**Page description appears here**

“Modular Pneumatic Snake Robot: 3D Modelling, Implementation And Control”

Authors: Pål Liljebäck, Øyvind Stavdahl and Kristin Y. Pettersen,
Affiliation: SINTEF and NTNU, Department of Engineering Cybernetics
Reference: 2008, Vol 29, No 1, pp. 21-28.

     Valid XHTML 1.0 Strict

Keywords: Snake robot, kinematics, dynamics

Abstract: This paper gives a treatment of various aspects related to snake locomotion. A mathematical model and a physical implementation of a modular snake robot are presented. A control strategy is also developed, yielding a general expression for different gait patterns. Two forms of locomotion have been simulated with the mathematical model, and experiments with the physical snake robot have been conducted. The simulation results revealed the parameter through which directional control may be achieved for each gait pattern. Experiments with the physical snake robot gave a crude qualitative verification of these findings.

PDF PDF (491 Kb)        DOI: 10.4173/mic.2008.1.2

DOI forward links to this article:
  [1] ZhiFeng Wang, ShuGen Ma, Bin Li and YueChao Wang (2011), doi:10.1007/s11432-010-4161-z
  [2] Cagdas D Onal and Daniela Rus (2013), doi:10.1088/1748-3182/8/2/026003
  [3] P. Liljebäck, K.Y. Pettersen, Ø. Stavdahl and J.T. Gravdahl (2012), doi:10.1016/j.robot.2011.08.010
  [4] Lounis Douadi, Davide Spinello, Wail Gueaieb and Hassan Sarfraz (2013), doi:10.1017/S026357471300091X
  [5] Ming Luo, Mahdi Agheli and Cagdas D. Onal (2014), doi:10.1089/soro.2013.0011
  [6] A.A. Transeth, R.I. Leine, C. Glocker and K.Y. Pettersen (2008), doi:10.1109/TRO.2008.917003
  [7] Pål Liljeback, Kristin Y. Pettersen, Øyvind Stavdahl and Jan Tommy Gravdahl (2010), doi:10.1109/TRO.2010.2056211
  [8] Zhifeng Wang, Bin Li, Yuechao Wang and Shugen Ma (2009), doi:10.1109/IROS.2009.5354838
  [9] S. Sarrafan, M. Malayjerdi, M. Behboudi and A. Akbarzadeh (2013), doi:10.1109/ICRoM.2013.6510098
  [10] Pal Liljeback, Kristin Y Pettersen, Oyvind Stavdahl and Jan Tommy Gravdahl (2010), doi:10.1109/IROS.2010.5649110
  [11] V. S. Rajashekhar and Swagat Kumar (2015), doi:10.1109/ROBIO.2015.7419056
  [12] Lanying Zhao, Gang Sun, Weihua Li and Hexiang Zhang (2016), doi:10.1109/ACIRS.2016.7556189
  [13] Fabian Reyes and Shugen Ma (2016), doi:10.1109/IROS.2016.7759567
  [14] Cid Gilani, XiaoQi Chen, Chris Pretty and Carla Koike (2016), doi:10.1016/j.ifacol.2016.12.219
  [15] Kenichiro Tokida, Akihiro Yamaguchi, Kenjiro Takemura, Shinichi Yokota and Kazuya Edamura (2013), doi:10.20965/jrm.2013.p0016
  [16] Matthew A. Robertson and Jamie Paik (2017), doi:10.1126/scirobotics.aan6357
  [17] Fabian Reyes and Shugen Ma (2017), doi:10.1186/s40638-017-0065-3
  [18] Fabian Reyes and Shugen Ma (2017), doi:10.1109/RCAR.2017.8311924
  [19] Mohsen Malayjerdi and Alireza Akbarzadeh (2018), doi:10.1007/s40435-018-0441-z
  [20] James K. Hopkins and Satyandra K. Gupta (2014), doi:10.1115/1.4025750
  [21] Qin Gao, Zhelong Wang, Hong Shang, Weijian Hu and Ming Jiang (2013), doi:10.1007/978-3-642-33932-5_68

[1] Dowling, K. J. (1997). Limbless Locomotion, Learning to Crawl with a Snake Robot. Ph.D. thesis, Carnegie Mellon University.
[2] Ohno, H. Hirose, S. (2001). Design of slim slime robot and its gait of locomotion, In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, volume 2, pp. 707-715.
[3] Saito, M., Fukaya, M., Iwasaki, T. (2002). Serpentine locomotion with robotic snakes, IEEE Control Systems Magazine, 2.1:64-81 doi:10.1109/37.980248
[4] Spong, M. W. Vidyasagar, M. (1989). Robot Dynamics and Control, Wiley and Sons Inc.
[5] Yamakita, M., Hashimoto, M., Yamada, T. (2003). Control of locomotion and head configuration of 3d snake robot, sma. In Proc. IEEE Int. Conf. Robotics and Automation, volume 2. Taipei, Taiwan, pp. 2055-2060 doi:10.1109/ROBOT.2003.1241896

  title={{Modular Pneumatic Snake Robot: 3D Modelling, Implementation And Control}},
  author={Liljebäck, Pål and Stavdahl, Øyvind and Pettersen, Kristin Y.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}


Oct 2018: MIC reaches 3000 DOI Forward Links. The last 1000 took 2 years and 5 months.

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.

July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.

Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.

Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.

Jan 2012: Follow MIC on your smartphone by using the RSS feed.


July 2011: MIC passes 1000 ISI Web of Science citations.

Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.

Dec 2009: A MIC group is created at LinkedIn and Twitter.

Oct 2009: MIC is now fully updated in ISI Web of Knowledge.