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Abstract

Studies of phenotypic responses in wild populations are often based on reaction norm models where the
environmental drivers in many cases are related to climate change. Such input signals will never be
exactly known, and there will always be measurement errors also in the recorded responses. In parameter
estimation these errors give rise to errors-in-variables problems, especially in the form of overfitting caused
by errors in the input measurements. A second important feature of such phenotypic response problems
is that the environmental inputs must be given appropriate but largely unknown reference values. A
third problem is that it is difficult to find good validation methods for predicted responses. Essential
aspects of these problems are here studied by use of a reaction norm model in its simplest univariate form,
characterized by a mean intercept value and a mean plasticity slope value, and the overall conclusion is
that validated disentanglement of plasticity and genetic adaptation based on realistically short data for
wild populations is a difficult task. In a proposed validation method, the available input-output data
is split into one part for modeling and one part for validation, and the feasibility of this approach is
studied in simulations with use of a prediction error method, which is essentially a maximum likelihood
method. It is also argued that validation of a chosen or estimated reference environment in practice
is impossible when the data comes from the (unintended) anthropogenic global warming experiment,
where no independent experimental data exists. When the evolution is slow because of small genetic
variances, overlapping generations and long lifetimes, or because of near optimal adaptive plasticity, the
best quantitative genetics option may be to assume a constant plasticity slope value, equal to the initial
value. It turns out to be easy to estimate this value, but that should be done without setting other
unknown parameter values to zero. This option is appealing also because it removes the dependence of a
guessed or estimated reference environment.

Keywords: Environmental drivers; errors-in-variables problems; prediction error method; reaction norm
predictions; reaction norm validation; reference environment.

1. Introduction

Errors-in-variables problems are ubiquitous in ecologi-
cal and evolutionary modeling where processes driven
by environmental variables are modeled for some spe-
cific purpose. For example, Kangas (1998) used tree
diameter at breast height, tree height and the height to
the base of live crown as independent variables in a for-

est growth model and discussed the effects of measure-
ment errors. J. et al. (2015) discussed how measure-
ment errors in spatial climate variables affect species
distribution models. A number of articles have studied
effects of climate change and discussed whether phe-
notypic changes are genetically based or the result of
phenotypic plasticity. A summary of such studies was
given in Merilä and Hendry (2014), with reference to
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11 accompanying studies covering a variety of taxa. A
main conclusion was that plastic responses on climate
change are common, but that there were few exam-
ples of adaptive genetic responses. An early example
where adaptive responses were found was a study of a
northern squirrel population (Réale et al., 2003), but
that was for the special case with a constant plasticity
slope. In another example Tarka et al. (2015) studied
great reed warblers, while Bonamour et al. (2019) used
plasticity of blue tit breeding phenology as an example.
A common feature in such papers is the use of various
ecological drivers of evolutionary processes, and such
drivers are obviously not exactly known. In a recent
example, Valdés et al. (2023) used 22 years of field ob-
servations of the perennial forest herb Lathyrus vernus
in order to assess phenotypic selection of flowering time
as function of spring temperature, and as spring tem-
perature they used the mean April temperature as an
approximation of the true but unknown driver.
In all these examples, and numerous others, there are

errors-in-variables problems as discussed in Söderström
(2019) and depicted in Figure 1. The ecological sys-
tem has scalar or vector valued and time-varying input
and output signals u0,t and z0,t, respectively, while the
measured signals are ut = u0,t + ũt and zt = z0,t + z̃t,
respectively, where ũt and z̃t are the measurement er-
rors. Without further assumptions there is a funda-
mental lack of identifiability in the errors-in-variables
problem.

Figure 1: The basic setup for an errors-in-variables
model identification problem.

In the ecological and evolutionary setting the true
output z0,t is typically multivariate, with vectors y0,t

and w0,t of individual phenotypic and relative fitness
values, respectively. The true input u0,t that drives the
evolutionary process is often a climatic variable, which
varies from year to year with very little autocorrela-
tion. In such cases the influence of the environmental
cue u0,t is found from u′

0,t = u0,t − uref , from which
follows u′

t = ut − uref , where uref is a reference envi-
ronment as discussed in Ergon (2022). An important
climatic variable is spring air temperature, which typ-
ically is a Gaussian white noise process around a slow
trend in mean value, as shown in Figure 2. Although

Figure 2: Mean April temperature in Tullgarn south of
Stockholm, which is used as environmental
driver in Valdés et al. (2023).

the specific choices of such input signals as drivers of
evolutionary processes should be based on all available
information, they will obviously be more or less error
corrupted representations ut of the true driver u0,t. If
also the error signal ũt is Gaussian white noise, there is
no practical possibility to reconstruct u0,t from known
values of ut. A theoretical possibility could otherwise
involve the use of information on non-normal distri-
butions of u0,t and ũt (Söderström, 2019). Without
such additional information one must simply accept
parameter estimation errors caused by ũt, and as far
as possible test the results by validation against data
that are not used in the modeling. A primary valida-
tion problem is here that data typically come from field
observations of the (unintended) anthropogenic global
warming experiment, and that no independent experi-
mental data exist. A possible approach for this type of
data is to a use a part of the recorded time series for
modeling and the rest for validation. There is also a
second validation problem with such data in that the
reference environment is unknown, and this problem
cannot be solved by splitting the time series data in
two parts (because the two parts will have the same
reference environment). The unknown reference envi-
ronment thus represents a serious problem.

Here, I will focus on the common cases where reac-
tion norms are predicted on the basis of time-varying
environmental variables, as discussed above and exem-
plified in Figure 2. A reaction norm describes the phe-
notypes that a given set of genes in an individual bio-
logical organism can produce across a range of environ-
ments. Mean reaction norms in a population of such
organisms can evolve by natural selection for example
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after a sudden introduction to a new environment or
as response on climate change, and this evolution can
be modeled by use of several methods. In its simplest
univariate form, a mean reaction norm is characterized
by a mean intercept value and a mean plasticity slope
value, but it may also be necessary to use models with
a multiple of reaction norms. In many cases reaction
norms are also nonlinear (Arnold et al., 2019).
A simple reaction norm model is the two-trait

intercept-slope model as used in Lande (2009),

y0,i,t = ai,t + vi,t + bi,t (u0,t − uref ) , (1a)

where y0,i,t is the individual phenotypic response on an
environmental cue u0,t at generation t, and where uref

is the reference environment (which Lande assumed to
be zero). In populations with sexual reproduction, an
individual will here be a midparent with traits that are
mean values of the traits of the two parents. The refer-
ence environment is defined as the environment where
the phenotypic variance has its minimum, and where
thus the expected geometric mean fitness is maximized
(Ergon, 2022). In the following I will treat the indi-
vidual reaction norm parameters ai,t + vi,t and bi,t as
quantitative traits in their own right, and where neces-
sary I will thus distinguish between phenotypic traits
and reaction norm traits. In Equation (1a), ai,t and
bi,t are the additive genetic components of the reaction
norm traits, while vi,t is zero mean Gaussian white
noise. From Equation (1a) follows the mean reaction
norm equation

y0,t = at + bt (u0,t − uref ) , (1b)

where the mean traits at and bt, and thus also yt, may
evolve as results of a changing environment and natural
selection. See Lande (2009) for step response simula-
tions of the model in Equations (1a,b), and Figure 1 in
Ergon (2023b) for a detailed explanation.
As discussed in Ergon (2023b), it may be difficult

to estimate the environmental reference values from
data, and I will therefore assume that uref is known
from historical data, for example from the time before
the recent increase in global temperature, or before a
sudden change in the environment. In simulations, I
will assume that ut is a temperature, and I will then
choose a temperature scale such that uref = 0.

A main focus in the presentation will be to show the
difficulties involved in disentanglement of the plastic-
ity and microevolutionary contributions to measured
changes in mean phenotypic values, given short time
series data collected in field studies, where also the ref-
erence environment is unknown. For this purpose I
will use simulations where assumed true data are gen-
erated according to the model in Equations (1a,b), and
where parameters in this model are found by use of a

prediction error method (PEM). The PEM approach is
well established in the engineering control field (Ljung,
1999, 2010), but although comparisons between mea-
sured and predicted responses are discussed in the lit-
erature (Morrissey et al., 2010; Merilä and Hendry,
2014), PEM as such appears to be largely unknown in
the quantitative genetics community. A main param-
eter estimation difficulty is that errors in the assumed
environmental drivers will result in large prediction er-
rors caused by overfitting, and this difficulty becomes
even more pronounced when a part of the already short
data is set aside for validation purposes. The situa-
tion may be different in controlled laboratory settings,
where measurement errors may be small, and where
the time series may be longer. It should be noted that
overfitting to short data is not a specific PEM problem,
errors in the assumed environmental driver will result
in overfitting regardless of the choice of parameter es-
timation method.

Background theory is given in Section 2, together
with a more detailed discussion of the input measure-
ment problem and a presentation of the proposed val-
idation methodology under the assumption of a cor-
rect reference environment. A special case with con-
stant plasticity slope is described. Different aspects
of the identification and validation processes are illus-
trated and documented by simulations in Section 3.
In the simulations I assume the simple model (1a,b),
with parameter values as in Lande (2009), and I use
two types of environmental changes. The first type is
a sudden change in environment, as in Lande (2009),
while the other type is a gradual change similar to the
global warming since 1970. In both cases I assume
non-overlapping generations and realistic temperature
variations from generation to generation, but exten-
sions to cases with overlapping generations are also
discussed. A final discussion with conclusions is given
in Section 4. Additional examples of prediction results
are given in Appendices A and B. Typical MATLAB
codes are given in Appendix C.

2. Theory and Methods

2.1. The selection gradient model

Under the assumption of random mating in a large
population the evolution of correlated phenotypic traits
is determined by the multivariate breeder’s equation
(Lande, 1979). When the reaction norm parameters in
Equation (1a) are treated as quantitative traits in their
own right, the multivariate breeder’s equation gives

[
∆at
∆bt

]
= GP−1

[
cov (w0,i,t, ai,t)
cov (w0,i,t, bi,t)

]
= Gβt, (2)
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where βt is the selection gradient. Here, w0,i,t =
W0,i,t/W 0,t is the relative individual fitness, where
W0,i,t and W 0,t are the individual and mean fit-
ness, respectively, while G and P are given by

G = E

[[
ai,t − at
bi,t − bt

] [
ai,t − at bi,t − bt

]]
=[

Gaa Gab

Gab Gbb

]
and P =

[
Gaa + σ2

υ Gab

Gab Gbb

]
. I will

assume that the G and P matrices are constant.
The model in Equation (2) cannot be identified by

use of available environmental, phenotypic, and fitness
data, for the simple reason that the individual latent
variables ai,t and bi,t are not available. This problem
was solved in Ergon (2022) by use of a linear trans-

formation of the vector
[
ai,t bi,t

]T
onto the vector[

ai,t bi,t yi,t
]T

. This results in the model

[
∆at
∆bt

]
=

[
Gaa Gab

Gab Gbb

] [
1

u0,t − uref

]
× P−1

yy,tcov (w0,i,t, y0,i,t) , (3a)

where

Pyy,t = Gaa + σ2
υ + 2Gab (u0,t − uref )

+Gbb(u0,t − uref )
2
. (3b)

In Equation (3a), selection with respect to ai,t and
bi,t, as in Equation (2), is replaced by selection with
respect to y0,i,t, which is assumed to be known (with
a measurement error). The two models (2) and (3a,b)
give equal results when the population size N → ∞,
but for practical purposes they are interchangeable also
for rather limited population sizes. Since both mod-
els in any case are approximations of reality, Equa-
tions (3a,b) can be seen as just as correct as Equa-
tion (2). Note that Equation (3a) is a dynamical model
in the sense that Pyy,t varies with time. In order for
Equation (3a) to be compatible with the fundamen-
tal Price equation (Price et al., 1970; Ergon, 2019) the
covariance expression should be computed as

cov (w0,i,t, y0,i,t) =
1

N

N∑
i=1

w0,i,ty0,i,t − w0,ty0,t. (3c)

With given initial mean trait values a1 and b1, Equa-
tion (3a) gives at and bt, and thus also y0,t = at +

bt (u0,t − uref ) according to Equation (1b), for use as
assumed ‘true’ mean phenotypic data in simulations.

2.2. The prediction error model

Under the assumption of a true model according to
Equations (3a,b), and with measurement errors, the

prediction error method (PEM) uses the model[
∆ât

∆b̂t

]
=

[
Gaa Ĝab

Ĝab Ĝbb

] [
1

u0,t + ũt − ûref

]
× P̂−1

yy,tcov (w0,i,t + w̃i,t, y0,i,t + ỹi,t) , (4a)

ŷt = ât + b̂t (u0,t + ũt − ûref ) , (4b)

where

P̂yy,t = Gaa + σ̂2
υ + 2Ĝab (u0,t + ũt − ûref )

+ Ĝbb(u0,t + ũt − ûref )
2
. (4c)

In addition, PEM uses the unknown initial mean re-

action norm slope value b̂1, while the initial intercept

value is given by â1 = ŷ1− b̂1 (u0,1 + ũ1 − ûref ). Here,

ŷ1 can be set to any value, for example ŷ1 = 0. Note
that with cov (w0,i,t + w̃i,t, y0,i,t + ỹi,t) given from the

data, Gaa can be set to any value, such that and Ĝbb

and σ̂2
v are found in relation to this value, i.e., Gaa

cannot be estimated.
Equation (3) is derived under the assumption of

non-overlapping generations. With overlapping gen-
erations only a fraction ct < 1 of the population is
affected by the changes in fitness, and the expression
cov (w0,i,t + w̃i,t, y0,i,t + ỹi,t) in Equation (4a) should
then be replaced by ctcov (w0,i,t + w̃i,t, y0,i,t + ỹi,t)
(Ergon, 2023a). A constant value of ct can also be
estimated from input-output data.

In PEM, all the unknown parameters Ĝab, Ĝbb, σ̂
2
υ,

b̂1 and ûref (and possibly ĉt) are in principle tuned

until the criterion function f = 1
T

∑T
t=1

(
yt − ŷt

)2

reaches a minimum, where T is the number of sam-
ples. In the simulations in Section 3 the MATLAB
function fmincon is used for this purpose. This func-
tion finds a constrained minimum of a scalar function
of several variables. In order to focus on the errors-
in-variables and validation problems, the simulations
assume that Ĝab = Gab = 0 and uref = 0. As will be

found in the simulations, the final residuals yt− ŷt will
approximately be white noise, which makes PEM into
a maximum likelihood method (Ljung, 2010).

2.3. PEM error analyses

Since model tuning results in ŷt ≈ yt, all measurement
errors must be compensated by errors in the estimated

parameters, including b̂1 and possibly ûref and ĉt. As
an analysis of how combinations of measurement errors
affect the results becomes quite unwieldy, I here discuss
the effects of such errors one at a time.
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2.3.1. Errors in ûref

Theory and simulations in Ergon (2022) show that er-
rors in ûref give large errors in the predicted mean
reaction norms, and with perfect measurements and
known parameter values it is theoretically possible to
compute these errors. In practice, errors in ûref may
give large errors in the predicted mean reaction norms,
as shown in simulations in Section 3.

2.3.2. Measurement errors in yi,t and/or wi,t, with
uref known

For large populations, white noise errors ỹi,t and w̃i,t

will neither affect yt nor cov (wi,t, yi,t), and will thus
have no effects on the mean trait predictions. For small
population sizes, however, such random errors will not
be zero mean, and cov (w̃i,t, yi,t) may not be quite zero,
and simulations will show some effects on the predic-
tions.

2.3.3. Measurement errors in ut, with uref known

The main problem with measurement errors ũt as
shown in Figure 1 is that overfitting may give large
errors in the estimated parameter values. The true in-
put u0,t is typically a white noise process added to a
slow trend, as shown in Figure 2 With white noise mea-
surement errors ũt it will then in practice be impossible
to separate the effects of u0,t and ũt from each other,
and there is therefore no option but to live with the
overfitting problems caused by ũt. These problems are
especially pronounced with short data. The underly-

ing problem is that minimization of 1
T

∑T
t=1

(
yt − ŷt

)2

does not imply minimization of 1
T

∑T
t=1

(
at − ât

)2

and

1
T

∑T
t=1

(
bt − b̂t

)2

, unless both the model and the mea-

surements are perfect. This will be demonstrated in
simulations in Section 3.

2.4. The model validation problem

In addition to errors-in-variables problems, a second
problem is validation of the model found by use of the
PEM approach, and thus of the predicted mean reac-
tion norm traits over time. This validation problem
is not specific for PEM, i.e., there will be an errors-in-
variables problem independent of parameter estimation
method.
The typical industrial approach is to test the model

against a new and independent set of input-output
data (Ljung, 2010), and this is also essential for pre-
dictive models in ecology (Tredennick et al., 2021).
This is obviously not possible for a model of reac-
tion norm responses on climate change, where time

series of the environmental variable ut are given by
a single natural experiment. Under the assumption
of a correct reference environment, model validation
can still be performed by splitting the time series into
two parts, one for modeling and one for validation,
as further discussed below. However, validation of a
guessed or estimated reference environment, i.e., of
which environment the population is adapted to, will
require comparison with data from a population that
has evolved from an adapted state in a different envi-
ronment, and this is not a feasible approach for wild
populations. The proposed validation method there-
fore assumes that the guessed reference environment
is correct. The validation process has three steps, us-
ing the model in Equations (1a,b) as example. First,
identify an initial model by use of for example the first
3/4 of the generations, and find predictions âmodel,t

and b̂model,t for all generations, including the remain-
ing 1/4 of the generations. Second, identify a final
model by use of all data, and find predictions âfinal,t

and b̂final,t for all generations. Third, compare the pre-
dicted mean trait changes over all generations by use
of the initial model, ∆T,modelât = âmodel,T − âmodel,1

and ∆T,modelb̂t = b̂model,T − b̂model,1, with the same
changes computed by use of the final model, i.e.,

with ∆T,finalât = âfinal,T − âfinal,1 and ∆T,finalb̂t =

b̂final,T − b̂final,1. For a good model this comparison

will result in validation ratios ∆T,finalât/∆T,modelât ≈
1 and ∆T,finalb̂t/∆T,modelb̂t ≈ 1, but a possible con-

clusion could be that the predictions ât can be trusted,

while b̂t cannot. This possibility can be seen by a the-

oretical study of the changes ∆T ât and ∆T b̂t over all
samples as functions of ∆Tut = uT − u1. From Equa-
tion (1b) follows

∆T ât = âT − â1

= ŷT − b̂TuT −
(
ŷ1 − b̂1u1

)
= ∆T ŷt −∆T b̂tuT − b̂1∆Tut, (5)

which shows that we with ∆T b̂tuT ≈ 0, and a good es-

timate b̂1, may find a good prediction ∆T ât ≈ ∆T yt −
b1∆Tut also if the prediction ∆T b̂t is poor.

2.5. Special case with Gbb = 0

For the special case with Gbb = 0, Equation (4) as well
as Equation (1b) gives

∆T ât = ∆T ŷt − b̂∆Tut. (6)

17



Modeling, Identification and Control

We then have what might be called constant par-
tially adaptive plasticity (Lande, 2009), i.e., the con-
stant plasticity plays a role in the evolution of at and
yt. It follows from Equation (6) that it in this case is
not necessary to know uref in order to find the pre-
dicted change in at and yt over all generations.

3. Simulations

3.1. Description of simulation system

As in Lande (2009), assume the reaction norm model
(1a,b) with uref = 0, i.e., with true mean phenotypic
and reaction norm traits yt, at and bt. True responses
are generated by the model (3a,b), with Gaa = 0.5,
Gbb = 0.045, Gab = 0, and σ2

υ = 0.5. Also assume
non-overlapping generations where the individual val-
ues ai,t, bi,t and vi,t at each generation are drawn from
populations with normal distributions around at, bt
and 0, respectively. The individual fitness function is
assumed to be

Wi,t = exp
(
−(yi,t − θt)

2
/2ω2

)
, (7)

where θt is the stochastic phenotypic value that max-
imizes fitness, while ω2 = 50. We may for example
assume that θt is the optimal breeding time as func-
tion of spring temperature.

Also assume a stochastic environment ut, with mean
µU,t, and added zero mean Gaussian and white varia-
tions un,t with variance σ2

Un
= 0.5, i.e., ut = µU,t+un,t.

The population is assumed to be fully adapted to
a stationary stochastic environment with mean value
µU,t = uref = 0. In a corresponding way assume that
θt = µΘ,t + θn,t, where θn,t is zero mean Gaussian
and white with variance σ2

Θn
= 2, and where un,t and

θn,t are correlated with covariance σΘnUn = 0.25. Fol-
lowing Lande (2009), we may assume that juveniles
of generation t are exposed to the environment ut−τ

during a critical period of development a fraction of a
generation before the adult phenotype is expressed and
subjected to natural selection. Define θt = 2ut, which
implies a linear relationship µΘ,t = 2µU,t, variances
σ2
Θn

= 4σ2
Un

, and covariance σΘnUn
= 2ρτσ

2
Un

, where
ρτ = 0.25 is the autocorrelation of background envi-
ronmental fluctuations. The optimal value of the mean
plasticity slope in a stationary stochastic environment
is then bopt = σΘnUn

/σ2
Un

= 2ρτ = 0.5 (Lande, 2009),
and this value is in the simulations used as initial mean
slope value, i.e., b1 = 0.5. Since µΘ,t = 2µU,t, this
means that the population in a stationary stochastic
environment has 25% adaptive plasticity.

3.2. Two test cases, with step and ramp
inputs

Simulation results are given for two different cases,
with input signals as shown in Figure 3. In the first
case the mean environment µU,t is a step function from
0 to 2.5 at t = 10, while it in the second case is a ramp
function where µU,t goes from 0 to 2.5 over 50 gen-
erations. The noisy ramp function is similar to the
registered yearly mean temperatures in Oslo, Norway,
from 1970 to 2020 (Norsk klimaservicesenter), using
the temperature around 1960 as zero-point.

Figure 3: Input signals in the form of noisy step and
ramp functions, with variances σ2

Un
= 0.5

and σ2
Θn

= 2, and covariance σΘnUn =
0.25. Panels b) and d) show advancements
in breeding time θt towards earlier dates as
results of increased temperatures.

3.3. Effects of random input measurement
errors

As discussed in Subsection 2.3, random errors in the
measured input signal ut implies an error-in-variables
problem, resulting in errors in the predicted mean re-
action norm traits. The problem is that the estimated
parameters Ĝbb and σ̂2

v are obtained by overfitting of
ŷt, which results in errors in the predicted mean traits

ât and b̂t, as shown in Figure 4. Here, recall that we
in Equation (4a) can set Gaa to any fixed value and

scale Ĝbb and σ̂2
v accordingly. The plots in Figure 4

also show that the very same errors in the input signal
that cause large errors in especially Ĝbb, and thus in
the predicted reaction norm traits, have less influence
on the predictions when a model with true parameter
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values is used. For clarity it is assumed that the initial
mean plasticity slope value b1 is known, such that PEM
only has to find Ĝbb and σ̂2

v . The prediction errors will
be larger when also b1 must be estimated.

3.4. PEM identification and validation
with correct model structure

3.4.1. Results with uref known

The true system was simulated with a population of
N = 1, 000 individuals over T = 60 generations (in-
creased to T = 120 in two cases). Individual mea-
surement errors ỹi,t and w̃i,t were introduced as Gaus-
sian white noise with standard deviations that were
20% of the registered mean standard deviations of
y0,i,t and w0,i,t over all generations, respectively. Mea-
surement errors ũt were introduced as Gaussian white
noise with standard deviation that was 20% of the
standard deviation of the known random variations
in ut. Identification and validation were performed
in three steps, as described in Subsection 2.4. First,
data for the first 3T/4 generations (modeling set)
were used for identification of a preliminary model,
which was used to find predictions âmodeling,t and

b̂modeling,t for all generations, including the last T/4
generations. Second, a final model was found by
use of all data, which gave predictions âfinal,t and

b̂final,t. Third, validation ratios ∆T,finalât/∆T,modelât

and ∆T,finalb̂t/∆T,modelb̂t were computed, where ∆T

stands for change over T = 60 generations. Finally,
the predicted changes in mean traits were compared
with the true changes, i.e., ∆T,finalât/∆T,trueat and

∆T,finalb̂t/∆T,truebt were computed. The lower and
upper search limits for σ̂2

v were set to 0.5Gaa and 2Gaa,
respectively, which means that the limits for the heri-
tability Gaa/

(
Gaa + σ̂2

v

)
were 0.33 and 0.67.

Results are given in Tables 1 and 2, presented as
mean±SE values from 100 repeated simulations with
different realizations of all random variables. The
starting values in the numerical searches were set to

Ĝbb,start = σ̂2
υ,start = b̂1,start = 0. As pointed

out in Subsection 2.4, good and validated predic-
tions are indicated by ∆T,finalât/∆T,modelât ≈ 1 and

∆T,finalb̂t/∆T,modelb̂t ≈ 1. Perfect measurements of
u0,t results in good predictions (Cases 1 and 4), while
measurement errors in u0,t combined with short data
gives poor predictions of especially bt (Cases 2 and 5).
Note that the changes in the mean trait at in Cases 2
and 5 were clearly overestimated. Also note that the
predictions were improved when T was increased from
T = 60 to T = 120 (Cases 3 and 6), especially in the
ramp responses, but that such an increase is unrealistic

for many wild populations.
The system in Equations (3a,b) and (7), with given

parameter values and ramp inputs as in Figure 3, gave
what is considered to be true mean trait responses as
shown in Figure 5, where also typical predicted re-
sponses are shown. Figure 5 also shows to which degree
the predicted responses ŷt are similar to the true re-
sponses yt, which is a prerequisite for useful predictions
of the mean reaction norm traits. Panel d) in Figure 5
shows for example that a model based on samples 1
to 45 gives a poor fit for the validation samples 46 to
60. The autocorrelation plot in Figure 6 shows that
typical final residuals yt− ŷt essentially are white noise
sequences, which makes PEM into a maximum likeli-
hood method (Ljung, 2010).

3.4.2. Results of errors in ûref

For Case 5 in Table 2, various values of ûref give pre-
diction errors as shown in Table 3 Note that use of
the mean value of the noisy ramp function in Fig-
ure 3, ûref = 1.25, results in large bias errors in both

∆T,finalât and ∆T,finalb̂t. Also note that these bias
errors cannot be detected by the proposed validation
method, for the simple reason that the modeling and
validation data use the same erroneous value of ûref .

3.4.3. Various results

Since an error in ûref may give a large bias error in

ât (Table 3), and since b̂t is difficult to predict, it is

tempting to set Ĝbb = 0, and use the constant esti-

mated slope value, b̂t = b̂1. From Equation (6) then

follows that ∆T ât = ∆T ŷt − b̂1∆Tut, where ∆Tut is
independent of uref . It is also interesting to find pre-
diction results for reduced values of Gaa and Gbb. Ta-
ble 4 summarizes results for various test cases, to be
discussed in Section 4. Note that Case 9 gave a very
erroneous result for Ĝbb.

4. Summary, discussion and
conclusions

Studies of phenotypic responses in wild populations
are often based on reaction norm models, where the
environmental inputs in many cases are related to cli-
mate change. Such input drivers will never be exactly
known, and there will also be measurement errors in
the recorded responses, and problems related to un-
derstanding of ecological mechanisms and prediction of
responses are thus error-in-variables problems, as de-
picted in Figure 1. Measurement errors in the input
signals are especially problematic because they lead to
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Figure 4: Contour plots with true (circles) and estimated (dots) parameter values (upper panels). Here, the x

and y variables are Gbb and σ2
υ, while the dependent variable is f = 1

T

∑T
t=1

(
yt − ŷt

)2

as function

of Gbb and σ2
υ. The corresponding true and predicted mean reaction norm traits are shown in the

lower panels, as green and red lines, respectively. With perfect input and output measurements, the
estimated parameter values and predicted responses are also perfect as shown in panels a), b) and
c). Random errors in the measured input ut result in errors in the estimated parameter values and
the predicted mean traits, as shown for two realizations in panels d) to i). The white measurement
errors had standard deviations that were 20% of the standard deviation of the random variations
in ut. For the two tuning results marked by dots in panels d) and g), the minimum values of f =

1
T

∑T
t=1

(
yt − ŷt

)2

were 25×10−5 and 35×10−5, respectively. Response plots with the very same

inputs applied on a model with true parameter values (circles in the contour plots) are shown by black
lines, corresponding to f = 29×10−5 and f = 52×10−5, respectively, i.e., larger than the optimal
minimum values, but still resulting in clearly better predictions.
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Table 1: Estimation and prediction results for system given by Equations (3a,b) and (7), and use of the step
function in Figure 3, panels a) and b). The reference environment uref = 0 is assumed to be known.
Case 1: Step function, with measurement errors in y0,i,t and w0,i,t.
Case 2: Step function, with measurement errors in y0,i,t, w0,i,t and u0,t.
Case 3: Same as Case 2, but with T = 120.

Parameters and
prediction ratios

True or
optimal
values

Case 1 Case 2 Case 3

Ĝbb 0.045 0.045± 0.001 0.036± 0.011 0.040± 0.011

σ̂2
v 0.5 0.50± 0.01 0.45± 0.06 0.47± 0.06

b̂1 0.5 0.50± 0.00 0.50± 0.02 0.49± 0.04

ffinal 0 (51± 13)10−6 (83± 18)10−4 (40± 6)10−4

∆T,trueat/∆T,trueyt - 0.40± 0.08 0.41± 0.08 0.54± 0.23

∆T,truebt/b1 - 0.56± 0.04 0.57± 0.04 0.68± 0.04

∆T,finalât/∆T,modelât 1 1.00± 0.01 0.98± 0.08 1.00± 0.03

∆T,finalb̂t/∆T,modelb̂t 1 1.00± 0.02 1.10± 0.24 1.00± 0.09

∆T,finalât/∆T,trueat 1 1.00± 0.01 1.10± 0.11 1.05± 0.10

∆T,finalb̂t/∆T,truebt 1 0.99± 0.02 0.85± 0.17 0.92± 0.16

Table 2: Estimation and prediction results for system given by Equations (3a,b) and (7), and use of the ramp
function in Figure 3, panels c) and d). The reference environment uref = 0 is assumed to be known.
Case 4: Ramp function, with measurement errors in y0,i,t and w0,i,t.
Case 5: Ramp function, with measurement errors in y0,i,t, w0,i,t and u0,t.
Case 6: Same as Case 5, but with T = 12 and µU,t = 2.5 for t > 60.

Parameters and
prediction ratios

True or
optimal
values

Case 4 Case 5 Case 6

Ĝbb 0.045 0.045± 0.004 0.039± 0.030 0.041± 0.009

σ̂2
v 0.5 0.50± 0.02 0.42± 0.11 0.44± 0.07

b̂1 0.5 0.50± 0.00 0.48± 0.02 0.48± 0.03

ffinal 0 (52± 12)10−6 (73± 37)10−4 (42± 10)10−3

∆T,trueat/∆T,trueyt - 0.35± 0.09 0.34± 0.21 0.30± 0.06

∆T,truebt/b1 - 0.21± 0.03 0.21± 0.03 1.21± 0.04

∆T,finalât/∆T,modelât 1 0.99± 0.03 1.06± 0.18 1.01± 0.10

∆T,finalb̂t/∆T,modelb̂t 1 1.03± 0.19 351± 1357∗ 1.03± 0.16

∆T,finalât/∆T,trueat 1 1.00± 0.02 1.13± 0.21 1.09± 0.12

∆T,finalb̂t/∆T,truebt 1 0.99± 0.07 0.85± 0.52 0.97± 0.10

* Some values of ∆T,modelb̂t are close to zero.
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Figure 5: Typical responses on the noisy ramp function
as shown in Figure 3. Responses with mea-
surement errors in y0,i,t and w0,i,t are shown
in panels a), b) and c), and responses with
measurement errors also in u0,t are shown in
panels d), e) and f). Panels a) and d) show
yt (blue lines) and ŷt based on the model-
ing data (red lines). Panels b) and e) show
the true responses at (green lines), and the
predicted responses ât based on the modeling
data (red lines) and on all data (blue lines).
Panels c) and f) show the true responses bt

(green lines), and the predicted responses b̂t
based on the modeling data (red lines) and
on all data (blue lines).

Figure 6: Typical final residuals yt − ŷt corresponding
to the ramp responses in Figure 5, panels d)
to f), and the resulting autocorrelation plot.

Table 3: Estimation and prediction results for ramp re-
sponses, with guessed values of uref and mea-
surement errors in y0,i,t, w0,i,t and u0,t (as in
Case 5 in Table 2).

ûref
∆T,finalât

∆T,trueat

∆T,finalb̂t

∆T,truebt

−1.25 0.97± 0.29 0.88± 0.55
−0.5 1.05± 0.26 0.96± 0.59
0 1.11± 0.21 0.90± 0.54
0.5 1.18± 0.17 0.82± 0.48
1.25 1.27± 0.10 0.46± 0.31

overfitting in parameter estimation, independent of es-
timation method.

A second important feature of reaction norm re-
sponse problems is that the environmental inputs must
be given an appropriate reference value. This is obvi-
ous with an interval scaled input like temperature, but
it is just as necessary for a ratio scaled input like salin-
ity. As discussed in Ergon (2022), the proper reference
value is the value where the phenotypic variance has
a minimum such that geometric mean fitness is maxi-
mized, i.e., the environmental value the population is
adapted to.

Prediction of evolutionary responses on various eco-
logical drivers must necessarily be accompanied by val-
idation methods (Ljung, 2010; Tredennick et al., 2021),
and in order to focus on the essential errors-in-variables
and reference environment problems I have here used
a reaction norm model in its simplest univariate form,
characterized by a mean intercept value and a mean
plasticity slope value. I have proposed a validation
method where the available input-output data is split
into one part for modeling and one part for validation.
As shown in simulations in Section 3 and Appendix A,
validation of the mean reaction norm trait predictions
is difficult due to the short time-series that are nor-
mally available from field studies of wild populations.
I have also argued that validation of a chosen or esti-
mated reference environment in practice is impossible,
when the data comes from the (unintended) anthro-
pogenic global warming experiment, where no inde-
pendent experimental data with a different reference
environment exists.

In simulations for studies of the overfitting and val-
idation problems, I have used a variant of the multi-
variate breeder’s equation where selection with respect
to the unknown individual reaction norm traits is re-
placed by selection with respect to the individual phe-
notypic trait, which is assumed to be known from field
data (Ergon, 2022). I use a prediction error method
(PEM), that is well established in the engineering con-
trol field (Ljung, 1999), but it should be noted that
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Table 4: Prediction results for ramp responses in various test cases with measurement errors in y0,i,t, w0,i,t and
u0,t.

Case 7: Gaa = 0.5 and Gbb = 0.045, and Ĝbb = 0.
Case 8: Gaa = 0.5 and Gbb = 0.045, and Ĝbb = 0 and σ̂2

υ = 0.

Case 9: Gaa = 0.05 and Gbb = 0.0045, and Ĝbb and σ̂2
υ as free variables.

Test cases Ĝbb b̂1
∆T,finalât

∆T,trueat

∆T,finalb̂t

∆T,truebt

Case 7 (Gbb = 0.045) 0 0.48± 0.02 1.25± 0.21 0
Case 8 (Gbb = 0.045) 0 0.36± 0.04 2.33± 0.08 0
Case 9 (Gbb = 0.0045) 0.022± 0.035 0.49± 0.04 1.10± 0.46 1.72± 2.16

overfitting due to errors-in-variables and short data is
not a specific problem for PEM, errors in the assumed
environmental driver will result in overfitting regard-
less of the choice of parameter estimation method.

A typical ecological input signal is shown in Figure 2,
where it can be seen that it essentially is white noise
on top of a slow trend. Figure 3 shows the true input
signals used in simulations, where the noisy ramp func-
tion is similar to typical temperature changes caused
by global warming. Figure 4 illustrates that random
errors in ecological drivers lead to overfitting when the
squared prediction error is minimized, and that true
parameters give better predictions in spite of the fact
that they give a larger squared prediction error. This
calls for some sort of regularization, but it is unclear
how that should be done, if at all possible. Figure 5
shows typical responses on the noisy ramp input signal
in Figure 3, with added input and output measure-
ment errors, and illustrates that it is easier to predict
the mean reaction norm incident than the mean reac-
tion norm slope. Figure 6 shows that the PEM residu-
als in the current setting is a white noise sequence, and
that PEM thus becomes a maximum likelihood method
(Ljung, 2010).

Table 1 shows that parameter estimates and reaction
norm predictions with use of the noisy step function in
Figure 3 are quite good also with random output mea-
surement errors (Case 1), but it is then assumed that
the reference environment is known. When random in-
put measurement errors are added (Case 2), the results
are poorer but still fairly good. Table 2 shows that the
noisy ramp input in Figure 3 with random measure-
ment errors results in large SE values for the mean re-
action norm predictions, especially for the mean slope
prediction (Case 5). When the number of generations
is increased from 60 to 120 (Case 6), the prediction
results are clearly improved. The practical problem is
thus not only the input measurement errors as such,
but the combination with short data. A sufficiently
large number of generations is, however, not realistic
for many of the studies of wild populations. Table 3
shows that errors in the environmental reference value

may give large prediction errors. Mean centering of the
ramp function in Figure 3, will for example give around
30% overestimation of the changes in mean intercept
value over 60 generations.

Because input measurement noise makes it difficult
to find good and validated predictions of the mean plas-
ticity slope, it is tempting to assume a constant plas-
ticity slope by setting Ĝbb = 0. In Case 7 in Table 4
this resulted in 25% overestimation of the change in
at. The change in at was overestimated also in Cases 2
and 5, but then by only around 10%. A possible expla-
nation of this overestimation is that the measurement
error ũt is filtered through the non-linear filter given
by the prediction model in Equation (4), and that the

estimation error increases when Ĝbb = 0. There is thus
no point in setting Ĝbb = 0, and one should definitely
not set σ̂2

υ = 0, because that results in very large er-
rors in ât and a large bias in the estimated initial mean

slope value b̂1 (Case 8 in Table 4). With small values
of Gaa and Gbb (Case 9 in Table 4) we find a very large

error in Ĝbb, as further discussed below.

A first main conclusion is that the typically short
data from field studies of wild populations make it dif-
ficult to predict changes in the mean reaction norm
slope value bt, but that the simulation results for
changes in the mean intercept value at are somewhat
more promising, at least for the fairly large changes
in the main examples. The validated ramp response
case with input measurement noise (Case 5) gave
∆T,finalât/∆T,trueat = 1.13 ± 0.21 as mean and SE
values based on 100 realizations, and four different re-
alizations in Appendix A gave 1.20, 0.99, 1.14 and 0.85.
Provided a correct model, the result for a single realiza-
tion will thus at least give an indication of the change
in mean intercept value over all generations. The size
of the white input measurement errors used in simula-
tions may be pessimistic, but the simulations assume
a perfectly known model structure, which is not realis-
tic, and the input measurements may also have offset
errors. It is also promising that the true initial mean
slope value, b1 = 0.5, in all normal cases was estimated
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well, from 0.48± 0.02 (Case 5) to 0.50± 0.02 (Case 2).
The exception is Case 8 in Table 4, where σ̂2

υ = 0 gave

b̂1 = 0.36± 0.04.

A second main conclusion is that the proposed val-
idation method is not very reliable for the main cases
with T = 60 generations. As shown in Appendix A,
Examples 1 and 4, there may then occur realizations
of ramp responses that give large errors in the mean
reaction norm slope predictions, also with seemingly
good validation results. This type of problem did not
appear when the number of samples was increased to
T = 120, with µU,t = 2.5 for t > 60.

A third main conclusion is that an assumed or esti-
mated reference environment cannot be validated given
data from a specific field study. This is a serious
problem since errors in the assumed reference envi-
ronment may give large prediction errors (Table 3).
When studying the effects of the recent global warm-
ing it may be tempting to assume that the population
was adapted to the mean temperatures in the 1960s,
but note that it was around 0.5 °C colder in the mid
1800s, and that evolution often is slow. It should also
be noted that estimation of the reference environment
by use of the BLUP/PEM optimization method de-
scribed in Ergon (2023b) gives better results than the
gradient method used here, but that this is of limited
value without a possibility for validation.

A fourth main conclusion is that small changes in
the mean reaction norm traits over all generations re-
sult in very unreliable predictions of these changes.
Such small changes may be the result of small val-
ues of the genetic variances, as in Case 9 in Table 4,
where Ĝbb was very much larger than the true value.
Small changes in the mean reaction norm may also be
the result of overlapping generations and long lifetimes,
where only a fraction ft < 1 of the population is af-
fected by the changes in fitness such that the evolution
will be slowed down accordingly (Ergon, 2023a). As
discussed below, however, small changes in at and bt
over all generations may also be a result of near optimal
adaptive plasticity.

As a short summary of the four main conclusions
above, it seems safe to say that disentanglement of plas-
tic and genetic responses on climate change based on
realistically short data is a difficult task, and that espe-
cially predicted changes in bt are unreliable, except that
the initial mean slope value b1 is estimated well. The
best option may thus in many cases be to conclude that
the mean plasticity slope is constant, b= b1, but that
does not mean that one should assume that Gbb = 0 in
the tuning of the prediction model in Equation (4). As
seen in Table 4, Case 7, ∆T,finalât/∆T,trueat increases

to 1.25 ± 0.21 with Ĝbb = 0, but this increase will be
lower with a smaller variance Gbb. There is in any case

no point in setting Ĝbb = 0 in the search for parameter
values, but because of the poor predictions of changes

in b̂t it may be a point in setting b̂t = b̂1.
In the simulations, the plasticity in a stationary

stochastic environment is 25% partially adaptive, that
is, the plastic phenotypic change is in the adaptive di-
rection, but with only 25% of the optimal magnitude.
As shown in Appendix B, an increase to 50% partial
adaptivity reduces the changes in at and bt over 60
generations and makes it more difficult to predict these
changes. With 100% adaptivity, the initial mean trait
values b1 and a1 will not evolve when the environment
changes, and it will then be impossible to estimate the
system parameters. Such an optimal plasticity was an
initial assumption in Valdés et al. (2023) (where Gaa

andGbb were far from zero), although the authors even-
tually found that the plasticity was in fact somewhat
larger than optimal (maladaptive plasticity).

The simulations with small values of Gaa and Gbb

(Case 9 in Table 4) revealed an identification problem
with near 100% adaptivity as discussed above. It is not
enough that the system is excited by variations in the
environmental input, as shown in Figure 2, there must
also be sufficient changes in at and bt over time. The
apparent reason for this can be seen in Equation (1b),
yt = at + bt (ut − uref ), from which follows that when
at and bt are approximately constant only bt ≈ b1 can
be estimated from input-output data. The difficulties
to estimate Gbb when there are small changes in at and
bt over time raises an interesting theoretical question
about persistent excitation in reaction norm identifica-
tion, but that must be left for further research.

Finally note that I in this article have assumed non-
overlapping generations. Field studies of species with
overlapping generations and long lifetimes give oppor-
tunities to determine individual plasticity, and possi-
bly also to find the reference environment where the
phenotypic variance has a minimum. In an example
of this approach, Valdés et al. (2023) used 22 years of
field observations of the perennial forest herb Lathyrus
vernus in order to assess phenotypic selection of flow-
ering time as function of spring temperature, as shown
in Figure 2. Although they did not emphasize this re-
sult, Figure 1 in their paper shows that the reference
environment where the phenotypic variance has a min-
imum is the mean temperature in the mid 1800s. This
is not surprising in light of the estimated lifetime of 43
years, which means very much overlapping generations
and a correspondingly slow evolution.
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Figure A.1: Two examples of ramp responses with 25%
partial adaptivity and measurement noise
in y0,i,t, w0,i,t and u0,t, where Example 1
clearly underestimates Gbb and ∆T bt. See
Figure 5 caption for details.

Figure A.2: Two additional examples of ramp re-
sponses with 25% partial adaptivity and
measurement noise in y0,i,t, w0,i,t and u0,t,
where Example 4 clearly overestimates Gbb

and ∆T bt. See Figure 5 captions for de-
tails.

B. Example with 50% adaptive
plasticity

In the system in the simulations in Section 3 and in
Appendix A, the environment that maximizes fitness
is given by θt = 2ut, which implies a linear relationship
µΘ,t = 2µU,t and the variance σ2

Θn
= 4σ2

Un
. This gives

the initial mean plasticity slope b1 = 0.5, and thus 25%
adaptive plasticity. With µΘ,t = µU,t and σ2

Θn
= σ2

Un
,

the adaptive plasticity increases to 50%, and as shown
in Table B.1 and compared with Case 5, this results in
smaller changes of at and bt over 60 generations, and
larger errors in the predicted changes.
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Table A.1: Prediction results for the four examples in Figures A.1 and A.2.

Parameters and
prediction ratios

True or
optimal values

Example 1 Example 2 Example 3 Example 4

Ĝbb 0.045 0.018 0.036 0.035 0.094

σ̂2
v 0.5 0.39 0.49 0.39 0.57

b̂init 0.5 0.50 0.46 0.46 0.48

104ffinal 0 42 53 95 52
∆T,trueat/∆T,trueyt - 0.39 0.36 0.25 0.26

∆T,truebt/b1 - 0.24 0.24 0.27 0.20

∆T,finalât/∆T,modelat 1 1.02 0.92 1.28 0.97

∆T,finalb̂t/∆T,modelbt 1 1.12 1.59 0.49 0.92

∆T,finalât/∆T,trueat 1 1.20 0.99 1.14 0.85

∆T,finalb̂t/∆T,truebt 1 0.51 1.09 0.88 1.65

Table B.1: Prediction results for example with 50% adaptive plasticity.

Parameters and
prediction ratios

True or
optimal
values

Case 5 with 25%
adaptive plasticity

Case 5 with 50%
adaptive plasticity

Ĝbb 0.045 0.039± 0.030 0.047± 0.043

σ̂2
v 0.5 0.42± 0.11 0.38± 0.18

b̂1 0.5 0.48± 0.02 0.49± 0.03

ffinal 0 (73± 37)10−4 (74± 36)10−3

∆T,trueat/∆T,trueyt - 0.34± 0.21 0.16± 0.05

∆T,truebt/b1 - 0.21± 0.03 0.06± 0.01

∆T,finalât/∆T,modelât 1 1.06± 0.18 1.10± 0.25

∆T,finalb̂t/∆T,modelb̂t 1 351± 1357∗ 30± 81∗
∆T,finalât/∆T,trueat 1 1.13± 0.21 1.19± 0.27

∆T,finalb̂t/∆T,truebt 1 0.85± 0.52 0.96± 0.84

* Some values of ∆T,modelb̂t are close to zero.
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C. MATLAB code

%----------------------------------------------------------

% Parameter estimation of intercept -slope model with

% fmincon () in Matlab , GRAD algorithm.

% Rolf Ergon (rolf.ergon@usn.no)

% University of South -Eastern Norway

% March 15, 2024

%----------------------------------------------------------

clear

for m=1:100

m

x=1;

T=60;

z=3*T/4;

N=1000;

wsquare =50;

vartheta =0.5;

varu =2;

rho =0.25;

Gaa =0.5;

varv=Gaa;

Gbb =0.045;

% Gbb=0;

Paa=Gaa+varv;

Pbb=Gbb;

G=[Gaa 0 ; 0 Gbb];

P=[Paa 0 ; 0 Pbb];

%% Generate u and theta sequences

uplot=zeros(1,T);

du=zeros(1,T);

dtheta=zeros(1,T);

for i=2:T

du(i)=sqrt(varu)*randn;

dtheta(i)=du(i)*rho*sqrt(vartheta /(varu))+sqrt(vartheta *(1-rho ^2))*randn

;

if i>10

uplot(i)=(i-10) /20; % Ramp function

if i>60

uolot(i)=2.5;

end

% uplot(i)=2.5; % Step function

end

end

u0=uplot+du;

theta =2* uplot+dtheta;

%% Individual population traits around abar , bbar1 and bbar2

for t=1:T

a(:,t)=sqrt(Gaa)*randn(N,1);
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b(:,t)=sqrt(Gbb)*randn(N,1);

v(:,t)=sqrt(varv)*randn(N,1);

a(:,t)=a(:,t)-mean(a(:,t));

b(:,t)=b(:,t)-mean(b(:,t));

v(:,t)=v(:,t)-mean(v(:,t));

end

%% Simulation of true system

abar0=zeros(1,T);

bbar0 =0.5* ones(1,T);

ybar0 =0* ones(1,T);

for t=1:T-1

ybar0(x)=0;

abar0(x)=ybar0(x)-bbar0(x)*u0(x);

bterm =(bbar0(t)+b(:,t)).*u0(t);

Y0(:,t)=abar0(t)+a(:,t)+v(:,t)+bterm;

W0(:,t)=exp(-(Y0(:,t)-theta(t)).^2/(2* wsquare));

Wbar0(t)=mean(W0(:,t));

Pyy=Gaa+varv+u0(t)^2*Gbb;

covWy =(N-1)*cov(W0(:,t),Y0(:,t))/N;

covWyt(t)=covWy (1,2);

betay=inv(Pyy)*covWy (1,2) /(1* Wbar0(t));

betayplot(t)=betay;

abar0(t+1)=abar0(t)+Gaa*betay;

bbar0(t+1)=bbar0(t)+Gbb*u0(t)*betay;

ybar0(t+1)=abar0(t+1)+bbar0(t+1)*u0(t+1);

end

deltaabar(m)=(abar0(T)-abar0 (1))/(ybar0(T)-ybar0 (1));

deltabbar(m)=(bbar0(T)-bbar0 (1))/0.5;

%% Measurement errors

Y=Y0;

u=u0;

Y=Y0+0.2* randn(N,T-1);

u=u0+0.2* sqrt(varu)*randn(1,T);

ybar=[mean(Y) ybar0(T)];

W=W0;

W=W0 +0.08* randn(N,T-1);

Wbar=mean(W);

for i=1:2

if i==2

z=T;

end

%% Contraints

Gbb_min =0; Gbb_max =0.1;

% Gbb_min =0; Gbb_max =0.0000001;

varv_min=Gaa/2; varv_max =2*Gaa;

% varv_min =0; varv_max =0.0000001;

bbarinit_min =0; bbarinit_max =2;
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par_lb =[ Gbb_min varv_min bbarinit_min ];

par_ub =[ Gbb_max varv_max bbarinit_max ];

par_guess=zeros (1,3);

par_known =[Gaa];

ybarhat_init =0;

%% fmincon

Aineq =[]; Bineq =[]; Aeq =[]; Beq =[];

fun_objective_SISO_Example_handle=...

@(par)fun_objective_SISO_Example(par ,par_known ,u,Y,ybar ,W,Wbar ,

ybarhat_init ,N,T,x,z);

[par_opt ,fval ,exitflag ,output ,lambda ,grad ,hessian] =...

fmincon(fun_objective_SISO_Example_handle ,par_guess ,Aineq ,Bineq ,Aeq ,Beq ,

par_lb ,par_ub);

output;

if i==1

opt_results1(m,:)=par_opt;

else

opt_results2(m,:)=par_opt;

end

%% Model test

Gbbopt=opt_results1(m,1);

varvopt=opt_results1(m,2);

bbaropt11=opt_results1(m,3);

abarhatmodel =0* ones(1, T);

bbarhatmodel =0.5* ones(1,T);

ybarhatmodel =0* ones(1,T);

for t=1:T-1

ybarhatmodel(x)=0;

bbarhatmodel(x)=bbaropt11;

abarhatmodel(x)=ybarhatmodel(x)-bbarhatmodel(x)*u(x);

Pyy=Gaa+varvopt+u(t)^2* Gbbopt;

covWy =(N-1)*cov(W(:,t),Y(:,t))/N;

betay=inv(Pyy)*covWy (1,2)/Wbar(t);

abarhatmodel(t+1)=abarhatmodel(t)+Gaa*betay;

bbarhatmodel(t+1)=bbarhatmodel(t)+Gbbopt*u(t)*betay;

ybarhatmodel(t+1)=abarhatmodel(t+1)+bbarhatmodel(t+1)*u(t+1);

end

%% Model test results

if i==1

fmodel(m)=sum((ybar(x:z)-ybarhatmodel(x:z)).^2)/(z-x);

fvalidation(m)=sum((ybar(z+1:T)-ybarhatmodel(z+1:T)).^2)/(T-z-1);

Totalabar=abar0(T)-abar0(x);

Totalabarmodel=abarhatmodel(T)-abarhatmodel(x);

Rel_abarmodel(m)=Totalabarmodel/Totalabar;

Totalbbar0z=bbar0(T)-bbar0(x);

Totalbbarmodel=bbarhatmodel(T)-bbarhatmodel(x);
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Rel_bbarmodel(m)=Totalbbarmodel/Totalbbar0z;

fmodellast(m)=sum((ybar (45+1:T)-ybarhatmodel (45+1:T)).^2)/(T-45-1);

end

end

%% Final test

Gbbopt=opt_results2(m,1);

varvopt=opt_results2(m,2);

bbaropt=opt_results2(m,3);

abarfinal =0* ones(1,T);

bbarfinal =0.5* ones(1,T);

ybarfinal =0* ones(1,T);

for t=1:T-1

ybarfinal(x)=0;

bbarfinal(x)=bbaropt;

abarfinal(x)=ybarfinal(x)-bbarfinal(x)*u(x);

Pyy=Gaa+varvopt+u(t)^2* Gbbopt;

covWy =(N-1)*cov(W(:,t),Y(:,t))/N;

betay=inv(Pyy)*covWy (1,2)/Wbar(t);

abarfinal(t+1)=abarfinal(t)+Gaa*betay;

bbarfinal(t+1)=bbarfinal(t)+Gbbopt*u(t)*betay;

ybarfinal(t+1)=abarfinal(t+1)+bbarfinal(t+1)*u(t+1);

end

ffinal(m)=sum((ybar(x:T)-ybarfinal(x:T)).^2)/T;

ffinallast(m)=sum((ybar (45+1:T)-ybarfinal (45+1:T)).^2)/(T-45-1);

Totalabar0T=abar0(T)-abar0(x);

Totalabarfinal=abarfinal(T)-abarfinal(x);

Rel_abarfinal(m)=Totalabarfinal/Totalabar0T;

Totalbbar0T=bbar0(T)-bbar0(x);

Totalbbarfinal=bbarfinal(T)-bbarfinal(x);

Rel_bbarfinal(m)=Totalbbarfinal/Totalbbar0T;

%% Final test results

Totalabar0T=abar0(T)-abar0(x);

Totalabarfinal=abarfinal(T)-abarfinal(x);

Rel_abarfinal(m)=Totalabarfinal/Totalabar0T;

Totalbbar0T=bbar0(T)-bbar0(x);

Totalbbarfinal=bbarfinal(T)-bbarfinal(x);

Rel_bbarfinal(m)=Totalbbarfinal/Totalbbar0T;

%% Validation results

Rel_abarvalidation(m)=Totalabarfinal/Totalabarmodel;

Rel_bbarvalidation(m)=Totalbbarfinal/Totalbbarmodel;

end

%% Plots
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figure (1)

q=ybar0 -ybarfinal; % Rettet

subplot (2,1,1),plot(q), grid

xlabel('Generations ')
ylabel('Residuals ')
autocorrq=autocorr(q);

lags=zeros (1,21);

for lag =1:21

lags(lag)=lag -1;

end

subplot (2,1,2), plot(autocorrq), hold on , grid

plot(autocorrq ,'o'), hold off

xlabel('Time lag')
ylabel('Autocorrelation ')

figure (2)

subplot (3,2,1)

plot(ybar0 ,'b'), hold on

plot(ybarhatmodel ,'m')
hold off , grid

ylabel('mean(y)')
axis ([0 T -1 4])

title('Ramp responses ')
text(0,4.6,'a)','FontSize ' ,12)

subplot (3,2,3)

plot(abar0 ,'g','LineWidth ' ,1.5),hold on

plot(abarhatmodel ,'m')
plot(abarfinal ,'b')
ylabel('mean(a)')
hold off , grid

axis ([0 T -0.5 1.5])

text (0,1.75,'b)','FontSize ' ,12)

subplot (3,2,5)

plot(bbar0 ,'g','LineWidth ' ,1.5), hold on

plot(bbarhatmodel ,'m')
plot(bbarfinal ,'b')
hold off , grid

xlabel('Generations ')
ylabel('mean(b)')
axis ([0 T 0.44 0.85])

text (0,0.90,'c)','FontSize ' ,12)

%% Results

Mean_par=mean(opt_results2)

Std_par=std(opt_results2)

Mean_f=mean(ffinal);

Std_f=std(ffinal);

f_resultsfinal =[ Mean_f Std_f]

%% True change

Mean_deltaabar=mean(deltaabar);

Std_deltaabar=std(deltaabar);
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Change_abar =[ Mean_deltaabar Std_deltaabar]

Mean_deltabbar=mean(deltabbar);

Std_deltabbar=std(deltabbar);

Change_bbar =[ Mean_deltabbar Std_deltabbar]

%% Validation results

Mean_abarvalidation = mean(Rel_abarvalidation);

Std_abarvalidation=std(Rel_abarvalidation);

Validation_ratio_abar =[ Mean_abarvalidation Std_abarvalidation]

Mean_bbarvalidation = mean(Rel_bbarvalidation);

Std_bbarvalidation=std(Rel_bbarvalidation);

Validation_ratio_bbar =[ Mean_bbarvalidation Std_bbarvalidation]

%% Final results

Mean_abarfinal = mean(Rel_abarfinal);

Mean_abarfinal = mean(Rel_abarfinal);

Std_abarfinal=std(Rel_abarfinal);

Final_abarresults =[ Mean_abarfinal Std_abarfinal]

Mean_bbarfinal = mean(Rel_bbarfinal);

Std_bbarfinal=std(Rel_bbarfinal);

Final_bbarresults =[ Mean_bbarfinal Std_bbarfinal]

function f = fun_objective_SISO_Example(par ,par_known ,u,Y,ybar ,W,Wbar ,

ybarhat_init ,N,T,x,z)

Gbb=par(1);

varv=par (2);

bbarhat_init=par (3);

Gaa=par_known (1);

bbarhat=bbarhat_init*ones(1,T);

ybarhatobj=ybarhat_init*ones(1,T);

for t=1:T-1

ybar(x)=0;

ybarhat(x)=0;

bbarhat(x)=bbarhat_init;

abarhat(x)=ybarhat(x)-bbarhat(x)*u(x);

Pyy=Gaa+varv+u(t)^2*Gbb;

covWy =(N-1)*cov(W(:,t),Y(:,t))/N;

betay=inv(Pyy)*covWy (1,2)/Wbar(t);

abarhat(t+1)=abarhat(t)+Gaa*betay;

bbarhat(t+1)=bbarhat(t)+Gbb*u(t)*betay;

ybarhatobj(t+1)=abarhat(t+1)+bbarhat(t+1)*u(t+1);

end

f=sum((ybar(x:z)-ybarhatobj(x:z)).^2)/(z+1-x);

end
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