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Abstract

Environmental disturbances such as wind, currents, and waves introduce uncertainties in hydrodynamic
parameter estimation, affecting the accuracy of ship maneuvering models and trajectory prediction. This
study investigates how these disturbances influence the estimation of hydrodynamic derivatives in the
Abkowitz maneuvering model and their impact on their accuracy. Therefore, models are estimated using
least squares regression based on data from four maneuvers conducted under different wind and current
conditions. A comparison of the resulting hydrodynamic derivatives identifies parameters that exhibit
greater variance as disturbance intensity increases. To further assess their influence on the trajectory
prediction error, Sobol sensitivity analysis is applied to determine which parameter variations most sig-
nificantly affect trajectory accuracy. The results reveal that while some parameters remain stable across
environmental conditions, others exhibit slight variations. Additionally, the parameters most affected by
disturbances are not necessarily those with the greatest impact on trajectory prediction error. These
findings highlight the importance of accounting for environmental effects in vessel model estimation to im-
prove prediction reliability and provide deeper insight into how disturbances impact the model estimation
process.

Keywords: Maneuvering Model; External disturbances; Parameter Estimation; Least Square Regression;
Sensitivity Analysis

1 Introduction

Accurate vessel modeling is essential for safe naviga-
tion, efficient route planning, and the development of
autonomous maritime systems. Several models have
been proposed in the literature to describe the maneu-
vering dynamics of a vessel (Xu and Soares, 2025), in-
cluding the Maneuvering Mathematical Group (MMG)
model and the Abkowitz model. The Abkowitz model,
based on a Taylor series expansion, is commonly used
when maneuvering data, either from experimental tri-
als (Xu et al., 2020; Yang and el Moctar, 2024) or simu-
lations (Wang et al., 2020; Du et al., 2022), is available.

This is due to the fact that the model’s parameters,
called hydrodynamic derivatives, can be estimated us-
ing regression techniques.

However, when collecting maneuvering data, exter-
nal disturbances such as wind, currents, and waves in-
evitably affect measurements. These disturbances not
only introduce uncertainty into the estimation process
but can also lead to systematic biases, potentially re-
sulting in inaccuracies in the identified parameters and,
consequently, in trajectory predictions. Given the in-
creasing reliance on model-based control and decision-
making in modern maritime operations, understand-
ing how environmental disturbances influence parame-
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ter estimation is crucial for enhancing the reliability of
ship models in practical applications.
Most studies on system identification for ship mod-

eling assume controlled conditions or minimal exter-
nal influences. However, in real-world scenarios, dis-
turbances such as wind, waves, and currents are in-
evitable Xu and Soares (2025). These effects can lead
to significant variations in parameter estimates, raising
questions about the robustness of the models and their
predictive accuracy. If certain parameters are partic-
ularly sensitive to these disturbances, they may con-
tribute disproportionately to trajectory errors, making
it essential to determine which parameters are most af-
fected by these disturbances. Identifying and quantify-
ing these variations is critical to improving model accu-
racy, enabling more resilient and adaptive ship control
strategies.

This paper examines the impact of external distur-
bances on the estimation of hydrodynamic parameters
in the Abkowitz model and assesses how these varia-
tions affect trajectory prediction. By analyzing param-
eter estimates under different disturbance conditions,
this study identifies which parameters are more sen-
sitive to those disturbances and also their impact on
maneuvering accuracy. This analysis lays the ground-
work for refining ship maneuvering models, improving
trajectory prediction under real-world conditions, and
guiding the development of disturbance-resilient vessel
control strategies.

The remaining of this paper is organized as follows:
Section 2 reviews mathematical models for vessel mo-
tion, parameter estimation methods, and previous re-
search on the effects of external disturbances. Section
3 explains the methodology, including the Abkowitz
model, parameter estimation using least squares, and
Sobol sensitivity analysis to identify key parameters
affecting prediction errors. Section 4 describes the ex-
perimental setup, data collection under different condi-
tions, and presents the sensitivity and variance analysis
results. Finally, Section 5 summarizes the main find-
ings of this work and discusses their implications for
ship modeling and control.

2 Related Work

Accurate ship maneuvering models are essential for en-
suring maritime safety, optimizing vessel performance,
and advancing control system design. Over the years,
researchers have developed a variety of models, each
balancing complexity with data availability. These
models include different degrees of freedom and focus
on various aspects of ship maneuverability.

Detailed models like the MMG model decompose
hydrodynamic forces into contributions from the hull,

propeller, and rudder, offering physical insights into
ship dynamics Ogawa and Kasai (1978). However,
these models require the knowledge of vessel-specific
data (such as propeller diameter, rudder area, and rud-
der aspect ratio), which is not always available Zhang
et al. (2023).

In contrast, the Abkowitz model represents the ship
as a whole by approximating hydrodynamic forces
and moments using polynomial functions of the mo-
tion variables Abkowitz (1964). This holistic ap-
proach makes the Abkowitz model particularly attrac-
tive when only maneuvering data is accessible. In our
study, the choice of the Abkowitz model is motivated
by the practical constraints of data availability, as it
eliminates the need for detailed geometric and propul-
sive characteristics required by more complex models.

Parameter identification for ship maneuvering mod-
els has been addressed by a range of methodologies.
Traditional experimental approaches, such as captive
model tests, provide controlled environments for esti-
mating hydrodynamic derivatives, as demonstrated in
Perera et al. (2015, 2016); Obreja et al. (2010). Mean-
while, high-fidelity numerical methods like Computa-
tional Fluid Dynamics (CFD) have been employed to
capture complex fluid-structure interactions Liu et al.
(2019); Yang et al. (2023). Despite their accuracy,
these methods are often resource-intensive and require
precise models of the vessel.

In recent years, data-driven approaches have gained
popularity. Techniques such as least squares regres-
sion Li et al. (2023), maximum likelihood estimation
Åström and Källström (1976), extended Kalman filter-
ing Perera et al. (2015, 2016), and Support Vector Ma-
chine (SVM) Wang et al. (2021); Luo and Zou (2009);
Zhu et al. (2022); Luo and Li (2017) have been success-
fully applied to estimate the parameters of ship ma-
neuvering models. These methods offer significant ad-
vantages, including the ability to model complex, non-
linear relationships without requiring detailed physical
models. They are highly adaptable and can improve
with more data, making them particularly useful for
systems with dynamic or poorly understood behav-
ior. However, they are dependent on the quality of
the available data, and inaccurate or sparse data can
degrade model performance. Additionally, these ap-
proaches can lack interpretability, which can limit un-
derstanding of the underlying physical dynamics. In
our work, least squares regression was chosen for its
balance between computational efficiency and estima-
tion accuracy, particularly when the data is reliable.

Traditionally, many studies have assumed calm wa-
ter conditions when estimating the vessel parameters,
thereby neglecting the impact of disturbances such as
wind, waves, and currents Xu and Soares (2025). How-
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Figure 1: Flowchart of the parameter estimation process and the methodology used in this work.

ever, in real-world conditions, environmental distur-
bances are always present and can significantly influ-
ence ship dynamics. Some recent studies have per-
formed parameter estimation under the influence of
disturbances, such as those presented in Wang et al.
(2021); Zhu et al. (2022); Xue et al. (2020); Chen et al.
(2022). However, in these studies, the disturbances
were modeled as stochastic processes represented by
Gaussian white noise. By representing disturbances
solely as stochastic processes, these studies may not
fully account for the structured influence of exter-
nal conditions on parameter estimation. As a result,
the estimated models may lack robustness when ap-
plied to real-world scenarios where disturbances fol-
low more complex patterns. Other studies have per-
formed free-running model tests and sea trials in en-
vironments where disturbances are inherently present,
such as those in Xu et al. (2020); Costa et al. (2021);
Xu et al. (2024). However, these works do not provide
quantitative assessments of the actual disturbances en-
countered or their specific impact on the parameter es-
timation process.
Despite these advances, the literature lacks a de-

tailed analysis of how specific disturbance components
contribute to errors in parameter estimation. The work
presented in this paper addresses this gap by using data
from a high-fidelity bridge simulator to analyze how the
hydrodynamic derivatives of the Abkowitz model vary
under realistic environmental conditions. Through this
approach, it becomes possible to identify which param-
eters are most sensitive to specific disturbances, offer-
ing valuable insights for improving model robustness
in real-world applications.

3 Methodology

3.1 Overview of the Estimation Process

The objective of this paper is to analyze the impact of
environmental disturbances on the estimation process
of the model of the vessel, as illustrated in Figure 1. To
achieve this, a baseline model is first estimated under
calm conditions by collecting maneuvering data and de-
termining the model’s parameters. Subsequently, data
is gathered under varying environmental conditions,
such as different wind, wave, and current intensities,
and a new model is estimated for each case. By com-
paring parameter variations across different conditions,
the influence of disturbances on the estimation pro-
cess can be assessed. However, analyzing parameter
variations alone does not provide insight into predic-
tion errors. A parameter that fluctuates significantly
due to environmental effects is not necessarily the pri-
mary contributor to prediction inaccuracies. To ad-
dress this, a Sobol sensitivity analysis is conducted to
determine which parameter variations have the great-
est impact on prediction errors. By combining both
analyses, a more comprehensive understanding of how
environmental disturbances affect the accuracy of ma-
neuvering model estimation can be achieved.

This section is organized as follows: Section 3.2
presents the mathematical model used to describe the
vessel’s motion, Section 3.3 details the parameter esti-
mation method, and Section 3.4 explains the sensitivity
analysis methodology.

3.2 Mathematical Model of the Vessel

In this section the Abkowitz 3 DOF model used to
describe the motion of the vessel is detailed.

The motion of the vessel, in 3 DOF, can be rep-
resented by the position and heading of the vessel
η = [x, y, ψ], and by the linear and angular velocities
(surge, sway and yaw rate) ν = [u, v, r].
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The kinematic model of the vessel can be expressed
by equation 1, where R(ψ) represents the rotation ma-
trix around the z axis.

η̇ = R(ψ)ν (1)

Additionally, the kinetic model can be derived from
Newton’s second law applied to the vessel, resulting in
equation 2 where m represents the mass of the vessel,
xg represents the distance from the midships waterline
point and the center of gravity point in the x direction,
Iz is the moment of inertia around the z-axis, and τRB

represents the total forces on the rigid body of the ves-
sel.m 0 0

0 m mxG
0 mxG Iz

u̇v̇
ṙ

+

 0 −mr −mxGr
mr 0 0
mxGr 0 0

uv
r

 = τRB

(2)
This equation can be rewritten as shown in equation
3, where MRB and CRB represent the rigid body in-
ertia matrix and rigid body Coriolis and centripetal
forces matrix, respectively Fossen (2011). The total
force τRB is composed of the control and propulsion
forces τcontrol, the hydrodynamic forces τhyd (which
include added mass, potential damping due to wave ra-
diation, and viscous damping), the hydrostatic forces
τhs, and the environment forces (due to wind, waves
and currents) τenv.

MRB ν̇ + CRB(ν)ν = τcontrol + τhyd + τhs + τenv (3)

Since this study focuses on vessel motion in the hor-
izontal plane (maneuvering theory) without consider-
ing roll dynamics, the hydrostatic forces are considered
negligible Fossen (2011). Assuming a constant irrota-
tional current νc, with ν̇c ≈ 0, the hydrodynamic forces
can be expressed by equation 4, where νr = ν − νc
represents the relative velocity of the vessel with re-
spect to the ocean current. Here, MA represents the
added mass matrix due to the inertia of the surround-
ing fluid, CA(νr) represents the Coriolis and centripetal
matrix, and D(νr) is the hydrodynamic damping ma-
trix. Typically, CA(νr) and D(νr) are combined as
N(νr) := CA(νr)+D(νr), since distinguishing between
the two is difficult in practice Fossen (2011).

τhyd = −MAν̇ − CA(νr)νr −D(νr)νr (4)

MA =

−Xu̇ 0 0
0 −Yv̇ −Yṙ
0 −Nv̇ −Nṙ

 (5)

The non-dimensional form of equation 3 is used, as
shown in equation 6, since many hydrodynamic deriva-
tives are obtained from model tests Abkowitz (1964).
The transformation to non-dimensional parameters is

given by equation 8, where ρ is the water density, U is
the absolute velocity, and L is the ship length.

m′ −X ′
u̇ 0 0

0 m′ − Y ′
v̇ m′x′G − Y ′

ṙ

0 m′x′G −N ′
v̇ I ′z −N ′

ṙ

u̇′v̇′
ṙ′

 =

X ′

Y ′

N ′

+ τ ′wind (6)

In equation 6, τ = [X ′, Y ′, N ′]T is a function of
u′, v′, r′ and δ, where δ denotes the rudder angle. In
the Abkowitz model, the forces τ are expressed as a
third-order truncated Taylor series expansion around
an initial condition of equilibrium of motion (straight
forward motion with constant speed U0). As dis-
cussed in Abkowitz (1964), the Taylor series expansion
can yield a large number of parameters to estimate,
which is not practical for estimation. Therefore, sev-
eral assumptions are made to reduce the number of
parameters used in the model. These assumption in-
clude considering only first-order accelerations, stan-
dard port/starboard symmetry, and neglecting cou-
pling terms between the acceleration and velocity.
Based on that, τ is expressed by equation 7, where
X ′

(.), Y
′
(.) and N(.)

′
represent the partial derivaties of

the Taylor series expansion on the equilibrium state,
and are refered to as the hydrodynamic derivatives.
These derivatives are the parameters to be estimated.
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′2+
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′v′δ′
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(7)
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1
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1
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(8)
The non-dimensional hydrodynamic derivativesX ′

(.),
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Y ′
(.), N

′
(.) in equation 7 are the parameters that will be

estimated for the vessel in Section 4.
The non-dimensional added mass coefficients can be

estimated using empirical formulations, Clarke et al.
(1982) and Söding (1982) as:

Y ′
v̇ = −π

(
T

L

)2

·

(
1 + 0.16

CBB

T
− 5.1

(
B

L

)2
)

Y ′
ṙ = −π

(
T

L

)2

·

(
0.67

B

L
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(
B

T

)2
)

N ′
v̇ = −π

(
T

L

)2

·
(
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B

L
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B
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(
T

L

)2

·
(

1

12
+ 0.017

CBB

T
− 0.33

B

L

)
X ′

u̇ = −
2.7(mρ )

5/3

1
2L

5

(9)

where CB represents the block coefficient, B represents
the beam moulded and T represents the draught of the
vessel.
As described in Fossen (2011), the wind force and

moment in 3 DOF can be calculated as:

τwind =

 τwindX

τwindY

τwindN

 =
1

2
ρaV

2
rw

 CX (γw)AFw

CY (γw)ALw

CN (γw)ALwLoa


(10)

where C(.) are the wind coefficients, ρa is the air den-
sity (1.204 kg/m3 for 20◦C), AFw is the frontal pro-
jected area, ALw is the lateral projected area, and Loa

is the vessel overall length. Vrw is the relative wind
speed which can be calculated using equation 11, and
the wind angle of attack γw can be calculated using
equation 12.

Vrw =
√
u2rw + v2rw =

√
(u− uw)2 + (v − vw)2

(11)

γw = − atan2 (vrw, urw) (12)

The wind speed Vw has a component in the x direc-
tion (uw) and in the y direction (vw), which can be
calculated using equations 13.

uw = Vw cos (βw − ψ)

vw = Vw sin (βw − ψ)
(13)

Figure 2 shows the wind vector Vw, the wind direc-
tion angle βw, and wind angle of attack γw.
The wind coefficients are calculated, according to

Figure 2: Representation of the wind speed vector Vw
and wind direction angle βw and angle of
attack γw (based on Fossen (2011)). The
figure shows two reference frames: the in-
ertial frame n = (xn, yn), where xn points
North and yn points East, and the body-
fixed frame b = (xb, yb), which is fixed to the
ship, with xb pointing forward and yb point-
ing starboard.

Blendermann (1994), as:

CX (γw) = −CDl
ALw

AFw

cos (γw)

1− δw
2

(
1− CDl

CDt

)
sin2 (2γw)

CY (γw) = CDt
sin (γw)

1− δw
2

(
1− CDl

CDt

)
sin2 (2γw)

CN (γw) =

[
sL
LOA

− 0.18
(
γw − π

2

)]
CY (γw)

(14)
where CDl is the longitudinal resistance, CDt is the
transverse resistance, δw is the cross-force, sL is the
horizontal distance from amidships section to center of
lateral projected area, and ρa is the air density.

The forces generated by waves and currents are not
explicitly modeled since these disturbances cannot be
directly measured on most vessels. However, their in-
fluence will affect the estimation of the Abkowitz hy-
drodynamic derivatives.

3.3 Parameter Estimation Method

To estimate the hydrodynamic derivatives of the
Abkowitz model, described in Section 3.2, several
methods can be used, as mentioned in Section 2. In
this work Least Square regression is applied since equa-
tion 8 can be written in a linear form in terms of the
unknown hydrodynamic derivatives.

Considering a dataset withm observations and a lin-
ear system of equations given by equation 15:

z = Hx+w (15)
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where x is an n×1 column vector of unknowns, z is an
m× 1 column vector of observed values, H is an m×n
matrix of coefficients, and w is an m×1 column vector
representing the noise in the system.
The goal of the least squares method is to find the

vector x that minimizes the sum of the squares of the
differences between the observed values z and the pre-
dicted values Hx.
As described in Bar-Shalom et al. (2001), this

method can be expressed as minimizing the objective
function J(x), as expressed in equation 16.

J(x) = ||z−Hx||2 (16)

The solution to minimizing the objective function J(x)
can be calculated by equation 17.

x̂ = arg min
x

J(x) = (HTH)−1HT z (17)

It is important to note that the least square solution
only exists if there are enough independent observa-
tions in the data. This condition implies that there
must be at least n linearly independent observations in
the dataset, where n is the number of parameters to
be estimated.
The discretization of equations 6 using Euler’s step-

ping method results in equation 18, where m11 =
m′ − X ′

u̇,m22 = m′ − Y ′
v̇ ,m23 = m′x′G − Y ′

ṙ ,m32 =
m′x′G −N ′

v̇, and m33 = I ′z −N ′
ṙ.

m11(
u(k + 1)− u(k)

∆t
)L = U2X ′ + U2τ ′X

m22(
v(k + 1)− v(k)

∆t
)L+m23(

r(k + 1)− r(k)

∆t
)L2 = U2Y ′ + U2τ ′Y

m32(
v(k + 1)− v(k)

∆t
)L+m33(

r(k + 1)− r(k)

∆t
)L2 = U2N ′ + U2τ ′N

(18)
Additionally, X’, Y’, and N’, from equation 7 can be

rewritten as:
U2X ′ = Ax

U2Y ′ = By

U2N ′ = C

(19)

where

A =[X ′
u, X

′
uu, X

′
uuu, X

′
vv, X

′
rr, X

′
rv, X

′
dd, X

′
udd, X

′
vd, X

′
uvd]

T

B =[Y ′
v , Y

′
r , Y

′
vvv, Y

′
vvr, Y

′
vu, Y

′
ru, Y

′
d , Y

′
ddd, Y

′
ud, Y

′
uud, Y

′
vdd, Y

′
vvd,

Y ′
0 , Y

′
0u, Y

′
0uu]

T

C =[N ′
v, N

′
r, N

′
vvv, N

′
vvr, N

′
vu, N

′
ru, N

′
d, N

′
ddd, N

′
ud, N

′
uud,

N ′
vdd, N

′
vvδ, N0, N

′
0u, N

′
0uu]

T

x =[U∆u,∆u2,
∆u3

U
, v2, L2r2, rvL, U2δ2, U∆uδ2, Uvδ,∆uvδ]

y =[Uv,UrL,
v3

U
,
v2rL

U
, v∆u, rL∆u, U2δ, U2δ3,∆uUδ,∆u2δ,

Uvδ2, v2δ, U2, U∆u,∆u2]

n =[Uv,UrL,
v3

U
,
v2rL

U
, v∆u, rL∆u, U2δ, U2δ3,∆uUδ,∆u2δ,

Uvδ2, v2δ, U2,

U∆u,∆u2]

(20)

The vectors A, B, and C are the 40 hydrodynamic
derivatives to be estimated using the least square
method.

3.4 Sobol Sensitivity Analysis

The main objective of this work is to understand how
the environmental disturbances affect the estimation
of the vessel model. To achieve this, it is necessary to
analyze not only how the estimation of the hydrody-
namic derivatives varies with the different environmen-
tal conditions, but also which hydrodynamic derivative
contributes the most to deviations in the predicted tra-
jectory.

To address the last point, Sobol sensitivity analysis is
used. This variance-based technique quantifies the con-
tribution of each input parameter to the overall vari-
ability in the model’s predictions, thereby identifying
the most influential parameters. By decomposing the
output variance into contributions from individual pa-
rameters and their interactions, Sobol sensitivity anal-
ysis provides a comprehensive assessment of parameter
importance.

The first-order Sobol index Si quantifies the direct
contribution of each input parameter to the output
variance. In contrast, the total-order Sobol index STi

accounts for both the direct effects and all interactions
involving the parameters Xi. Equation 21 defines the
total-order index, where X∼i represents all parame-
ters except Xi, V (Y ) represents the total variance of
the output, and EX∼i [VXi(Y |X∼i)] represents the ex-
pected value of the conditional variance of Y given all
input parameters except Xi. More details about this
method can be found in Sobol (2001).

STi
=
EX∼i

[VXi
(Y |X∼i)]

V (Y )
(21)

In this study, only the total-order indices STi
are con-

sidered, as they provide a more comprehensive measure
of parameter importance.

The analysis consists of analyzing the impact of the
40 hydrodynamic derivatives of the Abkowitz model
(vectors A, B and C in equation 20) on the prediction
error of the model. Therefore, each parameter is varied
within a range of ±50% of its baseline value, which
was initially estimated under no external disturbances
(Section 4.2). Subsequently, for each generated set of
parameter values, the mean distance error between the
predicted and reference trajectories is used as a metric
to evaluate model accuracy and quantify the sensitivity
of the error with respect to each parameter.

By conducting this analysis, the most critical hy-
drodynamic derivatives influencing the accuracy of the
Abkowitz model can be identified.
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4 Experimental Results

4.1 Experimental Setup

In order to estimate the maneuvering model of the ves-
sel, data from different maneuvers must be collected.
For this purpose, a professional navigation bridge sim-
ulator, the K-sim Navigation, manufactured by Kongs-
berg Maritime AS, is used, as shown in Figure 3. This
simulator is highly accurate and realistic, commonly
used for training nautical students and professional
captains. It allows for a wide range of environmen-
tal conditions to be simulated, and for the collection of
detailed maneuvering data.

Figure 3: K-sim Kongsberg simulator.

The K-Sim simulator includes various vessel types,
and for this study, a Ro-Ro ferry (Ferry Basto Fosen
IV) is used. The vessel’s characteristics are detailed
in Table 1. This vessel is equipped with two azimuth
thrusters, one at the bow and one at the stern. Al-
though the mathematical model described in the pre-
vious chapter uses the rudder angle as the control vari-
able, it is assumed that adjusting the azimuth thruster
angle has an equivalent effect, in terms of model struc-
ture, to changing the rudder angle in a rudder-propeller
configuration. In the performed maneuvers the rudder
angle was varied in the range of −35◦ to 35◦.
During the maneuvers, the azimuth thrusters oper-

ate at a constant speed of 206 rpm, while the propeller
pitch is maintained at 80% of the nominal pitch setting.
During the maneuvers, only the angle of the thruster
is adjusted. Additionally, the vessel’s nominal speed,
U0, was found to be 10.51 knots.

An important aspect highlighted in Wang and Zou
(2018) is that using a single maneuver in the dataset
for the estimation of the model can increase the dataset
collinearity, which may lead to inaccurate estimations.
Additionally, relying on just one maneuver makes it

Table 1: Characteristics of FERRY62 ship.
Variable Description Value

Lpp Length between perpendicular 137.2 m
LOA Length overall 142.9 m
B Beam moulded 21 m
Ta Draught aft 4.5 m

Tfwd Draught fore 4.5 m
m Displacement 4726 ton
CB Block coefficient 0.36
kz Radius of inertia (multiples of Lpp) 0.26

ALw Lateral windage area 1400 m2

challenging to accurately predict maneuvers with dif-
ferent rudder angles. To avoid this, it is beneficial to
include a variety of maneuvers with different rudder
angles in the dataset, ensuring that a wider range of
the vessel’s dynamics is captured. For that reason, in
this work, the maneuvers performed to collect the data
for the model estimation included three zigzag maneu-
vers (zigzag 10/10, zigzag 20/20, and zigzag 30/30)
and one random maneuver (with rudder variation from
-35◦ to 35◦). Additional maneuvers were conducted for
model validation. All maneuvers were performed over
20 minute period with a frequency of 2 Hz. The col-
lected variables include:

• Surge speed (knots)

• Sway speed (knots)

• Yaw rate (◦/min)

• Latitude and longitude (radians)

• Heading (◦)

• Wind direction (◦)

• Wind speed (knots)

To evaluate the influence of environmental con-
ditions, four variables were controlled: wind direc-
tion, wind speed, current direction, and current speed.
These variables were kept constant throughout each
maneuver, meaning wind gusts were not considered.
Additionally, when wind was introduced into the sim-
ulation, waves were generated accordingly. However,
wave and current data were not collected from the sim-
ulator, as most vessels lack the means to measure them.
Consequently, these forces were not explicitly modeled
in equation 6. Nevertheless, they may still impact the
model’s accuracy.

Despite the absence of measurement noise in the
simulator data, filtering is still necessary, especially in
high-disturbance conditions. Since the ferry in the K-
Sim simulator has six degrees of freedom, motion in
one direction can influence movement in another due
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Table 2: Estimated hydrodynamic derivatives for the Ro-Ro Ferry Basto Fosen IV under no wind scenario.

Parameters in surge Parameters in sway Parameters in yaw

Xu −1.311× 10−3 Yv −9.386× 10−3 Nv −9.057× 10−4

Xuu −5.536× 10−4 Yr −4.438× 10−3 Nr −5.603× 10−4

Xuuu −8.713× 10−4 Yvvv −1.289× 10−1 Nvvv −1.748× 10−2

Xvv 1.070× 10−2 Yvvr −8.920× 10−2 Nvvr −1.300× 10−2

Xrr −5.975× 10−3 Yvu −4.587× 10−3 Nvu −9.204× 10−4

Xrv −6.460× 10−3 Yru −3.919× 10−3 Nru −3.360× 10−4

Xdd −1.090× 10−3 Yd −1.223× 10−4 Nd −5.045× 10−5

Xudd 3.537× 10−3 Yddd 2.450× 10−4 Nddd 9.983× 10−5

Xvd 1.575× 10−3 Yud −1.061× 10−5 Nud 2.246× 10−4

Xuvd 4.982× 10−3 Yuud −1.529× 10−3 Nuud −2.260× 10−4

Yvdd −1.243× 10−2 Nvdd −2.016× 10−3

Yvvd 7.860× 10−2 Nvvd 8.757× 10−3

Y0 1.111× 10−6 N0 2.043× 10−7

Y0u 4.908× 10−5 N0u 9.482× 10−6

Y0uu 6.966× 10−5 N0uu 1.395× 10−5

to hydrodynamic coupling. For example, rolling mo-
tion can introduce oscillations in sway speed. These
oscillations must be filtered before estimating the pa-
rameters of the 3-DOF model in equation 6. Therefore,
a 5th-order Butterworth low-pass filter with a cutoff
frequency of 0.04 Hz was applied to the surge speed,
sway speed, and yaw rate data to attenuate these os-
cillations.
To validate the estimated model, the predicted tra-

jectories of the model are compared to the actual tra-
jectory obtained from the simulator. Different maneu-
vers from those used to estimate the model are used
for the validation. The mean distance error (MDE) is
used as the evaluation metric, defined as:

MDE =
1

N

N∑
i=1

√
(xi − x̂i)2 + (yi − ŷi)2 (22)

where xi and yi are the actual positions from the sim-
ulator data, and x̂i and ŷi are the predicted positions
from the model.

4.2 Model Estimation Under No
Disturbances

In this section, the hydrodynamic derivatives of the
ship maneuvering model are estimated under no exter-
nal disturbances. Using the four estimation maneuvers
mentioned in Section 4.1, the estimated hydrodynamic
derivatives are presented in Table 2. These values serve
as baseline parameters for comparison with those esti-
mated under environmental disturbances in subsequent
sections.
To assess the accuracy of the estimated model, its

predictions are compared against simulator data for
maneuvers not used in parameter estimation. The val-

idation maneuvers include a zigzag 15/15 and a turn-
ing 20 maneuver. Figure 4 presents the predicted ship
trajectories (on the left) and the corresponding surge
speed, sway speed, and yaw rate (on the right). The
comparison shows the agreement between the model
predictions and the actual simulator data, demonstrat-
ing the model’s capability to capture vessel dynamics
when there is no disturbance.

The model’s accuracy is further assessed using mean
distance error (MDE) and maximum distance error, as
shown in Table 3. The results indicate that despite
small accumulations over a 20-minute period, the er-
rors remain within an acceptable range given the ves-
sel’s size.

Table 3: Results of the performance of the estimated
model in different maneuvers.

Maneuver
Mean distance
error [m]

Maximum distance
error [m]

Zigzag 10/10 71.898 154.157
Zigzag 20/20 52.480 190.421
Zigzag 30/30 99.925 178.161
Random 67.160 115.649

Zigzag 15/15 71.219 172.912
Turning 20 56.812 89.923

4.3 Impact of Wind Disturbances on
Parameters Estimation

This section analyzes the impact of wind disturbances
in the estimation of the hydrodynamic derivatives of
the model, and therefore no currents are considered in
this section. The same four maneuvers are collected in
different wind speeds and wind directions, generating
different models for each condition. Then the corre-
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(a) Turning maneuver. (b) Zigzag 15/15

Figure 4: Validation of the estimated model under no environmental disturbances.

sponding hydrodynamic derivatives of each model were
compared.

To analyze the impact of different wind speeds (and
corresponding waves) on the estimation process, five
models were estimated under different wind speeds (2
knots, 7 knots, 12 knots, 17 knots, and 22 knots). The
wind direction was kept constant at 45 degrees. The
values of the hydrodynamic derivative of each of these
models, as well as the mean value and the variance, are
shown in Figure 5. As wind speed increases, the pres-
ence of unmodeled disturbances also grows, leading to
deviations in parameter estimation. This is expected,
as stronger wind conditions introduce additional forces
and moments that are not explicitly accounted for in
the baseline model.

The results of the analysis of the variance of the pa-
rameters reveal that in the surge force equation (X),
the parameters Xrv, Xvv, and Xrr show the highest
variation. In Y , the parameters showing the highest
variation are Yvvv, Yvvr, and Yvvd. A similar trend
is seen in N , where the parameters with the highest
variation are the same as in the sway force Y .
The effect of varying wind direction, while maintain-

ing a constant wind speed, is analyzed next. Similar
to the previous analysis, different models are estimated
using data collected from the four estimation maneu-
vers performed at different angles of attack. Five mod-
els were estimated with wind speeds of 12 knots at di-
rections of 0◦, 45◦, 90◦, 135◦, and 180◦. Figure 6 shows
the parameter values of the different models as well as
the mean and variance. From this figure similar obser-
vation to the wind speed effects can be taken. In all
X,Y and N the parameters with the highest variations
are the same as when the wind speed was varied.

4.4 Impact of Currents on Parameter
Estimation

In a similar approach as the previous section, the effect
of current disturbances on the estimation of the hydro-

dynamic derivatives of the model is now analyzed.
The same four maneuvers were used for the estima-

tion of the models, however this time they were col-
lected under different current speeds and directions,
with no wind disturbances. Separate models were then
estimated for each condition, and the hydrodynamic
derivatives were compared.

Focusing only on changes on the current speed, four
models were estimated with currents at 45◦ and speeds
of 1 knot, 3 knots, 5 knots, and 7 knots. The variation
in the hydrodynamic parameters is shown in Figure 7.

Compared to wind disturbances, a larger number of
hydrodynamic derivatives exhibit significant variation
under changing current conditions. In X, the param-
eters showing higher variation are Xrv, Xudd, Xuuu,
Xvv, and Xuu. In Y , significant variation is observed
in Yvvv, Yvvr, Yvu, Yvvd, Yru, Y0uu, and Y0u. Simi-
larly, inN , higher variations occur in Nvvv, Nvu, Nvvr,
Nvvd, N0uu, N0u, Nru, and Nv.

The second part of the analysis evaluates the effect
of changing current direction while maintaining a con-
stant speed. As in the previous case, five models were
estimated with a current speed of 3 knots at directions
of 0°, 45°, 90°, 135°, and 180°. The variation in the
hydrodynamic parameters is illustrated in Figure 8.

In X, parameters such as Xuuu, Xrr, Xudd, Xuvd,
Xrv, Xvv, Xuu show significant variation. In Y , the pa-
rameters Yvvr, Yvvv, Yv, Yvvd show high variation,
while Yvu, Yvdd, Yuud, Y0u, Yr, Yddd, and Y0 also
vary considerably, though to a lesser extent. A simi-
lar trend is observed in N , where Nvvr, Nvvv, Nvvd,
Nv, and Nvdd exhibit substantial variation, whereas
Nvu, Nr, N0u, Nuud, Nddd, N0, Nud, and N0uu, show
smaller fluctuations.

The two analyses (Sections 4.3 and 4.4) provide in-
sight into how external disturbances affect the estima-
tion of model parameters, identifying which parameters
are most susceptible to variation under wind and cur-
rent disturbances. However, the parameters that fluc-
tuate the most are not necessarily the primary contrib-
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(a)

(b)

(c)

Figure 5: Impact of different current speeds in the
X ′(.),Y ′(.), and N ′(.) parameters.

(a)

(b)

(c)

Figure 6: Impact of different current directions in the
X ′(.),Y ′(.), and N ′(.) parameters.
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(a)

(b)

(c)

Figure 7: Impact of different current speeds in the
X ′(.),Y ′(.), and N ′(.) parameters.

(a)

(b)

(c)

Figure 8: Impact of different current directions in the
X ′(.),Y ′(.), and N ′(.) parameters.
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Table 4: Sensitivity analysis results.

Parameter sensitivity in X Parameter sensitivity in Y Parameter sensitivity in N

Xdd 2.523× 10−5 Y0 1.394× 10−3 N0 9.705× 10−1

Xrr 1.387× 10−6 Yr 4.062× 10−5 Nr 2.050× 10−2

Xrv 5.638× 10−8 Yv 4.287× 10−6 Nv 9.252× 10−3

Xvv 2.365× 10−9 Yd 4.131× 10−7 Nvdd 4.220× 10−4

Xu 1.012× 10−9 Yvdd 2.812× 10−7 Nd 4.080× 10−4

Xvd 8.859× 10−10 Y0u 2.002× 10−8 N0u 4.605× 10−5

Xudd 8.868× 10−11 Yddd 1.715× 10−8 Nddd 2.064× 10−5

Xuvd 4.476× 10−15 Yru 2.669× 10−10 Nvvd 4.723× 10−7

Xuu 1.285× 10−15 Yvvd 2.405× 10−10 Nvvr 3.164× 10−7

Xuuu 3.061× 10−21 Yvvr 2.062× 10−10 Nru 2.929× 10−7

Yvvv 8.141× 10−11 Nud 1.015× 10−7

Yvu 1.913× 10−11 Nvvv 6.293× 10−8

Yud 3.688× 10−12 Nvu 3.635× 10−8

Y0uu 2.550× 10−14 N0uu 4.555× 10−11

Yuud 5.569× 10−18 Nuud 1.424× 10−13

utors to prediction error. To determine which param-
eter variations have the greatest impact on prediction
accuracy, a sensitivity analysis is required.

4.5 Sensitivity Analysis Results

In this paper, the Sobol sensitivity analysis is per-
formed to assess the impact that variations in the hy-
drodynamic parameters of the Abkowitz model (equa-
tion 7) have on the accuracy of predicted trajectories.
The parameters are varied within a range of±50% from
their baseline values (the model estimated under no
disturbances in Section 4.2), and their influence on the
trajectory prediction error is analyzed.
The results of this analysis are presented in Table

4, with the parameters ranked according to their sen-
sitivity. A significant discrepancy is observed between
the most sensitive parameter and the others in all force
vector components (X, Y, and N). Since Y and N are
coupled in equation 18, their relative sensitivity follows
a similar order. Additionally, because the sway force
Y and the yaw moment N include a bias terms inde-
pendent of the states u, v, r, and δ (that is, Y0 and
N0), these terms exhibit the highest sensitivity by a
significant margin.
These findings highlight the parameters whose vari-

ations contribute most to trajectory prediction errors.
This information can be used to evaluate whether the
environmental disturbances lead to variations in highly
sensitive parameters, potentially increasing prediction
errors.

4.6 Discussion

Comparing the impact of environmental disturbances
on the model parameters (Sections 4.3 and 4.4) with

the sensitivity analysis (Section 4.5) allows us to deter-
mine whether the parameters that vary the most due to
the disturbances are also the ones that, when altered,
contribute most to the trajectory prediction error.

From the wind impact analysis (Section 4.3), in the
X force vector, most parameters that exhibit signifi-
cant variation due to wind disturbances have low sen-
sitivity values, except for Xrr, which shows the third-
largest variation but is also the second-most sensitive
parameter according to the Sobol sensitivity analysis.
In both the Y force and N moment vectors, the param-
eters that experience the highest variation due to wind
also have low sensitivity values. This suggests that
trajectory prediction errors cannot be solely attributed
to the parameters most affected by wind disturbances.
Instead, errors arise from a combination of parameters
that exhibit limited variation but have high sensitivity
values, such as Xrr.

Regarding the impact of currents, a greater num-
ber of parameters show variations compared to wind
disturbances. In the X force vector, Xrr, the second-
most sensitive parameter, exhibits only minor variation
when current speed increases but undergoes significant
changes when the current direction shifts. However,
most other parameters with large variations due to cur-
rent disturbances have low sensitivity values. Similarly,
in the Y force and N moment vectors, the parameters
that change the most due to currents generally have low
sensitivity values. Thus, as with wind disturbances,
trajectory prediction errors cannot be explained solely
by the parameters that vary the most due to currents.
Instead, errors result from a combination of parameters
with smaller variations but higher sensitivity values,
such as Xrr, Yv, and Nv.

Table 5 summarizes these findings, highlighting the
parameters with the greatest variance due to wind and
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Table 5: Summary of the disturbance variance analysis and the sensitivity analysis of the hydrodynamic param-
eters.

Wind Speed Wind direction Current Speed Current direction Sensitivity Analisis

X’(.) Xrv, Xvv, Xrr Xrv, Xvv, Xrr
Xrv, Xudd,
Xuuu, Xvv, Xuu

Xuuu, Xrr, Xudd,
Xuvd, Xrv, Xvv, Xuu

Xdd, Xrr, Xrv

Y’(.)
Yvvv, Yvvr,
Yvvd

Yvvv, Yvvr,
Yvvd

Yvvv, Yvvr, Yvu, Yvvd,
Yru, Y0uu, Y0u

Yvvr, Yvvv, Yv,
Yvvd

Y0, Yr, Yv

N’(.)
Nvvv, Nvvr,
Nvvd

Nvvv, Nvvr,
Nvvd

Nvvv, Nvu, Nvvr,
Nvvd, N0uu, N0u, Nv

Nvvr, Nvvv, Nv,
Nvvd, Nvdd

N0, Nr, Nv

current speed and direction changes, as well as the
three parameters with the highest sensitivity values.
These results emphasize the importance of considering
both parameter sensitivity and variance when evaluat-
ing the effects of environmental disturbances on model
accuracy. Simply identifying the most fluctuating pa-
rameters is insufficient; understanding which variations
significantly impact prediction errors is crucial for im-
proving model reliability.

5 Conclusion

This study analysed the impact of environmental dis-
turbances, such as wind, waves, and currents, on the es-
timation of hydrodynamic parameters in the Abkowitz
model and their effect on trajectory prediction accu-
racy.
First, a Sobol sensitivity analysis was conducted to

determine which parameters have the greatest influ-
ence on trajectory prediction errors. The results re-
vealed that in all three degrees of freedom, there is
always one hydrodynamic derivative to which the pre-
dictions are particularly sensitive to, exhibiting signif-
icantly higher sensitivity values than the others. Ad-
ditionally, most hydrodynamic derivatives in the mo-
ment in yaw demonstrated higher sensitivity compared
to those in the surge and sway force equations.

Next, data from multiple maneuvers were collected
under different environmental conditions, and models
were estimated to analyze parameter variations. The
results showed that in most cases, the parameters ex-
hibiting the highest variation were not necessarily the
most sensitive ones. However, some parameters with
high sensitivity also experienced noticeable variation,
indicating a potential link between environmental dis-
turbances and trajectory prediction errors. Further-
more, the presence of currents was found to affect a
broader set of parameters compared to wind and wave
disturbances.

These findings highlight the importance of consider-
ing environmental influences in ship model estimation
to improve trajectory prediction reliability. They also
emphasize the need for enhanced parameter estimation
techniques that are robust to external disturbances. By

identifying the most sensitive parameters, this study
provides a foundation for refining ship modeling meth-
ods and developing compensation strategies to mitigate
the effects of environmental variability.
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