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Abstract

The maintenance costs associated with offshore wind turbines, particularly those related to logistics and
system downtimes, are significantly influenced by the reliability of hydraulic components, especially the
pitch control system. Accumulator failures, which constitute a notable percentage of system faults, often
result from gas leakage and pressure drops, highlighting the need for efficient fault detection and diagnosis
(FDD) methods. This paper presents a novel approach utilizing Long Short-Term Memory (LSTM) neural
networks for detecting faults in hydraulic accumulators. Two LSTM models were developed: a regression
model that estimates the exact pre-charge pressure and a classification model that predicts pressure ranges.
The models were trained and validated using both experimental and simulation data from a hydraulic test
setup. Results demonstrated that the regression network achieved a root mean square error (RMSE) of
approximately 4.2 bar, while the classification network reached 78.75% accuracy. The findings show that
LSTM networks provide precision similar to prior art but for a larger variation of load cases. Thus, the
proposed non-invasive method is promising for early fault detection in offshore wind turbine accumulators,
potentially reducing operational costs and enhancing maintenance strategies.

Keywords: fluid power, hydraulic accumulator, fault detection and diagnosis, gas leakage, LSTM, offshore
wind

1 Introduction

The operational expenditures (OpEx) for offshore wind
turbines are significantly impacted by the costs associ-
ated with travel and maintenance activities, which are
both costly and time-consuming. Among the various
components of wind turbines, the pitch control system
has been identified as a critical area where most faults
occur, contributing notably to the overall downtime
and maintenance costs. Specifically, 10.5% of these
failures are attributed to issues within the accumula-
tor, a key component responsible for maintaining hy-
draulic pressure in the pitch control system (Carroll
et al. (2016); Liniger et al. (2017c)). Partly, accumu-
lator failures are caused by gas leakage resulting in a
decrease in pre-charge pressure.

Elorza et al. (2022) developed a sensor data process-
ing algorithm for diagnosing hydraulic pitch system
faults. Specifically for accumulator gas leakage, the
algorithm was able to detect a 50% drop in pre-charge
pressure. It was noted that the pitch system function
was not inhibited due to this seemingly large mag-
nitude of gas leakage. This algorithm, distinct from
other model-based approaches, requires minimal lo-
cal sensor data processing, validated through synthetic
data generated by simulation software. As noted by
Elorza et al., the method needs experimental investi-
gation to evaluate the efficiency in realistic conditions.
Furthermore, advanced methods employing multivari-
ate statistics (Helwig et al. (2015)), multi-resolution
signal decomposition (Liniger et al. (2017b)), and Ex-
tended Kalman Filters (EKF) (Liniger et al. (2017a))
have been explored for fault detection. Recent ap-
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proaches also include the use of a bank of EKFs and
State Augmented EKFs incorporating surface temper-
ature measurements for enhanced fault detection ca-
pabilities (Asmussen et al. (2022)). The latter indi-
cates the remaining amount of gas, yet with an offset
of ±10% corresponding to a 4.2 bar RMSE. In general,
the methods specifically developed for accumulator gas
leakage detection provide an opportunity for fault de-
tection; a higher fidelity is needed to assess how the
fault develops and ultimately gives an early warning of
the need for maintenance.

Recent investigations have shown promising results
from using neural network architectures for condition
monitoring and fault detection, particularly in wind
turbines and gearboxes. Xiang et al. (2021) proposed a
model combining convolutional neural networks (CNN)
and long short-term memory (LSTM) with an atten-
tion mechanism to process SCADA data for wind tur-
bine fault detection. The CNN extracts dynamic fea-
tures, while the LSTM models time dependencies. At-
tention mechanisms further enhance critical feature ex-
traction, improving fault prediction accuracy and en-
abling early anomaly detection. Chen et al. (2022) in-
troduced a physics-informed hyperparameter selection
strategy for LSTM to enhance gearbox fault detec-
tion. By integrating domain-specific physical knowl-
edge into the model’s training process, the proposed
method achieves better differentiation between healthy
and faulty states compared to traditional LSTM se-
tups. Lei et al. (2019) utilize LSTM networks for wind
turbine fault diagnosis by leveraging their capability
to model long-term dependencies in time-series data.
Their results suggest that LSTM outperforms conven-
tional methods like support vector machines (SVM)
and CNN in handling multivariate time-series data,
achieving robust fault classification even with limited
data. Chen et al. (2021) developed a hybrid model inte-
grating LSTM with an autoencoder (AE) for anomaly
detection in wind turbines. The model identifies criti-
cal parameters contributing to performance anomalies,
offering both fault detection and root cause analysis.
Zhu et al. (2022) proposed a combination of LSTM,
fuzzy synthesis, and transfer learning for wind tur-
bine gearbox monitoring. This approach leverages lim-
ited faulty data samples by transferring learned knowl-
edge between similar turbines, enhancing fault detec-
tion accuracy while reducing dependence on exten-
sive labeled datasets. He et al. (2023) introduced a
ResLSTM model integrating residual learning and at-
tention mechanisms for time-series forecasting in wind
turbine condition monitoring. This method effectively
addresses issues like gradient vanishing in deep net-
works and captures critical temporal features from
SCADA data.

Given the challenges of accumulator gas leakage de-
tection and opportunities of LSTM-based fault detec-
tion, this paper aims to explore the potential of both
regression and classification LSTM-based methods for
detecting gas leakage in hydraulic accumulators. The
approach offers a promising alternative for increasing
fault detection accuracy while maintaining the simplic-
ity of the physical system configuration. The training
uses an augmented set of experimental and simulated
data. The sensor configuration in our study follows a
similar setup as presented by Asmussen et al. (2022),
where the oil pressure and accumulator oil, surface,
and, ambient temperatures are used. The accumulator
surface temperatures provides an indicative of the pis-
ton position as the gas undergoes a compression cycle
and has shown to improve gas leakage detection per-
formance.

2 Accumulator system description

A physical hydraulic setup at Esbjerg campus of Aal-
borg University was used in generation of experimental
data for both tuning of a simulation model and a train-
ing set.

2.1 Experimental setup

The setup can be seen in Figure 1 and is designed for
the investigation of accumulator operation similar to
the conditions in wind turbines. A hydraulic piston ac-
cumulator consists of a gas chamber and an oil chamber
separated by a piston as shown in Figure 3. The gas
chamber of the accumulator is charged with nitrogen.
The pre-charge pressure is the amount of gas charged
in the accumulator with no oil, given for a gas temper-
ature of 20◦. When the oil pressure exceeds the pre-
charge pressure, the piston starts moving, compressing
the gas.

The accumulator used in the setup is HYDAC
SK350-25, which has a volume of 25l. The accumu-
lator is discharged during experiments through a pro-
portional valve (4WREE). This valve is actuated by
a controller to match flow measured through it (Ql)
to a given load flow. Valve V1 is used through on/off
control to keep pressure at the accumulator within 175
bar and 200 bar. Valve V2 is used to discharge the
accumulator at the end of an experiment.

The experimental data is collected from accumula-
tor pressure sensor pa and oil temperature sensor Tp.
Additionally, ten temperature sensors were installed on
the surface of the accumulator, which can be seen in
Figure 2. All sensors are spread uniformly across the
length of the accumulator, with one sensor being in
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Figure 1: Diagram of the physical hydraulic system.

the area of the end cap. One last temperature sensor
is measuring ambient temperature.

The data from the setup was collected at pre-charge
pressures 110, 120, 130, 140, 150 bar. As input, three
load flows of a wind turbine hydraulic pitch system
were used based on configuration one by Liniger et al.
(2017a).

2.2 Simulation model

In addition to experimental data, this study utilizes
data from a simulation model of the accumulator.
The hydraulic accumulator model is divided into three
parts: a mechanical model, the gas equation of state,
and the thermal model.

The mechanical model describes the movement of the
piston in the accumulator, given by Newton’s second
law of motion:

ẍpmp = (pa − pg)Aop − Ffric (1)

where mp is the mass of the piston, pa is the accumula-
tor oil pressure, pg is the gas pressure, Aop is the piston
area, and Ffric is the friction force described as:

Ffric = Bẋp + C (2)

where B is the viscous friction constant and C is the
Coulomb friction constant.

The gas equation of state describes the relation be-
tween the states of the gas such as temperature, pres-
sure, and volume. The Benedict-Webb-Rubin (BWR)
empirical equation of state is used for the accumulator
model following the work by Goldfrank and Cooper
(1967).
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Figure 2: Placement of temperature sensors on the top
surface of the hydraulic accumulator.

The BWR equation of state is shown below:
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where v is the specific volume, Tg is the gas temper-
ature, and A0, B0, C0, a, b, c, α, γ,R are constants for
nitrogen.

The thermal model of the accumulator is divided into
three parts: the accumulator piston, the end-cap of
the accumulator towards the gas inlet, and the accu-
mulator wall. The wall is further divided into eight
elements. The model is inspired by model two as de-
scribed by Pfeffer et al. (2016). The temperature of the
end-cap of the accumulator towards the oil inlet is as-
sumed to be equal to the oil temperature. The end-cap
of the accumulator is modeled as a single body with a
uniform temperature and the temperature change of
the end-cap is described by the energy balance given
as:

Ṫe =
Q̇ge + Q̇ae

mecsteel
(4)
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Figure 3: Piston accumulator with model notation.

where Te is the temperature of the end cap, me is the
mass of the end-cap, csteel is the specific heat capacity
of steel, and Q̇ge and Q̇ae are the heat flows from the

gas and air to the end-cap respectively. Q̇ge is given
as:

Q̇ge = αgAeg (Tg − Te) (5)

and Q̇ae is described as:

Q̇ae = αaAea (Ta − Te) (6)

where αa is a convective heat transfer coefficient be-
tween air and steel, αg is a convective heat transfer
coefficient between gas and steel, Aea is the surface
area between the end-cap and air, Aeg is the surface
area between the end-cap and gas, and Ta is the tem-
perature of the ambient air.
The piston is modeled similarly to the end cap as a

single body with a uniform temperature. The heat flux
between the piston and accumulator wall is neglected
since the piston is suspended by sealing rings. The
heat transfer coefficients of the sealing ring materials
are typically much lower than those present for oil or
gas to steel. The energy balance of the piston is:

Ṫp =
Q̇gp + Q̇op

mpcsteel
(7)

where Tp is the temperature of the piston, mp is the

mass of the piston, and Q̇gp and Q̇op are the heat flows

from the gas and oil to the piston, respectively. Q̇gp is
given as:

Q̇gp = αgAgp (Tg − Tp) (8)

and Q̇op is given as:

Q̇op = αoAop (To − Tp) (9)

where αo is a convective heat transfer coefficient be-
tween oil and steel and Agp and Aop are the surface
areas of the piston towards the gas and the oil, respec-
tively.
The accumulator wall is divided into n = 8 elements

where the temperature is considered uniform for each
wall element. The energy balance for each element can
be divided into a convective part and a conductive part
as shown below:

Ṫ [i]
w = Ṫ

[i]
convective + Ṫ

[i]
conductive (10)

where T
[i]
w is the i’th wall element temperature and

i = 1, 2, · · · , n. The convective heat flow for the i’th
element can be described as:

Ṫ
[i]
convective =

Q̇
[i]
aw + Q̇

[i]
ow + Q̇

[i]
gw

ρ csteel (r2os − r2is)πdx
(11)

where ros and ris are the outer and inner radii of the
accumulator and dx is the length of the wall element.
The convective heat flows, Q̇aw, Q̇ow, and Q̇gw are
calculated as:

Q̇[i]
ow = αoAow

(
To − T [i]

w

)
ξ[i]o (12)

Q̇[i]
gw = αgAgw

(
Tg − T [i]

w

)
ξ[i]g (13)

Q̇[i]
aw = αaAaw

(
Ta − T [i]

w

)
(14)

where the areas are defined in such a way that Aaw

is the area of a wall element in contact with air, Aow

is the area of a wall element in contact with oil, and
, Agw is the wall area in contact with oil. ξo and ξg
describe the ratio of the wall elements in contact with
oil or gas. ξo is given as:

ξ[i]o =


1 for xp > i dx

xp − (i− 1)dx
dx

for i dx ≤ xp ≤ i dx

0 for xp < i dx

(15)

and ξg is given as:

ξ[i]g =


0 for xp + lp > i dx

1− xp − lp + i dx
dx

for (i− 1)dx ≤ xp + lp ≤ i dx

1 for xp + lp < i dx
(16)

The conductive part of the energy balance for a
wall element, shown in Equation (17), is described by
Fourier’s law of heat conduction:

Q̇ = −λ∇T (17)

where λ is the conductivity and ∇T is the temperature
gradient. Due to the symmetry of the cylinder, the con-
ductive heat transfer is assumed to be one-dimensional
and can thus be described as:

Q̇conductive =
∂

∂x
λ
∂Tw

∂x
(18)

where x is the axial direction of the accumulator.
When estimating the conductive heat flow,

Q̇conductive, by a second-order central difference

104



Olszewski et.al., “Hydraulic accumulator FDD using LSTM neural networks”

equation, the conductive part of the energy balance
for each wall element can be found as:

Ṫ
[i]
conductive =

λ

ρ csteel

T
[i+1]
w − 2T

[i]
w + T

[i−1]
w

dx
2 (19)

where dx is the length of the wall element as shown in
Figure 3. The end conditions are set to the tempera-
ture of the accumulator end-cap and the oil tempera-
ture.
The total heat flow from the gas to the accumulator

is defined as:

Q̇s =

(
n∑

i=1

Q̇[i]
gw

)
+ Q̇gp + Q̇ge (20)

The model’s response is validated against the phys-
ical system through an experiment. The model con-
stants used for verification are given in Table 1.

Table 1: Accumulator model constants.

Symbol Constant Value Unit

ri Internal radius 0.09 m

ro External radius 0.11 m

li Internal length 0.983 m

lp Length of the piston 0.11 m

dx Length of one wall element 0.123 m

Aaw External area of conductive 0.0849 m2

heat flow of wall element

Aow, Ag Internal area of conductive 0.0695 m2

heat flow of wall element

Ap Piston cross-section area 0.0254 m2

Aae Area for heat flux between 0.038 m2

air and end cap

Age Area for heat flux between 0.0254 m2

gas and end cap

Vp Precharge volume 0.0222 m3

mp Mass of the piston 7.86 kg

me Mass of the end cap 19.95 kg

ρ Density of steel 7810 kg
m3

cN2
Specific heat capacity 741.07 k

kg·K
of nitrogen

csteel Specific heat capacity of steel 502.42 J
kg·K

λ Thermal conductivity of steel 58 W
m·K

αa Convective heat transfer 20 W
m2·K

coefficient of the air

αo Convective heat transfer 100 W
m2·K

coefficient of the oil

αg Convective heat transfer 25 W
m2·K

coefficient of the gas

The accumulator is first fully discharged then
recharged while recording sensor data. The input flow

for the model is derived from the measured piston po-
sition. The piston position, xp, and accumulator oil
pressure, pa, is compared in Figure 4, showing close
agreement. The mean error is 0.36 mm for piston po-
sition and 2.04 bar for pressure.
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Figure 4: Simulation and experiment comparison of
piston position and accumulator oil pressure.

Temperature validation is given in Figure 5. The
timespan is extended to 1500 seconds, focusing on wall
element i = 6. This element is chosen because the
setup is equipped with temperature sensors on both
the top and bottom of the accumulator element to as-
sess the uniform temperature assumptions. Simulated
temperatures matched the experimental data trends,
staying within the range of expected top and bottom
temperatures. The model is tuned to match the top
temperature, since these sensors are used further for
both the training and validation data.

3 Proposed method

This paper presents a method employing LSTM neu-
ral networks to estimate the accumulator pre-charge
pressure. Two types of LSTM networks are developed
and evaluated: a regression network and a classification
network. The regression network provides real-time es-
timations of the current pre-charge pressure, while the
classification network determines the pressure range in
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Figure 5: Simulation and experiment comparison of el-
ement i = 6 wall temperatures.
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which the current pre-charge pressure falls. This classi-
fication offers a broader assessment, indicating whether
the pressure is below the fault threshold.
By training the networks on data collected during

normal accumulator operation, the method enables
pre-charge pressure estimation without interrupting
regular operation or requiring specific actuation.

The training data is derived from a combination of
physical experiments and simulations. Simulated data
is used to supplement the dataset due to the extended
time required for data collection in a physical system.

3.1 LSTM networks

Two types of LSTM networks were developed for esti-
mation of the pre-charge pressure: a regression network
and a classification network. Layers of each network
can be seen in Figure 6.

Sequence Input

LSTM

Fully Connected

Softmax

Classification Output


(a) Classification

Sequence Input

LSTM

Fully Connected

Regression Output

(b) Regression

Figure 6: Layers of the developed LSTM networks.

Both networks take as input a sequence of vectors of
12 measurements sampled at 1 Hz. The measurements
consist of 8 wall element temperatures, endcap temper-
ature, oil pressure, oil temperature, ambient tempera-
ture. The input is fed into an LSTM layer. This layer
is configured with tanh state activation function, sig-
moid gate activation function, and number of hidden
units chosen in a hyper-parameter sweep.

The output of the LSTM layer is fed through one
fully connected layer. For the regression network, the
fully connected layer provides one output, which is the
output of the predicted precharge pressure. The loss
function used in this case is mean-squared-error. Dur-
ing network training it was found out that output nor-
malization is required for the regression network, oth-
erwise the training would consistently fail with the net-
work outputting a constant value. Therefore, min-max
normalization was applied, mapping values in range 95
to 165 bar, to a range from 0 to 1.

For the classification network, the fully connected
layer has 7 outputs which feed through a softmax func-

tion to provide the final output. The loss function used
is cross-entropy. Each output corresponds to a 10 bar
wide bin in the range from 95 to 165 bar with centers
at 100, 110, 120, 130, 140, 150, 160 bar.

3.2 Network training

Both the regression and the classification LSTM net-
works were trained using a mix of 45 cases of exper-
imental data and 700 cases of simulation data. The
experimental data was split into training, validation,
testing sets in a 5:2:2 ratio. The simulated data was
split in 8:1:1 ratio. The different ratio for the exper-
imental data is due to its smaller amount as to still
provide sufficient amount of cases for validation and
testing sets. Each case consisted of 200 samples.

The training parameters were the following: adam
solver with initial learn rate of 0.1 and mini-batch size
of 150. For both networks a hyper-parameters sweep
was performed to find the optimal amount of hidden
units and training epochs. Results can be seen in Table
2 and 3.

Table 2: Regression LSTM hyper-parameter sweep.

Hidden Validation Training

Trial Units Epochs RMSE RMSE

1 10 500 0.1417 0.0953

2 30 500 0.0993 0.0703

3 50 500 0.1855 0.0893

4 100 500 0.1849 0.1435

5 10 1000 0.1359 0.1292

6 30 1000 0.0883 0.0793

7 50 1000 0.1378 0.0801

8 100 1000 0.1679 0.0847

9 10 2000 0.1051 0.0692

10 30 2000 0.0600 0.0736

11 50 2000 0.1591 0.0659

12 100 2000 0.1616 0.1005

The final regression and classification networks, are
chosen based on the results for the validation set. The
best performing regression network is one from trial
number 10 with 30 hidden units, trained for 2000
epochs, with normalized validation RMSE of 0.06. Its
training performance can be seen in Figure 7 and re-
sults against a test set in Figure 8.

The best performing classification network is one
from trial number 12 with 100 hidden units, trained
for 200 epochs, with validation accuracy of 78.75%. Its
training performance can be seen in Figure 9 and re-
sults against a test set in Figure 10.
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Table 3: Classification LSTM hyper-parameter sweep.

Hidden Validation Training

Trial Units Epochs Accuracy Accuracy

1 10 500 30.00 29.33

2 30 500 58.75 58.00

3 50 500 48.75 55.33

4 100 500 70.00 38.00

5 10 1000 41.25 51.33

6 30 1000 57.50 65.33

7 50 1000 51.25 76.00

8 100 1000 45.00 64.00

9 10 2000 40.00 49.33

10 30 2000 65.00 59.33

11 50 2000 65.00 80.67

12 100 2000 78.75 86.00
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Figure 7: Regression network training RMSE and loss
over training iterations.

3.3 Results and discussion

From the two trained LSTM networks, the regression
network performed best with number of hidden units
between 10 and 30, and with improving performance
with higher amount of epochs. Overfitting was notice-
able with higher number of hidden units. The best net-
work (trial 10) estimates the pre-charge pressure with
RMSE of 4.2 bar which is on par with prior art but
for a larger variety of load conditions underlining the
efficacy of the proposed method. The pressure is esti-
mated well in the range of 110 bar to 165 bar. The es-
timation is skewed towards higher values for pressures
below 110 bar, and is off by up to 7 bars. When look-
ing at the experimental data, the network estimated
pre-charge pressures at 120 bar to be higher and up to
20 bar away from the true value. This problem is not
seen for other values of pre-charge pressure.

The classification network performed best with
higher number of epochs and hidden units. Increased
accuracy with higher amount of hidden units can be
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Figure 8: Regression network comparison between true
and predicted values for the test set with sep-
aration between simulated and experimental
data.
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Figure 9: Classification network training accuracy and
loss over training iterations.

explained by the discontinuous nature of classification
output. The best network (trial 12) estimates the pre-
charge pressure category with 78.75% accuracy. It pre-
dicts most accurately the lowest and highest pressure.
The estimations in-between are at most one category
off when looking at simulated data, with majority be-
ing categorized correctly. When looking at the experi-
mental data, all estimates for 130 bar category are 20
bar lower than the true value. For 140 bar category, all
estimates are 10 bar higher. For category of 120 bar,
only one estimate is higher by 20 bar.

4 Conclusion

This study developed and evaluated two types of
LSTM neural networks—regression and classification
models—for fault detection and diagnosis of hydraulic
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Figure 10: Classification network comparison between
true and predicted values for the test set
with separation between simulated and ex-
perimental data.

accumulators in offshore wind turbine pitch systems.
By leveraging a combination of experimental and sim-
ulation data, both networks demonstrated the ability
to estimate pre-charge pressure based on non-invasive
temperature and pressure measurements, providing a
cost-effective and efficient alternative to traditional
fault detection methods.
The regression network achieved an RMSE of approx-

imately 4.2 bar, showing reliable performance across
most pressure ranges but encountering some inac-
curacies at lower pressures. The classification net-
work reached an accuracy of 78.75%, effectively iden-
tifying the correct pressure category, especially at
the extremes. However, some discrepancies were ob-
served, particularly when applied to experimental data.
The best-performing model-based method outperforms
both the classification (15%) and regression network
(17%), which showed a 10% estimation error.
Future work should focus on optimizing the classi-

fication model, as it offers higher precision, making it
more suitable for early fault detection and trend analy-
sis. Additionally, exploring transfer learning could sig-
nificantly reduce the need for extensive training data
specific to each accumulator, enhancing the practicality
of these neural network models for broader applications
in wind turbine maintenance.
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