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Abstract

Determination of the pose of workpieces is important for robotic applications in manufacturing, includ-
ing handling, assembly, machining and welding. Established methods based on 3D sensors may fail for
workpieces with highly reflective materials. In this paper, we take advantage of recent development in
machine learning to determine the pose of reflective workpieces without the use of depth data. Our pro-
posed method is based on deep iterative matching of image data of the workpiece with a computer-aided
design model. Starting with an initial estimate of the workpiece pose, the method iteratively aligns the
computer-aided design model projections with an image of the actual workpiece, adjusting the pose until
computer-aided design model matches the image of the workpiece. The deep learning-based approach
optimizes this alignment by updating the pose estimate at each iteration, achieving high precision even
for geometrically complex or reflective surfaces. This refinement process enhances accuracy in robotic
applications where precise workpiece positioning is critical, such as in automated welding and assembly
tasks. We use photorealistic rendering to create two datasets for pretraining the network, which reduces
both training time and the need for real labeled data. After the network is trained on synthetic data, it is
fine-tuned and tested on real images of reflective aluminium workpieces. We show that the proposed deep
iterative matching method outperforms established methods based on iterative closest point with two 3D

scanners due to large errors in the scans caused by reflections.
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1 Introduction

The manufacturing industry is increasingly moving to-
ward automating repetitive tasks to reduce costs and
enhance safety within the framework of Industry 4.0.
Many production lines rely on specially designed fix-
tures to accurately set the pose of parts and use pre-
configured robot trajectories to perform tasks. How-
ever, eliminating the need for part-specific fixtures en-
hances adaptability to new parts and tasks, signifi-
cantly reducing costs for manufacturing lines with low
production volumes (Kakish et al., 2000). Without
part-specific fixtures, uncertainty is introduced regard-
ing the pose of the part. A rough pose estimate may
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still be obtained through modular fixture systems or
predefined orientations and locations of parts. To
eliminate pose uncertainty, robotic systems must be
equipped with sensor systems capable of detecting and
accurately estimating the pose of parts (Litvak et al.,
2019). Pose estimation systems are crucial in various
robotic manufacturing tasks, such as handling, machin-
ing, assembly, and welding (Njaastad and Egeland,
2016; Jiang et al., 2022).

A pose estimation system consists of a sensor, an
estimation method, and sensor placement. The sen-
sor can be mounted either on the robot end-effector,
referred to as eye-in-hand, or on external structures,
referred to as eye-to-hand (Flandin et al., 2000). Pose

© 2025 Norwegian Society of Automatic Control


http://dx.doi.org/10.4173/mic.2025.3.3

Modeling, Identification and Control

estimation methods can be classified according to the
sensor measurement principle. Sensors are broadly
divided into contact sensors, such as touch probes
(Ren et al.,; 2020) or compliant grippers (Kaya et al.,
2021), and non-contact sensors, such as computer vi-
sion (Fan and Zhao, 2015). Contact methods may
need to estimate the external force (Yigit et al., 2021).
Non-contact methods are generally preferred because
of their higher data acquisition rates. Furthermore,
vision-based methods can be based on depth data from
a 3D sensor or from stereo vision methods using one
or more cameras (Klingenberg et al., 2024). Tech-
nologies for integrated depth sensors that produce 3D
point clouds include Time-of-Flight, laser triangula-
tion, structured light, and stereo vision (Blais, 2004).
The combination of depth scanners with iterative clos-
est point (ICP) algorithms (Rusinkiewicz and Levoy,
2001) is a widely used approach in several industrial
applications. In contrast, monocular vision is limited
to workpieces containing easily distinguishable features
or QR codes (Schleth et al., 2018).

When measuring reflective metals, 3D sensors of-
ten fail to produce reliable results. Time-of-Flight,
laser triangulation, and structured light methods are
all based on projecting light onto the measured sur-
face. These methods fundamentally rely on the pro-
jected light being directly reflected back to the sen-
sor, which is not the case for highly reflective metals
(Blais, 2004). Common artifacts in depth sensor scans
of reflective parts include missing detections and false
geometries caused by clustered surface outliers (Shen
et al., 2009). Stereo vision also has challenges when
triangulating by matching pixels from two views, as
the appearance of the same point on a reflective sur-
face can change when observed from different perspec-
tives (Bhat and Nayar, 1998). Research has been con-
ducted to address reflections in laser scanning (Al
stad and Egeland, 2022; Marco-Rider et al., 2022), and
(Njaastad and Egeland, 2016) employs a structured
light scanner that effectively mitigates reflections to a
significant extent. However, the limited range of these
scanners makes them impractical for eye-to-hand con-
figurations, where greater measuring distances are re-
quired. For larger parts, a combination of eye-in-hand
and eye-to-hand methods can be advantageous. The
eye-in-hand configuration provides an accurate partial
view of the object, while the eye-to-hand setup offers a
less accurate but broader global perspective (Flandin
et al., 2000).

Early monocular vision methods for pose estimation
led to challenges such as handling texture-less objects
and partial occlusions (Li et al., 2018). However, ad-
vances in processing power and the rise of machine
learning have significantly improved monocular vision-
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based pose estimation. The BOP benchmark includes
several datasets that compare a wide range of pose es-
timation methods (Hodan et al., 2020). Among these
bench-marked datasets, we find the texture-less dataset
T-LESS (Hodan et al., 2017) to be the most represen-
tative of metal workpieces, as both share the challenge
of uniform textures, which complicates pose estimation
(Park et al., 2019).

We consider an eye-to-hand setup for determining
the pose of reflective aluminum workpieces in this pa-
per. We apply CosyPose which is RGB-based pose es-
timation method with a standard monocular camera,
and compare it to ICP with scans from two 3D sensors
using different range sensing technology. We create a
pipeline for training CosyPose on synthetic data, and
show that relatively few labeled examples are required
to fine-tune the network for real data.

This paper is structured as follows: Section 2 pro-
vides an overview of related works. Section 3 details
the methodology for pose estimation of reflective work-
pieces, including the network input, network structure,
loss function, synthetic datasets, training of DeepIM,
and evaluation metrics. Section 4 describes the exper-
iments, which include simulated data, a real dataset,
depth scanners with ICP, and their comparison. Sec-
tion 5 presents the results and discussion, followed by
Section 6, which concludes the paper by summariz-
ing the key findings and suggesting avenues for future
research.

2 Overview of Related Work

Monocular object pose estimation has traditionally re-
lied on feature matching techniques such as SIFT and
SURF to identify correspondences between a 3D model
and an observed image (Rothganger et al., 2006; Lowe,
1999). Once 2D-3D correspondences are established,
the Perspective-N-Point (PNP) algorithm, combined
with RANSAC, is used to estimate the object’s pose
while filtering out incorrect matches (Fischler and
Bolles, 1981). However, these methods are less effec-
tive for textureless objects because of the lack of dis-
tinctive features. Another approach is template match-
ing, where predefined templates, such as rendered im-
ages, are compared against the observed image to de-
termine the best-matching viewpoint (Hinterstoisser
et al.,, 2011; Jurie and Dhome, 2001). This method
evaluates multiple sampled viewpoints and selects the
one with the highest similarity score. However, tem-
plate matching is highly sensitive to occlusions, as in-
creased obstruction reduces the matching score and of-
ten leads to inaccurate pose estimations.

Recent advances in pose estimation have increas-
ingly taken advantage of machine learning techniques.



Kaya et.al., “Pose Refinement for Reflective Workpieces using Deep Iterative Matching”

Early approaches employed neural networks to directly
regress the pose of an object. For example, BB8 esti-
mates the pose by predicting the 2D projections of a
3D bounding box around the object (Rad and Lep-
etit, 2017), while SSD-6D classifies the pose by se-
lecting from a predefined set of discrete viewpoints
(Kehl et al., 2017). More recent methods have shifted
toward predicting 2D-3D correspondences using ma-
chine learning, followed by solving the pose with PnP-
RANSAC. This strategy has been shown to improve ac-
curacy compared to direct pose regression (Park et al.,
2019; Hodan et al., 2020; Li et al., 2019). The main dif-
ferences among these approaches lies in how they es-
tablish correspondences. Pix2Pose (Park et al., 2019)
utilizes an encoder-decoder network to infer object sur-
face coordinates from the observed image. CDPN (Li
et al., 2019) estimates rotation through correspondence
prediction and PnP while handling translation sepa-
rately via a dedicated network head. EPOS (Hodan
et al., 2020), on the other hand, learns a dense mapping
between image pixels and object surface fragments.

DeepIM (Li et al., 2018) introduced a render-and-
compare approach for pose refinement, where a neu-
ral network iteratively predicts pose updates starting
from an initial estimate. The method takes as input
both the observed image and a rendered image gen-
erated from the current pose estimate. The network
then outputs a pose update, which is applied to refine
the estimate. This process is repeated iteratively, with
each refined pose used to render a new image for the
next iteration. A key innovation in DeepIM was mak-
ing the pose update prediction independent of the 3D
model’s coordinate system. Instead of directly estimat-
ing the model’s pose, the network predicts the cam-
era’s pose update. This transformation ensures that
rotation and translation predictions remain decoupled.
Specifically, DeepIM represents rotation using a unit
quaternion and introduces a translation representation
that mitigates the scale-distance ambiguity inherent in
monocular vision. This scale-invariant translation for-
mulation allows the network to generalize across vary-
ing depth distributions and object scales, even those
different from its training data.

CosyPose (Labbé et al., 2020) builds on DeepIM
by incorporating a more advanced backbone network
and a continuous rotation representation. One notable
modification is the adjustment of the translation rep-
resentation: CosyPose replaces DeepIM’s logarithmic
depth scaling with a linear scaling approach. Addi-
tionally, the method extends to multi-camera setups
and explicitly accounts for object symmetries, improv-
ing robustness. Due to these enhancements, CosyPose
was recognized as the top-performing RGB-based pose
estimation method in the 2020 BoP Challenge (Hodan

et al., 2020).

3 Method

This section presents the pose estimation method de-
signed for reflective surfaces. The proposed approach
builds on the deep iterative matching framework in-
troduced by DeepIM (Li et al., 2018), aiming to
predict the transformation between an object frame
and a camera frame. The method assumes a coarse
initial pose estimate, obtained either through modu-
lar fixtures or predefined object placement within the
workspace. The system refines this initial estimate by
rendering the CAD model and comparing it with the
observed image using a neural network. To enhance
performance, we integrate improvements from Cosy-
Pose, utilizing EfficientNet-B3 (Tan and Le, 2019) as
the backbone network, along with linear depth scal-
ing, a disentangled loss function, and a 6D rotation
representation (Labbé et al.; 2020). The model is first
trained on simulated data and then fine-tuned on a lim-
ited real-world dataset. Finally, we evaluate the deep
iterative matching approach against robust ICP, using
point cloud data from two depth scanners.

3.1 Network Input

A calibrated camera with a known camera matrix K
captures an image of a workpiece, assuming an ini-
tial pose estimate T relative to the camera. The net-
work processes two inputs: a cropped section from an
undistorted real image and a rendered image of the
workpiece based on the initial pose estimate. To ex-
tract the crop, the rendered image is used to define a
square bounding box around the projected model, as
illustrated in Fig. 1.

Figure 1: Left: Camera image of workpiece. Right: A
crop from the real image created around the
rendering with the initial pose estimate.

The width and height of the bounding box is set to
wpp, and p pixels of padding is applied with

(1)

P = weps
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Figure 2: Deep iterative matching architecture. An image from a camera and a render with the current pose

estimate is stacked and used as input to a

neural network. The network outputs a rotation and

translation representation which is converted to a transformation matrix. During training, the new
transformation matrix is used to calculate the loss. The predicted transformation matrix can be used
to render a new input, creating an iterative process.

where s is the percentage of padding that is applied.
The image crops are then resized to a predefined width
and height since the network requires the same image
size for the input.

To generate the rendered image, it must be ren-
dered using the initial transformation matrix T' along
with the adjusted camera matrix corresponding to the
cropped and scaled image. The camera matrix K of
the original image is given as:

f= 0 ug
K=10 fy Vo (2)
0 0 1

where f, and f, are the effective focal lengths ex-
pressed in pixel units along the image x and y axes, re-
spectively. The principal point (ug ¢, vo,c) of the cropped
camera matrix is then shifted according to

3)

Ug,c = Up — Lo
Vo,c = Yo — Yo (4)
where ¢ and yo are the pixel location of the top left
corner of the crop relative to the original image. The

camera matrix of the cropped and scaled image is given
as

%fﬂﬁ 0 %UO,C
K/ = 0 %ffy %’Uo)c (5)
0 0 1

where w; and wq are the widths of the unscaled and

scaled crop respectively.

3.2 Network Architecture

An illustration of the deep iterative matching architec-
ture is presented in Fig. 2, where the network predicts
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the transformation T co between the object frame O
and the camera frame C. The network inputs the tar-
get camera image and a rendered image based on the
current pose estimate as input, and outputs a 6D ro-
tation representation R* along with a 3D translation
vector v in pixel space. In Zhou et al. (2019), a contin-
uous 6D rotation representation was proposed, where
the network predicts two axes of the rotation matrix.
The first three elements of R* are denoted as 7}, and
the remaining three outputs are denoted as r3. The
full rotation matrix is recovered through orthogonal-
ization, as follows:

g1
= 6
N o
T X T
= ——— 7
P rxr] v

(8)
where X is the cross product. The rotation matrix is
then assembled with the orthonormal vectors as

Ty T2 T3

The current rotation estimate from the camera to the
object, Rco is updated from iteration ¢ to ¢ + 1 with

reo =73 X7y

RA = 9)

Rdo = RaReo (10)

To create a translation representation that is indepen-
dent of the depth-scale ambiguity in monocular vision,
the network predicts a translation in pixel space [vg, vy]
and a depth scaling v, (Li et al., 2018). The transla-
tion output from the network is converted from pixel
space and depth scaling, to a translation vector in Eu-
clidean space with
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Figure 3: Pose annotation program for manual ground truth labeling. Given a camera image, the corresponding

CAD model is rotated to the approximate orientation of the model in the image.

At least five

correspondences are then manually selected and the pose is solved with PnP.

In order to eliminate the depth-scale ambiguity in-
herent in monocular vision, the network predicts the
translation components in pixel space [vg,vy] and a
depth scaling factor v, (Li et al., 2018). The pre-
dicted translation is then transformed from pixel space
and depth scaling into a translation vector in Euclidean
space using the following approach:

2 = v,z (11)
t
! = (% + ”Zit) 2 (12)
) t
Yy = <f—i’ + %) 2t (13)
Y

where f; and f; are the focal length from the camera
matrix given in Equation 5. The predicted translation
vector is then given by

ttc+01 _ [$t+1 az. Zt+1]T (14)
The updated pose estimate, denoted as Tt(}"ol, is ob-
tained by combining the predicted rotation R with
the corresponding translation. This updated pose is
then used to generate a new input for the network,
which drives the iterative refinement process. Each
time the network updates the pose, it constitutes one
iteration of prediction. In order to adjust the network
weights, a loss function is required to compare the up-
dated pose estimate T4 with the ground truth pose
T or. The equations should be implemented within an
automatic differentiation framework, allowing the gra-
dients of the loss function with respect to the network
to be computed.

3.3 Loss Function

The network predicts a transformation matrix between
the frame of the camera and the object. Based on the
predicted transformation matrix T and ground truth
transformation matrix Tor , we want to express a
loss based on the difference between the two transfor-
mations. Since SE(3) has no bi-invariant metric, it re-
quires a separate scaling for the angular and translation
distance. Choosing the rotation and translation scaling
causes ambiguity regarding how to balance the losses.
A Dbetter option is to use the average distance ADD be-
tween the transformed points on the model, with the
estimated pose and ground truth pose (Kendall and
Cipolla, 2017). The ADD loss with the [; distance
metric is given by

N
1
ADD(T, Ter) = N Z|T$i - Tgrzil (15)

n=1

where x; are points sampled from the surface of the 3D
model. The function calculates the average absolute
value of the distance between points transformed by T
and T gr. Building upon this loss function, CosyPose
uses a concept from (Simonelli et al., 2019), by dis-
entangling the rotation, image plane translation, and
depth prediction. Denoting the construction of a trans-
formation matrix with

R t] (16)

TR0 - (|

where t = [z,y,2]7, the disentangled rotation is given
by

Tr= T(R,vcr,ycT; 2GT) (17)
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Figure 4: Cropped training examples from dataset rendered with ModelNet10. The top row shows images

rendered in Blender with reflective metal textures and industrial backgrounds.

The bottom row

shows the corresponding 3D model rendered in Pyrender.

the disentangled [z, y] translation by

Ty = T(R,z,y,2¢T) (18)
and the disentangled depth by
T.= T(Rgr, e, Yar, ?) (19)

The disentangled ADD loss, which we denote as
ADDyp, is then given by

ADDp = ADD(T g, Tor)+
ADD (T[x’y], TGT) +

ADD(T., Ter)

(20)

3.4 Datasets

CosyPose requires a large amount of training time and
data. To reduce the need for labeled realworld data, we
render synthetic data to pretrain the network. Blender
(Community, 2018) is used to render photorealistic
training examples, where 3D models are given reflec-
tive metal materials. We apply domain randomiza-
tion by using a mix of procedurally generated materials
within Blender and Physically Based Rendering (PBR)
textures, to better adapt from simulation to real data
(Tobin et al., 2017). Industrial high dynamic range im-
ages are applied in Blender to create realistic lighting
and background for the rendered scenes. The camera
position is randomized and pointed toward the scene
origin.

Two simulated datasets are created. The first
dataset is created with large a variety of 3D models
from ModelNet10 as given in Fig. 4. The trained model
from this dataset serves as a baseline for training on
specific 3D models, such that training time is reduced.
The second smaller dataset uses the specific 3D models
that we will use with the real data.

Real pose estimation datasets are convenient to gen-
erate with the use of 3D scanners to label a vast amount
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of data with labeled ground truth (Hodan et al., 2020;
Qin et al., 2023). Since no 3D scanner to our knowl-
edge works well on reflective surfaces for longer mea-
surement distances, we create a program for manually
labeling the ground truth poses. We calibrate a cam-
era, capture images from unique viewpoints of each
workpiece and undistort the images such that image
projections are given by a linear map with the camera
matrix (Duda and Frese, 2018). Given an image of
a workpiece, the corresponding 3D model is rotated in
the program such that it roughly matches the orien-
tation in the camera image. At least 5 corresponding
pixels from the image and the render of the 3D model
are selected. The selected pixels from the render of the
CAD model are projected to 3D points using the depth
pass of the render, such that 2D-3D correspondences
between the model and real image are established. The
pose is then solved using the PnP-RANSAC implemen-
tation from OpenCV (Bradski et al., 2000).

3.5 Training

DeepIM (Li et al., 2018) found that when the network
was trained to regress the pose update in a single step,
the predictions during testing did not improve over sev-
eral iterations. Better results were found by using the
predicted pose from the network to generate new ex-
amples during training for a set amount of iterations.
In this paper, we start training without any prediction
iterations to get the first prediction stable and gradu-
ally increase the prediction iterations throughout the
training process.

3.6 Evaluation Metrics

The methods are evaluated on ADD L2 distance, rota-
tion and translation error, and the (k° k cm) thresh-
old. First, we use the ADD distance metric as given
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in Equation 15, but with the Euclidean L2 distance
instead of the L1 distance between the sampled points
as proposed in (Hinterstoisser et al., 2013). For the
rotation error the angle between the predicted rotation
matrix R and ground truth Rgr is calculated with

tr(RTRgr) — 1
2

The translation error is calculated as the L2 distance
between ¢t and tgp. The (k°, k cm) metric proposed
in (Shotton et al., 2013) evaluates a pose estimate as
correct if both the translation and rotation are within
k cm and k degrees with respect to the ground truth.
The methods are evaluated for several values of k being
1, 2, and 5.

0 = arccos (21)

4 Experiments

In this section, we describe the experimental setup and
compare deep iterative matching with two depth scan-
ners. Two scanners with different range sensing tech-
nologies are chosen, the Intel Realsense D435i and Intel
Realsense L515. The 3D point clouds from the scanners
are used with a robust ICP method to refine the pose.
The methods are compared on aluminium workpieces
with corresponding CAD models shown in Fig. 5.

Stiffener

Node adapter

Corner

Figure 5: 3D models of aluminum workpieces used for
testing.

4.1 Simulated data

Using 3D models from ModelNet10 (Wu et al., 2015),
we render 25000 training examples and 160 validation
examples. The 3D models are normalized to fit within
a unit cube to ensure that the whole model is seen
from the camera. Half of the models are given a ran-
domized reflective appearance with the BSDF material
in Blender, while the other half is given a random in-
dustrial PBR texture from (Polyhaven, 2024). The
scene is rendered to a square image size with 720 pix-
els in both width and height. A crop is created around
the initial pose estimate of the workpiece as described
in Section 3.1, with 20% padding on the bounding box
according to Equation 1.

The geometric parameters of the scene and initial
pose estimate are given in Table 1, where the cam-
era is denoted with subscript C, the scene world origin
W, the ground truth pose GT and the initial pose of
the object I. The rotations R are sampled uniformly
around a random axis and the translations t are sam-
pled uniformly in a random direction. Examples from
the training set are shown in Fig. 4. The network
is trained with a batch size of 8 for 600000 batches.
We use the Adam (Kingma, 2014) optimizer with a
learning rate of 3-10~* and the disentangled loss func-
tion from Equation 20. The training starts without the
use of prediction iterations but is incremented by one
for every 100000 batches after batch 200000. For the
workpiece dataset, we use the same method and create
a dataset with 10000 training examples and 160 valida-
tion examples. The network is then trained for 50 000
batches using five prediction iterations. The weights of
the network are saved every time a new lowest valida-
tion loss is achieved.

Table 1: Geometric parameters for Blender scene.

Scene parameter Min Max Unit
Reow|| 0 360 deg
tow || 2.6 3.0 m
Rer || 0 30 deg
tar.|| 0.3 m

4.2 Real dataset

To generate a real dataset we capture images of three
aluminum workpieces with a Logitech Brio camera
from a distance of 1.8m to 2.2m. Using the manual
pose annotation program we create 210 annotated ex-
amples for fine-tuning, 30 for validation, and 90 for
testing. The images are cropped and resized to an im-
age size of 320 by 320 pixels around the initial pose
estimate. The initial pose is given a uniformly random
perturbation of up to 30° around a random unit axis
and a 30 cm translation offset. We randomize the ini-
tial pose estimate for the training examples, making
each crop from the real image in the training examples
unique. The network is trained for 10 000 batches with
five prediction iterations with the same parameters as
with the simulated data.

4.3 Depth scanners and ICP

We compare our method with two 3D scanners using
different range sensing technology. The Intel Realsense
D435i uses stereo vision with infrared light projection
and the Intel Realsense L515 uses time-of-flight (Ke-
selman et al., 2017; Lourenco and Araujo, 2021). We
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scan the workpieces from the same viewpoints distri-
bution as the machine learning dataset, creating 90
test examples. The ground truth poses are annotated
using the images from the RGB sensor with the pose
annotation program described in Section 3.4. Using
the scans from the sensors and the same distribution
of initial pose estimates as the machine learning meth-
ods, the pose is refined with iterative closest point.
We choose the pointto-plane method implemented in
Open3D, with Tukey loss as the robust kernel (Zhou
et al., 2018). The discriminator parameter k between
outliers and inliers for the Tukey loss is set according
to the depth accuracy of the scanners. For the D435i
scanner, we set kK = 0.04 and for the L515 scanner we
set k = 0.014.

4.4 Comparison

To compare the methods we use the evaluation meth-
ods described in Section 3.6 across three different
ranges of initial error of the pose estimate. The ini-
tial pose estimate deviates from the ground truth with
the following ranges

e 0°—-10°,0.0m—-0.1m
e 10°—-20° 0.1m —0.2m
e 20° -30° 0.2m — 0.3m

For each test example, three initial pose estimates
in the given rotation and translation range are tested.
The median results are reported for ADD, translation
and angle deviation between the predicted pose and
ground truth pose. The robustness of the methods is
given through the (k°, k cm) metric, which states the
percentage of examples within the angle and transla-
tion threshold. To compare the effect of pretraining on
simulated data, we also train a network from scratch
on real data. We evaluate the benefits of pretraining
on simulated data in terms of validation loss.

5 Results and discussion

In this section, we show and discuss the results of the
experiments. Results are reported with the ADD er-
ror metric in Equation 15, with the [5 distance metric.
The average numeric results for ADD, rotation, and
translation are shown in Table 2 and the percentage
of examples within the (k°,k cm) metric is shown in
Table 3.

Each prediction iteration takes an average of 0.0912
seconds with an RTX 3090 GPU and AMD 3900x CPU.
The validation loss from the synthetically pretrained
model and the model trained from scratch are shown
in Fig. 6.
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Figure 6: Validation loss compared for synthetically
pretrained model and model trained from
scratch on real dataset.

The plot shows that the synthetically pretrained
model reached a validation loss that is an order of
magnitude lower than the model trained from scratch.
An example from the ModelNet10 and workpiece set
is shown in Fig. 7 which shows that the trained model
had a capability of pose estimation.
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Figure 7: ModelNet10 (blue dash line) and workpiece
(red dash line) set examples with CosyPose.
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Table 2: Median numeric results for ADD L2 error, rotation error in degrees, and translation error in meters.

Part Node adapter Corner Stiffener
Metric ADD t.err r.err ADD t.err r.err ADD t.err r.err
Initial error: 0° — 10°,0.0m—0.1m
D435i & ICP  0.0815 0.0787 3.676  0.0698 0.0659 4.488 0.0667 0.0644  5.448
L515 & ICP  0.0423 0.0365 3.579 0.0461 0.0406 2.967 0.0348 0.0331 2.346
CosyPose 0.0167 0.0154 0.7831 0.0080 0.0073 0.7848 0.0153 0.0146 0.6889
Initial error: 10° — 20°,0.1m—0.2m
D435i & ICP  0.1074 0.1019 6.025 0.0832 0.0804 5.703 0.1065 0.0946  8.23
L515 & ICP  0.1076 0.0917 7.504 0.0578 0.0498 5.604 0.0754 0.069  2.622
CosyPose 0.0154 0.014 0.7912 0.0079 0.0076 0.8407 0.0153 0.0179 0.7285
Initial error: 20° — 30°,0.2m—0.3m
D435i & ICP  0.1527 0.1494 10.35 0.1284 0.1201 10.16 0.1559 0.1365 13.94
L515 & ICP  0.1789 0.1469 12.09 0.1279 0.116  13.86 0.1495 0.1442 5.351
CosyPose 0.0156 0.0153 0.8593 0.0097 0.0102 0.966 0.0168 0.0175 0.7181

The images prepared synthetically are shown to the
left, the initial pose estimate in the middle, and the
final pose estimate after five prediction iterations to the
right. An example from the test set of the two models is
shown in Fig. 8 which shows that the pretrained model
had a much better pose estimate.

Figure 8: Test set example comparing model trained
from scratch (left) and the synthetically pre-
trained model (right). The render with the
ground truth pose is outlined in green and
the pose estimate in red.

CosyPose clearly outperformed the ICP scanners by
a large margin. CosyPose achieved similar accuracy
for all the three initial pose deviations. The depth
scanners faced significant problems when scanning the
reflective aluminium workpieces. Scans were severely
corrupted by missing points as shown in Fig. 9, and
clustered surface outliers as shown in Fig. 10. Miss-
ing points from whole surfaces of the model, gave the
ICP too few points to register the workpiece. Clustered
surface outliers caused problems because the ICP reg-

istered false outliers as inliers along errors of the scan
that resembled the real geometry.

Figure 9: Missing points outlined in red from a scan of
the corner workpiece. The raw scan is shown
to the left and the same scan with the ground
truth pose of the model to the right.

Figure 10: A scan shown from two viewpoints with
the ground truth pose of the model in
green. Red arrows point to clustered mea-
surements that systematically deviate from
the true object surface.
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Table 3: Percentage of test examples within the (k°, k cm) metric for k equal 5, 2 and 1.

Part Node adapter Corner Stiffener

Metric 5cm,5°  2cm,2°  lcm,1°  5cm,5°  2cm,2°  lem,1°  Hem,5°  2cm,2°  lem, 1°
Initial error: 0° — 10°,0.0m—0.1m

D435i & ICP 5 0 0 17 6 0 10 0 0

L515 & ICP 66 27 0 65 20 0 94 26 0

CosyPose 100 74 23 100 97 53 100 78 20
Initial error: 10° — 20°,0.1m—0.2m

D435i & ICP 3 0 0 16 6 0 1 0 0

L515 & ICP 17 4 0 35 13 0 46 14 0

CosyPose 100 71 23 100 98 48 100 68 21
Initial error: 20° — 30°,0.2m—0.3m

D435i & ICP 1 0 0 8 3 0 1 0 0

L515 & ICP 5 1 0 10 4 0 18 7 0

CosyPose 100 57 12 100 88 25 100 63 17

More examples from the test set of the pretrained
model are shown in Fig. 11.

Figure 11: Test set examples with CosyPose. The im-
age from the camera is shown to the left,
the initial pose estimate in the middle, and
the final pose estimate after five prediction
iterations to the right.

The deep iterative matching implementation is sig-
nificantly more complex than ICP. An apparent draw-
back is that the network must be trained for specific
models in contrast to a depth sensor and ICP. How-
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ever, monocular vision does not suffer from sensor ar-
tifacts commonly found with depth sensors and reflec-
tive surfaces. Furthermore, the deep iterative matching
method is independent of depth given that the crop of
the model in the camera image is of sufficient resolu-
tion. Deep iterative matching is therefore viable for
larger structures where the sensor placement is too far
away for depth scanners to work. Cameras are also gen-
erally cheaper and more available than custom depth
Sensors.

The accuracy achieved with the eye-to-hand setup
using deep iterative matching may be sufficient for
tasks such as gripping and handling. For tasks such as
machining or welding where high precision is required,
an option is to combine deep iterative matching with a
more accurate eye-in-hand sensor. The more accurate
robot mounted sensor can then use the pose estimate
to inspect local parts of the workpiece from shorter
measuring distances. For further work, the method de-
scribed in this paper can be extended to work without
the assumption of an initial pose through predefined
placement or modular fixtures. This can be achieved
by combining deep iterative matching with a less ac-
curate method that produces an initial pose estimate
such as BB8 (Rad and Lepetit, 2017) or SSD-6D (Kehl
et al., 2017). The accuracy and robustness of the deep
iterative matching method may be further improved by
using more cameras and training data.

6 Conclusion

In this paper, we have demonstrated the effectiveness
of deep iterative matching for the determination of the
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pose of reflective workpieces without the use of depth
data. By using photorealistic rendering to create syn-
thetic datasets for pretraining the network, we were
able to reduce the need for real labeled data and train
the network more efficiently. Through our experiments
with reflective aluminum workpieces, we found that
our deep iterative matching method outperformed ICP
with 3D scanners, due to the large errors in the scans
caused by reflections. Overall, our results have demon-
strated that the proposed approach is a promising solu-
tion for estimating the pose of reflective parts in robotic
manufacturing applications.
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