**Page description appears here**

“Simulation of gas explosions”

Authors: Bjørn H. Hjertager,
Affiliation: Christian Michelsen Research
Reference: 1989, Vol 10, No 4, pp. 227-247.

     Valid XHTML 1.0 Strict

Keywords: Fluid dynamics, combustion, turbulence

Abstract: Gas explosion hazard assessments in flammable gas handling operations both offshore and onshore are crucial in order to obtain an acceptable level of safety. In order to perform such assessments good predictive tools are needed, which take account of the relevant parameters, such as geometrical design variables and gas cloud type and distribution. A theoretical simulation model must therefore be tested against sufficient experimental evidence prior to becoming a useful tool. The experimental data should include both variations in geometry and gas cloud composition and the model should give reasonable predictions without use of geometry or case dependent constants.

PDF PDF (1359 Kb)        DOI: 10.4173/mic.1989.4.4

Page Views June, 2016:30
Page Views Since Dec. 2013:     1141

DOI forward links to this article:
  [1] L.J. Clifford, A.M. Milne and B.A. Murray (1996), doi:10.1016/0010-2180(95)00131-X
  [2] A.G. Venetsanos, D. Baraldi, P. Adams, P.S. Heggem and H. Wilkening (2008), doi:10.1016/j.jlp.2007.06.016
  [3] Rolf K. Eckhoff (1994), doi:10.1016/0025-326X(94)90644-0
  [4] Daniele Baraldi, Matthias Heitsch and Heinz Wilkening (2007), doi:10.1016/j.nucengdes.2007.02.026
  [5] Francesco Tamanini and John V. Valiulis (1996), doi:10.1016/0950-4230(95)00053-4
  [6] (2010), doi:10.1002/9780470640449.refs
  [7] Bjørn H. Hjertager, Tron Solberg and Kjell O. Nymoen (1992), doi:10.1016/0950-4230(92)80020-9
  [8] (1993), doi:10.2514/5.9781600866272.0075.0094
  [9] D. Baraldi, A.G. Venetsanos, E. Papanikolaou, M. Heitsch and V. Dallas (2009), doi:10.1016/j.jlp.2008.10.004
  [10] (2010), doi:10.1002/9780470938157.app6
  [11] Almerinda Di Benedetto and Valeria Di Sarli (2010), doi:10.1002/9783527628148.hoc042

[1] BAKKE, J.R. HJERTAGER, B.H. (1986). The effect of explosion venting in obstructed channels, in Modeling and Simulation in Engineering, B. Wahlström and K. Leiviskä (editors) (Elsevier Science Publication: Amsterdam), pp. 237-241.
[2] BAKKE, J.R. HJERTAGER, B.H. (1987). The effect of explosion venting in empty vessels, Int. J. Numerical Methods in Engineering, 24, 129-140 doi:10.1002/nme.1620240110
[3] BORIS, J.P. BOOK, D.L. (1973). Flux-corrected transport I: Shasta - A fluid transport algorithm that works, J. Comp. Phys., 11, 38 doi:10.1016/0021-9991(73)90147-2
[4] BULL, D.C. (1979). Concentration limits to the initiation of unconfined detonation in fuel-air mixtures, Trans. I. Chem. E., 57, 219-227.
[5] BURCAT, A., CROSSLEY, R.W. SCHELLER, K. (1972). Shock tube investigation of ignition in ethane-oxygen-argon mixtures, Combustion and Flame, 18, 115-123 doi:10.1016/S0010-2180(72)80232-3
[6] CHAN, C., MOEN, I.O. LEE, J.H.S. (1983). Influence of confinement on flame acceleration due to repeated obstacles, Combustion and Flame, 49, 27 doi:10.1016/0010-2180(83)90148-7
[7] CLOUTMAN, L.D., DUKOWICZ, J.K., RAMSHAW, J.D. AMSEN, A.A. (1982). CONCHAS-SPRAY: A computer code for reactive flows with fuel sprays, Los Alamos National Laboratory Report, LA-9294-MS.
[8] CLOUTMAN, L.D., HIRT, C.W. ROMERO, N.C. (1976). SOLA-ICE: A numerical solution algorithm for transient compressible fluid flows, Los Alamos Scientific Laboratory Report, LA-6236.1976.
[9] FRENKLACH, M., LEE, J.H.S., WHITE, J.N. GARDINER, W.C. (1981). Oxydation of hydrogen sulphide, Combustion and Flame, 41, 1-16 doi:10.1016/0010-2180(81)90035-3
[10] HJERTAGER, B.H. (1982). Simulation of transient compressible turbulent reactive flows, Combustion Science and Technology, 27, 159-170 doi:10.1080/00102208208946985
[11] HJERTAGER, B.H. (1982). Numerical simulation of turbulent flame and pressure development in gas explosions in Fuel-air explosions, SM Study No. 16.University of Waterloo Press, Ontario, Canada pp. 407-426.
[12] HJERTAGER, B.H. (1984). Influence of turbulence on gas explosions, J. Hazardous Materials, 9, 315-346 doi:10.1016/0304-3894(84)87004-1
[13] HJERTAGER, B.H., FUHRE, K., PARKER, S.J. BAKKE, J.R. (1984). Flame acceleration of propane-air in a large-scale obstructed tube, 9th International Colloquium on Dynamics of Explosions and Reactive Systems, Potiers, France, 3-8 July.1983. Also Prog. AIAA, 94, 504-522.
[14] KISTIAKOWSKY, G.B. RICHARDS, L.W. (1962). Emission of vacuum ultraviolet radiation from the acetylene-oxygen and the methane-oxygen reactions in shock waves, J. Chem. Phys., 36, 1707 doi:10.1063/1.1701256
[15] KJÄLDMAN, L. HUHTANEN, R. (1986). Numerical simulation of vapour cloud and dust explosions, In Numerical Simulation of Fluid Flow and Heat/Mass Transfer Processes, Vol. 18, Lecture Notes in Engineering, pp. 148-458.
[16] LAUNDER, B.E. SPALDING, D.B. (1974). The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, No. 3, pp. 269-289 doi:10.1016/0045-7825(74)90029-2
[17] LEE, J.H.S., KNYSTAUTAS, R. FREIMAN, A. (1924). High speed turbulent deflagrations and transition to detonation in H2-air mixtures, Combustion and Flame, 56, 227-239 doi:10.1016/0010-2180(84)90039-7
[18] MAGNUSSEN, B.F. HJERTAGER, B.H. (1976). On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion, 16th Symp.,.Int. on Combustion, Combustion Institute, Pittsburgh, Pa, pp. 719-729.
[19] MARTIN, D. (1986). Some calculations using the two-dimensional turbulent combustion code FLARE, SRD Report R373, UK Atomic Energy Authority.
[20] MARX, K.D., LEE, J.H.S. CUMMINGS, J.C. (1985). Modeling of flame acceleration in tubes with obstables, Proc. of 11th IMACS World Congress on System Simulation and Scientific Computation, Vol. 5, pp. 13-16.
[21] MOEN, I.O., LEE, J.H.S., HJERTAGER, B.H., FUHRE, K. ECKHOFF, R.K. (1982). Pressure development due to turbulent flame propagation in large-scale methane-air explosions, Combustion and Flame, 47, 31-52 doi:10.1016/0010-2180(82)90087-6
[22] MOEN, I.O., SULMISTRAS, A., HJERTAGER, B.H. BAKKE, J.R. (1986). Turbulent flame propagation and transition to detonation in large fuel-air clouds, Presented at the 21st International Symposium on Combustion, Munich, West Germany, August 3-8.
[23] PATANKAR, S.V. SPALDING, D.B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat and Mass Transfer, 15, 1787 doi:10.1016/0017-9310(72)90054-3
[24] PATANKAR, S.V. SPALDING, D.B. (1974). A calculation procedure for the transient and steady-state behavior of shell-and-tube heat exchangers, In Heat Exchangers: Design and Theory Sourcebook, edited by N.H. Afgan and E.V. Schlünder.McGraw-Hill, pp. 155-176.
[25] SCHOTT, G.L. KINSEY, J.L. (1958). Kinetic studies of hydroxyl radicals in shock waves, II: induction times in the hydrogen-oxygen reaction, J. Chemical Physics, 29, 1177-1182 doi:10.1063/1.1744674
[26] SHA, W.T. LAUNDER, B.E. (1979). A model for turbulent momentum and heat transport in large rod bundles, ANL-77-73.
[27] SHA, W.T., YANG, C.I., KAO, T.T. CHO, S.M. (1982). Multi-dimensional numerical modelling of heat exchangers, Journal of Heat Transfer, 104, 417-425.
[28] SOLBERG, D.M. (1982). Gas Explosion Research Related to Safety of Ships and Offshore Platforms, Fuel-Air Explosions, SM Study No. 16.Univ. of Waterloo Press, Ontario, Canada, pp. 787-819.
[29] SPALDING, D.B. (1981). A general purpose computer program for multi-dimensional one- and two-phase flow, Mathematics and Computers in Simulation, IMACS, XXII, pp. 267-276 doi:10.1016/0378-4754(81)90083-5

  title={{Simulation of gas explosions}},
  author={Hjertager, Bjørn H.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}


May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.

July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.

Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.

Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.

Jan 2012: Follow MIC on your smartphone by using the RSS feed.


July 2011: MIC passes 1000 ISI Web of Science citations.

Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.

Dec 2009: A MIC group is created at LinkedIn and Twitter.

Oct 2009: MIC is now fully updated in ISI Web of Knowledge.