**Page description appears here**

“Computer Simulation of Turbulent Reactive Gas Dynamics”

Authors: Bjørn H. Hjertager,
Affiliation: Christian Michelsen Research
Reference: 1984, Vol 5, No 4, pp. 211-236.

     Valid XHTML 1.0 Strict


Keywords: Gas explosion, fluid dynamics, combustion

Abstract: A simulation procedure capable of handling transient compressible flows involving combustion is presented. The method uses the velocity components and pressure as primary flow variables. The differential equations governing the flow are discretized by integration over control volumes. The integration is performed by application of up-wind differencing in a staggered grid system. The solution procedure is an extension of the SIMPLE-algorithm accounting for compressibility effects.

PDF PDF (3891 Kb)        DOI: 10.4173/mic.1984.4.3



DOI forward links to this article:
  [1] Prankul Middha and Olav R. Hansen (2009), doi:10.1016/j.ijhydene.2009.02.004
  [2] Paolo Canu, Renato Rota, Sergio Carrà and Massimo Morbidelli (1990), doi:10.1016/0010-2180(90)90051-R
  [3] Sávio S.V. Vianna and R. Stewart Cant (2010), doi:10.1016/j.jlp.2009.08.002
  [4] Filippo Gavelli, Scott G. Davis and Olav R. Hansen (2011), doi:10.1016/j.jlp.2011.07.002
  [5] Olav R. Hansen, Peter Hinze, Derek Engel and Scott Davis (2010), doi:10.1016/j.jlp.2010.07.005
  [6] Anders Hallanger and Ivar Oyvind Sand (2013), doi:10.4173/mic.2013.1.3
  [7] Prankul Middha, Derek Engel and Olav R. Hansen (2011), doi:10.1016/j.ijhydene.2010.04.132
  [8] A. Bleyer, J. Taveau, N. Djebaïli-Chaumeix, C.E. Paillard and A. Bentaïb (2012), doi:10.1016/j.nucengdes.2012.01.010
  [9] (2010), doi:10.1002/9780470938157.ch4
  [10] Steven R Hanna, Olav R Hansen and Seshu Dharmavaram (2004), doi:10.1016/j.atmosenv.2004.05.041
  [11] Scott G. Davis, Derek Engel, Filippo Gavelli, Peter Hinze and Olav R. Hansen (2012), doi:10.1007/s10694-012-0305-6
  [12] IVAR ØYVIND SAND, KARL SJØEN and JAN ROAR BAKKE (1996), doi:10.1002/(SICI)1097-0363(19961115)23:9<953::AID-FLD466>3.0.CO;2-Y
  [13] P.G. Holborn, P. Battersby, J.M. Ingram, A.F. Averill and P.F. Nolan (2013), doi:10.1016/j.ijhydene.2012.12.134
  [14] Kiho Moon, Seok-Ryong Song, Jorge Ballesio, Gary Fitzgerald and Gregory Knight (2009), doi:10.1016/j.jlp.2008.11.008
  [15] W.G. Houf, G.H. Evans, I.W. Ekoto, E.G. Merilo and M.A. Groethe (2013), doi:10.1016/j.ijhydene.2012.05.115
  [16] Steven R. Hanna, Olav R. Hansen, Mathieu Ichard and David Strimaitis (2009), doi:10.1016/j.atmosenv.2008.09.081
  [17] Prankul Middha and Olav R. Hansen (2008), doi:10.1002/prs.10242
  [18] Dal Jae Park and Young Soon Lee (2009), doi:10.1007/s11814-009-0054-5
  [19] S. Dharmavaram, S. R. Hanna and O. R. Hansen (2005), doi:10.1002/prs.10068
  [20] E.Y. Sanchez, J.E. Colman Lerner, A. Porta and P.M. Jacovkis (2013), doi:10.1016/j.atmosenv.2012.09.037
  [21] (2010), doi:10.1002/9780470640449.refs
  [22] Camilo Rosas, Scott Davis, Derek Engel, Prankul Middha, Kees van Wingerden and M.S. Mannan (2014), doi:10.1016/j.jlp.2014.03.003
  [23] Jingde Li, Guowei Ma, Madhat Abdel-jawad and Hong Hao (2014), doi:10.1061/(ASCE)CF.1943-5509.0000678
  [24] Guowei Ma, Jingde Li and Madhat Abdel-jawad (2014), doi:10.1016/j.jlp.2014.10.007
  [25] Prankul Middha and Olav R. Hansen (2009), doi:10.1016/j.jlp.2008.10.006
  [26] Jérôme Taveau (2011), doi:10.1016/j.jlp.2010.08.002
  [27] Jérôme Daubech, Jérôme Hebrard, Simon Jallais, Elena Vyazmina, Didier Jamois and Franck Verbecke (2015), doi:10.1016/j.jlp.2015.05.013
  [28] D.L. Marchisio and R.O. Fox (2016), doi:10.1016/B978-0-12-409547-2.11526-4
  [29] P.G. Holborn, P. Battersby, J.M. Ingram, A.F. Averill and P.F. Nolan (2012), doi:10.1016/j.ijhydene.2012.07.131
  [30] V. Busini (2016), doi:10.1016/B978-0-12-409547-2.11078-9
  [31] B. Hendrickson, C. Marsegan and F. Gavelli (2016), doi:10.1016/j.jlp.2016.07.031
  [32] Boohyoung Bang, Hyunsu Park, Jonghun Kim, Salem S. Al-Deyab, Alexander L. Yarin and Sam S. Yoon (2016), doi:10.1002/fam.2390
  [33] Jingde Li, Francisco Hernandez, Hong Hao, Qin Fang, Hengbo Xiang, Zhan Li, Xihong Zhang and Li Chen (2017), doi:10.1016/j.psep.2017.04.025


References:
[1] BONI, A.A., CHAPMAN, M. SCHNEYER, G.P. (1976). Computer simulation of combustion processes in a stratified charge engine, Acta Astronautica. 3,293-307 doi:10.1016/0094-5765(76)90053-9
[2] BURCAT, A., CROSSLEY, R.W. SCHELLER, K. (1972). Shock tube investigation of ignition in ethane-oxygen-argon mixtures, Combustion and Flame, 18, 115-123.
[3] BUTLER, T.D. O´ROURKE, P.J. (1976). A numerical method for two-dimensional reacting flows, 16th International Symposium on Combustion.Combustion Institute: Pittsburg pp. 1503-1515.
[4] HARLOW, F.H. AMSDEN, A.A. (1971). Fluid Dynamics, A Los Alamos Scientific Laboratory monograph, LA-4700.
[5] HJERTAGER, B.H. (1982). Simulation of transient compressible turbulent reactive flows, Combustion Science and Technology, 27, 159-170. (1982b). Numerical simulation of turbulent flame and pressure development in gas explosions, Fuel-air Explosions, SM Study No. 16 (University of Waterloo Press, Ontario, Canada) pp. 407-426.
[6] HJERTAGER, B.H., FUHRE, K., PARKER, S.J. BAKKE, J.R. (1984). Flame acceleration of propane-air in a large-scale obstructed tube, 9th International Colloquium on Dynamics of Explosions and Reactive Systems, Poitiers, France, 3-8 July, 1983. Prog. AIAA, 94, 504-522.
[7] HJERTAGER, B.H. MAGNUSSEN, B.F. (1976). Computation of some three-dimensional laminar incompressible internal flows, Proceedings 1976, Heat Transfer and Fluid Mechanics Institute.Stanford University Press pp. 436-451.
[8] KHALIL, E.E., SPALDING, D.B. WHITELAW, J.H. (1975). The calculation of local flow properties in two-dimensional furnaces, Int. J. Heat Mass Transfer, 18, 775-791 doi:10.1016/0017-9310(75)90207-0
[9] LAUNDER, B.E. SPALDING, D.B. (1974). The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, No. 3,269-289 doi:10.1016/0045-7825(74)90029-2
[10] MAGNUSSEN, B.F. (1981). On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow, Proc. 19th AIAA Aerospace Science Meeting, St. Louis, Missouri, January 12-15, 1981.
[11] MAGNUSSEN, B.F. HJERTAGER, B.H. (1976). On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion, 16th International Symposium on Combustion,.Combustion Institute, Pittsburg, pp. 719-729.
[12] MOEN, I.O., LEE, J.H.S., HJERTAGER, B.H., FUHRE, K. ECKHOFF, R.K. (1982). Pressure development due to turbulent flame propagation in large-scale methane-air explosions, Combustion and Flame, 47, 31-52 doi:10.1016/0010-2180(82)90087-6
[13] ORAN, E., YOUNG, T. BORIS, J. (1978). Application of time-dependent numerical methods to the description of reactive shocks, 17th International Symposium on Combustion,.Combustion Institute: Pittsburg, pp. 43-53.
[14] PATANKAR, S.V. (1981). A calculation procedure for two-dimensional elliptic problems, Numerical Heat Transfer, 4, 409-426.
[15] PATANKAR, S.V. SPALDING, D.B. (1972). A calculation procedure for heat, mass and moment transfer in three-dimensional parabolic flows, Int. Journal of Heat and Mass Transfer, 15, 1787-1806.
[16] RADHKRISHNAN, K., HEYWOOD, J.B. TABACZYNSKI, R.J. (1981). Premixed turbulent flame blowoff velocity correlation based on coherent structures in turbulent flows, Combustion and Flame, 12, 19-23 doi:10.1016/0010-2180(81)90139-5
[17] SPALDING, D.B. (1971). Mixing and chemical reaction in steady confined turbulent flames, 13th International Symposium on Combustion.Combustion Institute: Pittsburg, pp. 649-657.


BibTeX:
@article{MIC-1984-4-3,
  title={{Computer Simulation of Turbulent Reactive Gas Dynamics}},
  author={Hjertager, Bjørn H.},
  journal={Modeling, Identification and Control},
  volume={5},
  number={4},
  pages={211--236},
  year={1984},
  doi={10.4173/mic.1984.4.3},
  publisher={Norwegian Society of Automatic Control}
};

News

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.