?id=2018. Thesis no 1336, Automatic Control, Linköping University.
[16] Moberg, S., Öhr, J., Gunnarsson, S. (2008). A benchmark problem for robust control of a multivariable nonlinear flexible manipulator, In Proc. 17th IFAC World Congress. Seoul, Korea.
[17] Nilsson, K. Johansson, R. (1999). Integrated architecture for industrial robot programming and control, Journal of Robotics and Autonomous Systems, 29:205-226 doi:10.1016/S0921-8890(99)00056-1
[18] Norrlöf, M. (2000). Iterative Learning Control: Analysis, Design, and Experiments, Ph.D. thesis, Linköping University, URL www.control.isy.liu.se/~mino/publications.html.
[19] Östring, M. (2002). Identification, diagnosis and control of flexible robot arm, URL www.control.isy.liu.se/research/reports/LicentiateThesis/Lic948.pdf. Thesis No. 948, Dep. of Elec. Eng., University of Linköping.
[20] Pettersson, M. (2008). Design Optimization in Industrial Robotics - Methods and Algorithms for Drive Train Design, Ph.D. thesis, Dep. of Mech. Eng., Linköping University.
[21] RobotStudio. (2009). URL, www.abb.com/product/seitp327/30450ba8a4430bcfc125727d004987be.aspx.
[22] SafeMove. (2008). URL, www.abb.com/product/seitp327/ec6cfad87f69dd2dc12572d300775f5b.aspx.
[23] Sciavicco, L. Siciliano, B. (2000). Modelling and Control of Robot Manipulators, Springer, London.
[24] SMErobot. (2009). URL, www.smerobot.org/15_final_workshop. The European Robot Initiative for Strengthening the Competitiveness in SMEs in Manufacturing. Integrated Project in EU Sixth Framework Programme.
[25] Watanabe, A., Kazunori, B., Warashina, F., Kumiya, H. (2005). Practical bin picking by the intelligent robot, In Proc. of 36th Int. Symp. on Robotics.ISR. Seoul, Korea.
[26] Wernholt, E. (2007). Multivariable Frequency-Domain Identification of Industrial Robots, Ph.D. thesis, Linköping University, URL www.control.isy.liu.se/publications/doc?id=2006.
[27] Wilson, M. (1994). Robots in the aerospace industry, Aircraft Engineering and Aerospace Technology, 6.3.
[28] Zhang, H., Gan, Z., Wang, J., Zhang, G. (2005). Machining with flexible manipulator: Towards improving robotic machining performance, In Proc. of Intl. Conf. Advanced Intelligent Mechatronics. pp. 1127-1132 doi:10.1109/AIM.2005.1511161
[29] Zhang, H., Zhongxue, G., Brogårdh, T., Wang, J., Isaksson, M. (2004). Robotics technology in automotive powertrain assembly, ABB Review, 1. URL www.abb.com/global/abbzh/abbzh251.nsf!OpenDatabaseand&db=/global/gad/gad02077.nsfand&v=3B5Eand&e=usand&c=468E728B1CA2767CC1256E3C00330D31.

  title={{Robot Control Overview: An Industrial Perspective}},
  author={Brogårdh, Torgny},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}


May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.

July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.

Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.

Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.

Jan 2012: Follow MIC on your smartphone by using the RSS feed.


July 2011: MIC passes 1000 ISI Web of Science citations.

Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.

Dec 2009: A MIC group is created at LinkedIn and Twitter.

Oct 2009: MIC is now fully updated in ISI Web of Knowledge.