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Abstract

In the domain of process design, stakeholders pursue two interrelated yet potentially conflicting objectives:
maximization of system performance and reduction of plant cost. The control architecture of a process not
only determines the cost of the system, but also significantly influences its potential performance. Nev-
ertheless, conventional processes for designing control architectures prioritize economic objectives while
overlooking system performance. This paper introduces a systematic approach that integrates both these
objectives simultaneously into the design of control architectures for oil and gas production systems. The
method involves quantifying the trade-off between controllability, observability, and the cost associated
with the control architecture. This quantification is posed as a multi-objective integer nonlinear program-
ming problem, which is specified as a Pareto optimization problem. Solving this optimization problem
yields a set of Pareto-optimal control architectures, enabling design engineers to explore optimal trade-
offs between cost and performance. The efficacy of the proposed procedure is demonstrated through a
real-world oil field example. Pareto-optimal architectures for the oil field are found using the developed
framework. Subsequent analysis of the results reveals the indispensability of physical sensors for certain
variables and the importance of well-balanced sensor distributions among the different wells in the oil field.
To assess the impact of different architectures on closed-loop control performance, linear quadratic Gaus-
sian (LQG) controllers are designed. Comparisons are made between the performance of LQG control
systems instantiated on the identified Pareto-optimal architectures and non-optimal alternatives. This
comparison highlights the pivotal role of optimal architectures in simultaneously enhancing performance
and minimizing costs.
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1. Introduction

A fundamental part of control system design is deter-
mining the sensor-actuator configuration, i.e., the con-
trol architecture (Goodwin et al., 2001). To have com-
plete knowledge and perfect control over a system, we
would want to be able to directly measure every state
using sensors and directly manipulate every state using
actuators. However, due to practical limitations such

as physical constraints, computational limitations, and
cost considerations, achieving such complete control is
usually not feasible; this is particularly true for large-
scale systems like those encountered in the oil and gas
industry. Thus, control architecture design requires
strategic placement of only a limited number of sen-
sors and actuators. The process of determining the
appropriate number and location of these components
for a system is known as control architecture design.
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In the oil and gas industry, the conventional ap-
proach to control system design follows a sequential
process. Initially, the control architecture is deter-
mined based on prior experience, primarily prioritiz-
ing budgetary constraints. Only once the control ar-
chitecture is established does the focus shift towards
achieving the desired performance. However, this ap-
proach overlooks a crucial aspect: the influence of con-
trol architecture on system performance. For instance,
a poorly designed architecture could lead to unsta-
ble zero dynamics (e.g., time delays, inverse response),
which may significantly limit the bandwidth of robust
estimators and feedback controllers. Such performance
limitations are impossible to overcome with subsequent
controller or estimator design. Modifications may be
necessary if a traditionally chosen architecture is im-
plemented and fails to meet performance requirements.
In oil and gas production applications, the cost of such
modifications can be prohibitively high, making poor
choices of control architecture unacceptable. Thus, it
is essential to acknowledge the interplay between con-
trol architecture and system performance, and conse-
quently incorporate both system performance and eco-
nomic considerations into the control architecture de-
sign process.

The optimal control architecture problem has been
extensively explored in various fields, such as flexible
structures (Hiramoto et al., 2000; Hać and Liu, 1993;
Darivandi et al., 2013), chemical engineering (Kookos
and Perkins, 1999; Antoniades and Christofides, 2000),
power systems engineering (Summers and Lygeros,
2014; Munz et al., 2014), and others. The literature
includes a number of articles that specifically consider
the multiple objectives of system performance and
cost-effectiveness. For example, Luyben and Floudas
(1994) propose a method to simultaneously evaluate
economic and open-loop controllability objectives in
process synthesis. This approach transforms the prob-
lem into a multi-objective mixed-integer nonlinear pro-
gramming (MINLP) problem. The set of trade-off so-
lutions is identified through the ε-constraint method,
while the cutting-plane algorithm identifies the best
compromise solution. Application of the method is
demonstrated on a binary distillation column. Sim-
ilarly, Muske and Georgakis (2003) address sensor
placement in process synthesis, aiming to optimize pro-
cess information while minimizing sensor costs. The
trade-off is formulated as a Pareto optimization prob-
lem. A continuous stirred tank reactor (CSTR) exam-
ple is used for demonstration. In another study, Sen
et al. (2016) investigate sensor placement in an IGCC
power plant with three objectives: minimizing cost,
maximizing observability, and maximizing plant effi-
ciency. A novel algorithmic framework is developed to

identify the Pareto solutions. Lastly, Cha et al. (2012)
employ a multi-objective genetic algorithm (MOGA)
to address structural control under seismic excitation.
The MOGA balances control cost and performance,
providing diverse control architectures for benchmark
building structures.

Despite the substantial research in control architec-
ture design, to our knowledge, there are no studies
focusing on its application in the oil and gas indus-
try. This work aims to address this gap by laying the
foundation for an optimal control architecture frame-
work tailored to oil and gas production plants. Our
primary objective is to consider the multiple objec-
tives of system performance and equipment cost in de-
signing the control architecture. To achieve this, we
will draw upon relevant methodologies, objective func-
tions, and optimization techniques from existing liter-
ature and adapt them to suit the specific requirements
of oil and gas production plants. The resulting cus-
tomized framework will pave the way for potential fu-
ture enhancements and refinements. We will also apply
the framework to address a real-world problem within
the oil industry, evaluating its efficacy in addressing
industry-specific challenges.

The paper is organized as follows. In Section 2, we
present a systematic framework to achieve the desired
architecture for oil and gas production system. This in-
cludes details of the process model used for analyzing
control performance, the metrics chosen for evaluating
system performance and cost, and the numerical com-
putation approach employed to solve the architecture
problem. In Section 3, we utilize a real-world gas-lifted
oil field as a case study to demonstrate the practical
application of our architecture design procedure. We
demonstrate how the optimal architecture for the oil
field is identified, and subsequently design a complete
control system based on the identified architectures.
Additionally, we provide a detailed analysis of the sys-
tem’s closed-loop performance. In Section 4, we engage
in a discussion of the limitations of our control archi-
tecture design procedure. Finally, in Section 5, we pro-
vide a summary of the key findings, contributions, and
avenues for future research.

2. Control Architecture Design
Framework

2.1. Process Model

The use of a linearized model for control architecture
design offers a simpler and more efficient approach
compared to using a nonlinear model. This approach
also benefits from the availability of well-established
linear techniques for linear plant models. As a result,
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it is widely adopted for control architecture selection
in the existing literature. Particularly for nonlinear
systems that operate in close proximity to equilibria,
which is often the case for oil/gas production systems,
linear methods are highly applicable. Therefore, we
choose to employ a linearized plant model for design-
ing optimal control architecture. We will specifically
focus on linear, time-invariant dynamic models, where
the system dynamics are described by the state-space
representation in eq. (1) below.

ẋ (t) = Ax (t) +Bu (t)

y (t) = Cx (t) +Du (t) . (1)

Here, x (t) ∈ Rn is the state vector; u (t) ∈ Rp is the
input vector; y (t) ∈ Rq is the output vector; A ∈ Rn×n

is the system matrix; B ∈ Rn×p is the input matrix;
C ∈ Rq×n is the output matrix; and D ∈ Rq×p is the
feedforward matrix.

2.2. System Performance Metric

In our methodology, we recognize that a controller de-
signed based on a simplified model at the design stage
does not necessarily ensure the desired performance
during the operational stage. Therefore, we choose to
utilize open-loop performance measures — a common
practice in existing literature. By doing so, our ap-
proach becomes independent of the specific details of
the controller design, a quality that is generally deemed
desirable (Van De Wal and De Jager, 2001), for rea-
sons of efficiency and to ensure unbiased conclusions
regarding the viability of the architecture under differ-
ent scenarios.
We will specifically focus on observability and con-

trollability as the key system properties of interest.
Observability refers to the ability to estimate or ob-
serve the system’s internal states based on available
sensor measurements. Controllability, on the other
hand, pertains to the ability to steer the system’s
state from any initial condition to a desired state us-
ing actuators. A highly controllable system enables
precise manipulation of the system’s behavior, while a
highly observable system facilitates accurate state es-
timation, even in the presence of uncertainties or dis-
turbances. Hence, focusing on observability and con-
trollability during sensor and actuator selection, allows
for greater flexibility and effectiveness in controller de-
sign, enabling control designers to shape the system’s
behavior, stabilize unstable systems, and meet specific
performance requirements. These properties have been
extensively employed in the control architecture de-
sign literature (Georges, 1995; Lim, 1992; Hać and Liu,
1993; Leleu et al., 2000; Bruant et al., 2010; Summers
and Lygeros, 2014; Pequito et al., 2016; Li et al., 2015;

Manohar et al., 2022), further supporting their signifi-
cance.

The concepts of controllability and observability are
binary in nature, however the Gramians associated
with them provide an energy-related quantitative mea-
sure. The observability Gramian Wo (tf) and the con-
trollability Gramian Wc (tf) over a specified time hori-
zon tf are given by the following equations:

Wo (tf) =

∫ tf

0

eA
T tCTCeAt , dt ∈ Rn×n ,

Wc (tf) =

∫ tf

0

eAtBBT eA
T t , dt ∈ Rn×n . (2)

For stable systems, the infinite-horizon (i.e., tf → ∞)
observability Gramian Wo and controllability Gramian
Wc can be found by solving the following algebraic Lya-
punov equations:

ATWo +WoA+ CTC = 0 ,

AWc +WcA
T +BBT = 0 . (3)

We will concentrate on the infinite-horizon Gramians
owing to their ease of computation. Nevertheless, it is
important to note that the finite-horizon Gramian can
also be used. The main drawback of using the finite-
horizon Gramians is that one must evaluate eq. (2)
instead of eq. (3), which might be more challenging.
However, an advantage of the finite-horizon Gramians
is their applicability to unstable systems.

The Gramians are positive semidefinite matrices.
Various scalar metrics can be used to quantify the
“size” of the Gramians, including the minimum eigen-
value, determinant, and trace (Müller and Weber,
1972). For our purposes, we will focus on the mini-
mum eigenvalue metric λ. The objectives for sensor
selection and actuator selection, utilizing the minimum
eigenvalues, are as follows.

• Sensor selection objective:

maxλ (Wo (C,A)) . (4)

• Actuator selection objective:

maxλ (Wc (A,B)) . (5)

The underlying physical idea behind these objective
functions is to minimize the input energy required to
reach a given state and to maximize the output energy
generated by a given state. A more detailed explana-
tion is provided by Georges (1995).

Apart from controllability and observability, var-
ious other performance criteria have also been em-
ployed in the control architecture design literature; see,
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for example, the survey paper by Van De Wal and
De Jager (2001) for an excellent overview of these cri-
teria. Within the current framework, these metrics can
be employed in different ways: they can either substi-
tute the performance metrics in eqs. (4) and (5), or
they can be incorporated as supplementary objectives
or constraints in the multi-objective optimization prob-
lem.

2.3. Cost Metric

We introduce scalar metrics to quantify the cost asso-
ciated with the sensors and actuators. For the sensor
cost, we define the metric as

eTs δs . (6)

Here, es =
[
e1s , e

2
s , · · · , eqs

]T
is a vector containing the

sensor expense for measuring each physical property
represented by the system outputs, y = [y1, y2, · · · , yq].
The sensor expense may encompass the capital cost as
well as the present value of anticipated future oper-
ating cost, including maintenance costs, whether on
a relative or absolute basis. The binary vector δs =[
δ1s , δ

2
s , · · · , δqs

]
∈ {0, 1}q in eq. (6) represents the de-

sign variable; each element δis is assigned a value of 1
if a sensor is placed at location i, and 0 otherwise.
Likewise, we also define a scalar metric for the actu-

ator cost:

eTa δa . (7)

In this case, ea =
[
e1a, e

2
a, · · · , epa

]T
represents a vec-

tor containing the actuator expense for controlling
each physical property represented by the system in-
puts u = [u1, u2, · · · , up]. The binary vector δa =[
δ1a , δ

2
a , · · · , δpa

]
∈ {0, 1}p in eq. (7) is the design vari-

able; each element δia is assigned a value of 1 if an
actuator is placed at location i, and 0 otherwise.

2.4. Numerical Computation

Multi-objective optimization involves the simultane-
ous optimization of individual objectives. Rather than
seeking a single optimal solution, it aims to discover
a collection of solutions known as Pareto optimal solu-
tions. These solutions define a boundary beyond which
improving any objective would necessitate sacrificing
at least one other objective. The set of Pareto opti-
mal solutions provides decision-makers with a range
of trade-off options to choose from, enabling well-
informed decision-making.
Various techniques exist for generating Pareto op-

timal solutions. Traditional approaches include the
weighted sum method, the goal programming method,
ε-constraint method, and genetic algorithms (GAs).

Among these, GAs, in particular, are widely utilized in
control architecture literature (Milosevic and Begovic,
2003; Flynn and Todd, 2010; Cha et al., 2012). They
efficiently explore diverse solutions without requiring
derivatives, making them advantageous for handling
non-linear problems. However, GAs can be computa-
tionally expensive and require careful parameter tuning
to achieve optimal performance. Despite these limita-
tions, when used judiciously, GAs are powerful tools
for generating the Pareto set, making them well-suited
for our work. In instances where GAs might be in-
sufficient, especially for large-scale problems, modern
machine learning techniques emerge as promising al-
ternatives. Recent studies on optimal control archi-
tecture (Manohar et al., 2018; Semaan, 2017; Paris
et al., 2023) delve into the utilization of machine learn-
ing techniques, revealing their efficacy in successfully
tackling large problems. However, our specific focus
on GAs aligns with the scale and requirements of our
current work.

The following describes the steps through which a
GA finds the Pareto front for the control architecture
problem:

• In a GA, each potential sensor/actuator configura-
tion would be referred to as an individual or chro-
mosome. The configurations would be encoded as
binary strings, with each element corresponding to
the presence or absence of a sensor/actuator at a
specific location.

• The algorithm begins by randomly generating an
initial population of individuals. Over subsequent
generations, this population evolves toward better
solutions. In each generation, the fitness of ev-
ery individual in the population is evaluated based
on the defined objectives, i.e., system performance
and cost.

• The selection process follows, favoring individuals
with higher fitness as parents for the next genera-
tion. There are different selection methods avail-
able, such as roulette wheel selection or tourna-
ment selection, which simulate the survival-of-the-
fittest principle. These methods ensure that indi-
viduals with superior fitness contribute more ge-
netic material to the next generation.

• Next, genetic operators like crossover and muta-
tion are applied to the selected parents to gen-
erate new offspring. The newly created offspring
replace a portion of the population, typically the
least fit individuals, thereby propelling the popu-
lation towards improved sensor/actuator configu-
rations that optimize the multiple objectives.
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• By iteratively applying these steps, the genetic al-
gorithm explores the space of possible sensor con-
figurations, favoring better-performing solutions
and gradually converging towards a set of optimal
or near-optimal placements that offer a trade-off
between the multiple objectives.

• The algorithm runs until a termination criterion
is met, such as a maximum number of genera-
tions, desired fitness level, or predefined computa-
tional budget. The final population consists of a
diverse set of solutions, known as the Pareto front
or Pareto-optimal solutions, representing the best
compromises between the conflicting objectives.

For more in-depth information on GAs, consult the
available literature. Notable sources include Mitchell
(1998) and Goldberg (1989).

3. Illustrative Example

In this section, we will use an example of a gas-lifted oil
field to demonstrate the application of the architecture
design procedure.

3.1. Gas-Lifted Oil Field Model

A model of a gas-lifted oil field consisting of five oil
wells, which has been validated against data from a
real oil field, is proposed by Sharma et al. (2011). Jaya-
manne (2021) subsequently presents an adapted ver-
sion of this model, focusing on two oil wells. Figure 1
illustrates a possible architecture for this system. A
compressor releases pressurized lift-gas into a shared
pipeline for distribution among oil wells. The gas en-
ters the well’s annulus through a gas-lift choke valve.
From there, it is injected into the tubing at an optimal
depth through a one-way gas injection valve. Mixing
with reservoir oil, the gas reduces its density, lowering
the hydrostatic pressure in the tubing and consequently
the bottom hole pressure. This increased differential
pressure drives the liquid column upward. The result-
ing mixture exits through a production choke valve,
collects in a common gathering manifold, and is trans-
ported to a separator for constituent separation. The
separated gas is recycled back to the compressor sys-
tem for reuse in the lifting process.

The system is mathematically described by a
differential-algebraic system of equations (DAE). The
equations encompass mass balances for state variables
and algebraic equations for valve characteristics, pres-
sures, average densities, and other parameters. The
model focuses on the flow dynamics of the wells, from
the gas-lift choke valve up to the production choke

Gas 
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pipeline

Lift gas for 
injection

Gas

Water

Gas 
distribution 

pipeline

Compressor 
system

Separator

Reservoir

Gathering 
manifold

Gas lift choke 
valve 2

Gas lift choke 
valve 1

Production 
choke valve 2

Oil 
well 1

Production 
choke valve 1

Oil 
well 2

Oil

Long pipeline

Figure 1: Schematic of the oil field adapted from
Sharma et al. (2011)

valve. Dynamics related to the gas distribution man-
ifold, gathering manifold, separator, etc., are omitted.
Additionally, the model is based on several simplifying
assumptions:

• Temperature remains constant for both lift gas
and multiphase fluid across all sections of the
wells.

• Compressibility factor of the lift gas is constant.

• Reservoir pressure is constant.

• Only oil is produced from the reservoir.

• The two phases of the multiphase fluid in the tub-
ing are evenly distributed (i.e., homogeneous mix-
ture).

• There is no slip between the two phases.

• There are no frictional losses in the pipelines.

For the sake of our work, we linearized the DAE sys-
tem around a selected operating point using symbolic
differentiation in Julia. The linearize function from
the ModelingToolkit package (Ma et al., 2021) was used
for this. The resulting linear model may be written in
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state space form as

ẋ = Ax+Bu

y = Cx+Du , (8)

where

x =
[
m1

ga,m
1
gt,m

1
ot,m

2
ga,m

2
gt,m

2
ot

]
,

u =
[
w1

ga, C
1
v , w

2
ga, C

2
v

]
,

y =
[
P 1
a , P

1
ainj, P

1
tinj, P

1
wh, w

1
ginj, w

1
gop,

P 2
a , P

2
ainj, P

2
tinj, P

2
wh, w

2
ginj, w

2
gop

]
.

There are six states in total, with three states associ-
ated with each of the two wells (denoted as i): mass of
lift-gas in the annulus mi

ga, mass of lift-gas in the tub-

ing above the injection pointmi
gt, and mass of oil in the

tubing above the injection point mi
ot. There are four

potential manipulated input variables: mass flow rate
of gas through the gas-lift choke valve wi

ga, and produc-

tion choke valve characteristic Ci
v (which is a function

of its opening ui
2). Furthermore, we consider twelve

potential measured variables: pressure downstream of
the gas-lift choke valve P i

a, pressure upstream of the
gas injection valve P i

ainj, pressure downstream of the

gas injection valve P i
tinj, pressure upstream of the pro-

duction choke valve P i
wh, mass flow rate of gas injected

into the tubing wi
ginj, mass flow rate of the mixture of

gas and oil through the production choke valve wi
gop.

To ensure accurate assessments of the controllability
and observability measures, it is essential to consider
the impact of scaling on these quantities. Here, we
adopt the scaling procedure proposed by Skogestad and
Wolff (1996) to normalize the system. It involves nor-
malizing the variables with respect to their maximum
allowed/expected range. This procedure assures that
both the outputs and inputs have comparable magni-
tudes by restricting the variables to be within the range
of -1 to +1.

The normalized linear model — which we will use
in our control architecture study — also can be rep-
resented by eq. (8). The matrices A, B, C, and D
for this model are provided in Appendix A, along with
additional information on the linearization process.

3.2. Optimal Control Architecture:
Problem

In our study, we will treat the problems of sensor se-
lection and actuator selection as two separate problems
for the sake of simplified analysis. However, it is impor-
tant to note that they can also be viewed as a unified
problem. The results will be the same since there are
no interactions between the two problems in our spe-
cific example.

We have two trade-off objectives, given in eqs. (9)
and (10), for the sensor selection problem.

J1 = max
δs∈{0,1}q

λ (Wo (δs)) , (9)

J2 = min
δs∈{0,1}q

eTs δs . (10)

Here, the binary vector δs =
(
δ1s , δ

2
s , · · · , δqs

)
∈ {0, 1}q

is our design variable; q = 12 is the number of can-
didate sensors. Its elements δis take on the value 1 if
a sensor is placed at location i or the value 0 if it is
not used. J1 is the cost function that quantifies the
degree of observability; it is a function of the observ-
ability gramian Wo. J2 is a pseudo-economic objective
function in terms of the relative costs of placing sen-
sors es =

(
e1s , e

2
s , · · · , ens

s

)
∈ {1, 2, 3}q. Elements eis are

integer variables that can take the values 1, 2, or 3, in-
dicating low-cost, medium-cost and high-cost sensors,
respectively. (Note: In this study, the exact monetary
costs were unavailable, hence we use a relative cost de-
scription.) Table 1 provides the relative cost associated
with each potential sensor.

Likewise, we have two trade-off objectives, given in
eqs. (11) and (12), for the actuator selection problem.

J3 = max
δa∈{0,1}p

λ (Wc (δa)) , (11)

J4 = min
δa∈{0,1}p

eTa δa . (12)

Here, the binary vector δa =
(
δ1a , δ

2
a , · · · , δpa

)
∈ {0, 1}p

is our design variable; p = 4 is the number of candi-
date actuators. Its elements δia take on the value 1 if
an actuator is placed at location i or the value 0 if it is
not placed. J3 is the cost function that quantifies the
degree of controllability; it is a function of the control-
lability gramian Wc. J4 is a pseudo-economic objective
function in terms of the relative costs of placing actua-
tors ea =

(
e1a, e

2
a, · · · , epa

)
∈ {1, 2, 3}p. Elements eia are

integer variables that can take the values 1, 2, or 3,
indicating low-cost, medium-cost and high-cost actu-
ators, respectively. Table 1 provides the relative cost
associated with each potential actuator.

3.3. Optimal Control Architecture:
Solution

To perform optimization we use the gamultiobj func-
tion in MATLAB, which finds the Pareto front of mul-
tiple fitness functions using GA. We apply it separately
for the sensor selection problem (i.e., for objectives J1
and J2) and for the actuator selection problem (i.e., for
objectives J3 and J4). In both cases, we run the GA
for 100 generations with a population size of 250 and
a crossover proportion of 0.8.
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Table 1: Costs of sensors and actuators.

Variable
Relative
cost

Sensors Pa 1
Painj 2
Ptinj 2
Pwh 1
wginj 3
wgop 3

Actuators wga 2
Cv 3

Since the number of sensors and actuators in our spe-
cific example is moderate, it is possible to determine
the objective values for all possible configurations of
sensors and actuators. Therefore, we undertake this
analysis as well. This will serve two purposes: firstly,
it will allow us to verify whether gamultiobj has con-
verged to the true optimal solutions, and secondly, it
will provide additional insights into the problem itself
(discussion in Section 3.4).

Figure 2 displays the Pareto front found for the sen-
sor problem as well as all other possible non-optimal
sensor configurations (i.e., dominated solutions), while
Figure 3 illustrates the same for the actuator problem.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

Dominated solutions
Pareto-optimal solutions

1
2

3
4

Figure 2: Pareto front for sensor selection

It is evident from Figure 2 that gamultiobj has in-
deed converged to the true optimal solutions. Despite
allowing for a large number of sensors, the Pareto front
for the sensor problem consists of only 15 sensor con-
figurations out of a maximum of 4096. The results
reveal that increasing the sensor budget has a positive
impact on observability up to a threshold of approxi-

mately 35; see abscissa of Figure 2. Beyond the point
indicated by “4” in Figure 2, the Pareto front exhibits
a steep slope, indicating that achieving marginal im-
provements in observability comes at a higher cost.
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10

Dominated solutions
Pareto-optimal solutions

*

Figure 3: Pareto front for actuator selection

Similarly, for the actuator problem, it is seen from
Figure 3 that gamultiobj has converged to the true
optimal solution. The Pareto front consists of only 4
actuator configurations out of a possible 16. Among
these configurations, three form a cluster, providing
similar levels of controllability at varying costs. The
fourth configuration (indicated by the red * in Fig-
ure 3), involves the actuation of all four potential in-
put variables. This configuration provides significantly
higher controllability but comes at a higher cost.

The optimal sensor configurations corresponding to
the Pareto front in Figure 2 are provided in Table 2.
This table provides some valuable insights into the sen-
sor selection problem. Notably, it reveals that variables
Ptinj and Pwh are present in nearly all optimal solu-
tions. This indicates the indispensability of physical
sensors for monitoring these particular variables. The
solutions labeled “1”, “2”, “3”, and “4” in Figure 2 fur-
ther support this finding: they demonstrate significant
improvements in observability when transitioning from
having sensors solely for measuring Pwh of both wells
(i.e., solution “1”), to including sensors for both Pwh

and Ptinj of both wells (i.e., solution “4”). Moreover,
Table 2 shows that all optimal sensor configurations in-
volve sensors for both wells, which is expected consider-
ing the need for comprehensive monitoring. However,
a noteworthy observation is that a greater number of
sensors are consistently allocated to Well2, particularly
in the solutions following “4” in Figure 2. This alloca-
tion pattern may be influenced by factors such as the
productivity index of Well1 being greater than that of
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Table 2: Pareto-optimal sensor configurations.

Candidate sensor

Objective No. of Well1 Well2

J1 J2 sensors P 1
a P 1

ainj P 1
tinj P 1

wh w1
ginj w1

gop P 2
a P 2

ainj P 2
tinj P 2

wh w2
ginj w2

gop

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.76 2 2 0 0 0 1 0 0 0 0 0 1 0 0
3.71 3 2 0 0 0 1 0 0 0 0 1 0 0 0
18.4 4 2 0 0 1 0 0 0 0 0 1 0 0 0
23.1 5 3 0 0 1 0 0 0 0 0 1 1 0 0
34.0 6 4 0 0 1 1 0 0 0 0 1 1 0 0
34.0 7 5 0 0 1 1 0 0 1 0 1 1 0 0
34.0 8 6 1 0 1 1 0 0 1 0 1 1 0 0
35.2 9 5 0 0 1 1 0 0 0 0 1 1 0 1
35.3 10 6 0 0 1 1 0 0 1 0 1 1 0 1
35.3 12 7 0 0 1 1 0 0 1 1 1 1 0 1
35.4 13 7 0 0 1 1 0 0 1 0 1 1 1 1
35.4 15 8 0 0 1 1 0 0 1 1 1 1 1 1
35.4 16 9 1 0 1 1 0 0 1 1 1 1 1 1
35.4 24 12 1 1 1 1 1 1 1 1 1 1 1 1

Well2; it is possible that assigning a greater number
of sensors to Well2 addresses its comparatively lower
productivity and enable more precise control and mon-
itoring.

Table 3: Pareto-optimal actuator configurations.

Candidate actuator

Objective No. of Well1 Well2

J3 J4 sensors w1
ga C1

v w2
ga C2

v

0 0 0 0 0 0 0
1.75e−9 4 2 1 0 1 0
2.95e−9 7 3 1 1 1 0
6.79e−5 10 4 1 1 1 1

Table 3, which lists the optimal actuator configura-
tions corresponding to the Pareto front in Figure 3,
reveals similar observations regarding actuator selec-
tion. Most notable is that variable wga is consistently
selected across all solutions. This highlights the signif-
icance of actuation in relation to this specific variable.

3.4. Impact of Control Architecture on
Closed-Loop Control Performance

In our approach, identification of all possible trade-
off architectures enables design engineers to explore
and choose optimally between performance and cost.
Engineers could, for example, design a controller for

any identified architecture and assess its closed-loop re-
sponse through simulations. These simulations could
reveal potential sacrifices in closed-loop performance
linked to control equipment cost.

In the following, we illustrate how optimal trade-offs
may be explored: we will design and analyze the perfor-
mance of closed-loop control systems for selected sensor
and actuator configurations. Our chosen methodology
for this task is linear quadratic Gaussian/loop transfer
recovery (LQG/LTR), with settling time as the specific
closed-loop performance metric of interest.

In LQG control, the plant is assumed to have the
form in eq. (13) below.

ẋ = Ax+Bu+ w

y = Cx+Du+ v . (13)

Here, w denotes process noise and v represents mea-
surement noise. The LTR procedure involves the fol-
lowing steps:

• Assuming state feedback, we define the lin-
ear–quadratic regulator (LQR) control problem
with the cost function in eq. (14) below.

J =

∫ ∞

0

(
xTQx+ uTRu

)
dt . (14)

Here, Q is the state weighting matrix and R is the
control weighting matrix. We set Q = CTC and
R = ρI, where ρ is a scalar. Then, the value of ρ
is adjusted to find the controller gain K that gives
a desirable loop transfer function Kϕ(s)B (where
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ϕ(s) = (sI − A)−1); the singular value plots of
Kϕ(s)B are examined to ensure that it satisfies
the desired performance criteria.

• When the singular values of Kϕ(s)B are deemed
satisfactory, a Kalman filter is introduced with
process noise covariance matrix W and measure-
ment noise covariance matrix V . We set W =
BBT — a commonly used simplification that im-
plies w enters the system through the control in-
puts — and V = µI, where µ is a scalar. Then,
loop transfer recovery is achieved by adjusting the
value of µ to find the Kalman gain L. This ad-
justment aims to make the LQG loop transfer
function G(s)CLQG approximately equal to the
desired loop transfer function Kϕ(s)B. (Here,
G(s) = Cϕ(s)B is the plant transfer function and

CLQG = K (sI −A+BK + LC)
−1

L is the LQG
controller transfer function.) As µ tends to zero
G(s)CLQG will tend to Kϕ(s)B. To assess the de-
gree of match between the two loop transfer func-
tions, the singular value plots of both are plotted
in the same plot. The tuning parameters µ and ρ
are iterated upon until a system that is as fast as
possible is achieved while still having overlap.

For a more detailed understanding of the recovery pro-
cedure, we suggest consulting the original publications
by Doyle and Stein (1979, 1981), and the tutorial paper
by Stein and Athans (1987).

We will begin by examining the impact of dif-
ferent sensor configurations on feedback control
performance. Specifically, we will focus on three
sensor configurations: sConfig1, representing the
non-optimal configuration [1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1];
sConfig2, representing the Pareto-optimal con-
figuration [0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1]; and sCon-
fig3, representing the Pareto-optimal configuration
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. Both sConfig1 and sCon-
fig2 have an equal number of sensors and incur the
same pseudo-economic cost of J2 = 10. However,
sConfig1 exhibits significantly lower observability
with a value of J1 = 8.37e−9 compared to sConfig2’s
observability of 35.3. On the other hand, sConfig2
and sConfig3 have similar degrees of observability, but
sConfig3 incurs more than double the cost of sConfig2,
specifically J2 = 24.

We will employ LQG/LTR controllers for each sensor
configuration, while using a common Pareto-optimal
actuator configuration [1, 0, 1, 0]. Following the afore-
mentioned LTR procedure, we select tuning parame-
ters ρ = 1 and µ = 0.01 for sConfig3 found by trial-
and-error. For sConfig1 and sConfig2, we assume the
same LQG controller tunings. This assumption implies
that the ratio between input effort minimization and

state deviation attenuation, as well as the ratio be-
tween process noise covariance and measurement noise
covariance, remains the same for all three configura-
tions.

Figure 4: State response of LQG control to a distur-
bance (green: sConfig1; blue: sConfig2; red:
sConfig3)

Figure 4 illustrates the response and settling times
for each system when subjected to a state disturbance
of [0.3, 0.3, 0.3, 0.3, 0.3, 0.3] (Note: This is the normal-
ized value of the disturbance. The corresponding ac-
tual state is [2.04, 1.20, 2.25, 1.91, 1.17, 2.00].) when at
operating point. Table 4 lists the settling times. The
figure reveals that the responses of Well2 are nearly
identical across all three sensor configurations. This
is reasonable as they share four common sensors, in-
cluding those for monitoring the key variables that
contribute more to the controllability, as identified in
Sec. 3.3, namely Ptinj and Pwh. However, upon closer
examination, slight differences emerge. Notably, sCon-
fig1, the non-optimal configuration, exhibits a slightly
faster response compared to the optimal sConfig2. This
difference can be attributed to the presence of an addi-
tional sensor in sConfig1 for measuring Painj. Similarly,
sConfig3 shows a slightly faster response than sConfig2
due to the inclusion of an extra sensor for measuring
wginj.
In contrast, the responses of Well1 differ significantly

across the sensor configurations. The response of sCon-
fig1 noticeably lags behind sConfig2. This can be at-
tributed to sConfig1 having only one sensor for mon-
itoring Well1, and it is neither dedicated to measur-
ing Ptinj nor Pwh. This observation highlights the im-
portance of adopting an optimal sensor configuration,
which can result in superior control performance while
keeping the sensor cost unchanged. While this find-
ing is intuitive in the present example due to the well-
balanced sensors in sConfig2 and the lack of such bal-
ance in sConfig1, in a more complex process, recogniz-
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Table 4: LQG controller settling times for different sen-
sor configurations.

State Settling time [hrs]

variable sConfig1 sConfig2 sConfig3

Well1 m1
ga 2.79 2.12 1.46

m1
gt 2.99 2.28 1.57

m1
ot 2.91 2.22 1.54

Well2 m2
ga 1.47 1.60 1.37

m2
gt 1.57 1.71 1.46

m2
ot 1.53 1.67 1.43

ing and considering such observations can prove to be
invaluable.

When comparing between the two optimal configu-
rations, while sConfig3 performs better than sConfig2,
the improvement achieved is comparable to the differ-
ence observed between sConfig1 and sConfig2. This is
interesting because sConfig2 only utilizes two sensors
— dedicated to measuring the two important variables
— whereas sConfig3 has all six possible sensors. This
suggests that adding extra sensors beyond those con-
tributing significantly to controllability does not yield
substantial performance gains.

Next, we will analyze how different actuator config-
urations impact closed-loop control performance. As
observed in Section 3.3 all actuator configurations, ex-
cept one, exhibited similar controllability levels. The
exceptional configuration, which we will refer to as
aConfig1, represented by [1, 1, 1, 1], i.e., actuating all
four potential input variables, demonstrated relatively
higher controllability. We will compare its performance
with the Pareto-optimal configuration represented by
[1, 0, 1, 0], which we will refer to as aConfig2. The
observability values for aConfig1 and aConfig2 were
J3 = 6.79e−5 and J3 = 1.75e−9, respectively. Ad-
ditionally, aConfig1 incurs a pseudo-economic cost of
J4 = 10, which is more than double the cost of aCon-
fig2, which is 4.

Table 5: LQG controller settling times for different ac-
tuator configurations.

State Settling time [hrs]

variable aConfig1 aConfig2

Well1 m1
ga 1.56 1.46

m1
gt 1.54 1.57

m1
ot 1.56 1.54

Well2 m2
ga 1.48 1.37

m2
gt 1.46 1.46

m2
ot 1.48 1.43

Figure 5: State response of LQG control to a distur-
bance (red: aConfig1; blue: aConfig2)

To create LQG controllers, we will employ the
Pareto-optimal sensor configuration sConfig3 from be-
fore with aConfig1 and aConfig2. The same controller
parameters ρ = 1 and µ = 0.01 as before will be
used for both architectures. Figure 5 illustrates the re-
sponse of the states and settling times for each system,
when subjected to the same initial state disturbance,
[0.3, 0.3, 0.3, 0.3, 0.3, 0.3], as in the sensor configuration
case. Table 5 presents the settling times.

Interestingly, the state responses for both actuator
configurations are nearly identical. This implies that
introducing actuators to control Cv in addition to wga

does not expedite the system’s response. One potential
explanation is that although aConfig1 demonstrates
high controllability, it is only relatively higher com-
pared to other possible actuator configurations; in ab-
solute terms, the controllability values for all config-
urations are nearly zero. Consequently, we can not
draw any definitive conclusions regarding the impact
of different actuator configurations on the closed-loop
performance in this scenario.

It is important to note that the closed-loop simula-
tions presented above do not generalize open-loop ob-
servability and controllability measures; instead, they
reveal sacrifices in our chosen closed-loop performance
metric — settling time — associated with changes in
control equipment cost.

4. Discussion

In our approach to control architecture design, we have
prioritized controllability and observability as the key
performance criteria. Although these properties are
generally considered desirable, it is important to note
that there is no guarantee that good control can be
achieved even if all states are controllable and observ-
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able. For instance, there may be bandwidth limitations
that cannot be found by studying the Gramians.
One well-known limitation is the presence of a right

half-plane (RHP) zero in the plant transfer function,
which restricts the achievable bandwidth regardless of
the controller used (Lie, 1995). While an RHP zero
exhibits a 20 dB/decade rising gain magnitude like a
conventional zero, it introduces a 90° phase lag instead
of a lead. Compensating for this characteristic is chal-
lenging, if not impossible. As a result, the designer is
often compelled to decrease the loop gain at a relatively
low frequency. Consequently, the crossover frequency
may be significantly lower than it could be, leading to
a substantial degradation in dynamic response.
To illustrate this issue, consider the example transfer

function with two inputs given in eq. (15) below.

y =
(1− 2s)

(1 + 4s) (1 + 5s)
u1 +

(1 + 2s)

(1 + 4s) (1 + 5s)
u2 . (15)

When selecting the optimal input based on control-
lability, we find that input u1, which introduces an
RHP zero to the system, is chosen: J3 = 0.1249 for
u1, while J3 = 0.0041 for u2. However, we can demon-
strate why u1 is not the ideal choice in this case by
tuning a proportional-integral (PI) controller for each
input.
We will refer to the system using u1 as “sys1” and

the system using u2 as “sys2”. We use the pidtune

function in MATLAB for automatic PI controller tun-
ing. The resulting PI controller parameters for sys1
are Kp = 1.13 and Ki = 0.122, while for sys2, they are
Kp = 1.49 and Ki = 0.442. Here, Kp represents the
proportional gain, and Ki represents the integral gain.
The step responses of the two PI control systems are
depicted in Figure 6. The inverse response exhibited by
sys1 is clearly apparent, a characteristic that is gener-
ally considered undesirable. In contrast, sys2 does not
display such an inverse response. Moreover, an exam-
ination of the crossover frequencies reveals that sys1’s
crossover frequency is 0.1491, approximately half that
of sys2’s, which is 0.2734.
From the example above, it becomes clear that ex-

plicitly considering the presence of RHP zeros in the
control architecture design framework is essential. One
approach to address this issue is to include a specific
criterion for RHP zeros as an additional objective in
the multi-objective optimization problem. Alterna-
tively, RHP zeros can be treated as carefully imposed
constraints. By incorporating these measures, we can
minimize the negative effects of RHP zeros, leading to
more robust and effective control architectures.

Controllability ensures the possibility of reaching
any state x1 by time t1 > t0. Nevertheless, achiev-
ing x1 at t1 might demand inputs that exceed practi-

Figure 6: Step responses of the PI control systems sys1
(blue) and sys2 (red)

cal constraints — in practice, input variables are typ-
ically limited. Additionally, substantial deviations in
states or output variables may arise during the pro-
cess of reaching x1, and these variables might also be
subject to practical constraints. It’s important to rec-
ognize that the proposed framework does not address
these constraints.

Another limitation of the proposed framework is
that we have not incorporated considerations for un-
certainty. In practice, uncertain models and measure-
ments are common and carry significant implications,
particularly in oil fields whose dynamics vary over
time. Uncertainty arises from diverse sources, includ-
ing equipment accuracy, measurement noise, unmod-
eled system dynamics, simplifying assumptions such as
approximating nonlinear systems with linear ones, and
parametric uncertainties, whether constant or time-
varying. Notably, critical parameters such as gas to
oil ratio, water cut, and productivity index introduce
uncertainty in oil and gas production systems. Ne-
glecting these uncertainties may impact the reliability
of the identified optimal architecture, potentially re-
sulting in it falling short of performance requirements.
Rectifying design flaws post-implementation can incur
prohibitively high costs, particularly in oil and gas pro-
duction. Hence, it is imperative to account for uncer-
tainties in the design of control architecture. Despite
its importance, only a handful of studies have tried to
tackle this problem. Recent studies include Yang et al.
(2018), proposing an optimal sensor placement method
for structural health monitoring systems, and Li et al.
(2015), proposing an actuator placement method for
active control system with uncertainties. Both studies
use the interval analysis method to handle uncertain-
ties.
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5. Conclusions

In the context of oil and gas production plants, stake-
holders want to achieve two interrelated but poten-
tially contradictory objectives: maximizing plant per-
formance and minimizing the cost of control equip-
ment. In this study, we set out to develop a framework
for optimal control architecture design that considers
both of these objectives simultaneously. We formu-
lated two multi-objective integer nonlinear program-
ming problems — one for sensor selection and the other
for actuator selection — considering observability and
controllability as key performance criteria. Although
it is possible to combine the two problems, they were
treated separately in this study. The solutions to these
optimization problems using a genetic algorithm (GA)
lead to identification of Pareto-optimal control archi-
tectures, which allow design engineers to explore opti-
mal trade-offs between cost and performance.
The presented framework was applied to a gas-lifted

oil field model featuring two oil wells; four possible ma-
nipulated variables and twelve potential measured vari-
ables were present. To evaluate the impact of differ-
ent control architectures on closed-loop control perfor-
mance, we employed linear quadratic Gaussian (LQG)
control design. LQG controllers were designed based
on the Pareto-optimal control architectures and non-
optimal architectures for comparison. The system re-
sponses were evaluated in terms of their settling times.
Our analysis led to the following key observations:

• Control architecture significantly influences sys-
tem performance.

• Several potential measured variables consistently
appeared in nearly all identified optimal solutions,
highlighting the need for physical sensors for these
specific variables.

• A well-balanced distribution of sensors between oil
wells is important.

• Introducing more sensors beyond the “critical”
ones leads to diminished performance gains.

• Simultaneous actuation of the production valve
alongside the gas-lift valve does not contribute to
enhanced performance.

This research has established the foundational
framework for further exploration of the control ar-
chitecture design problem for oil and gas production
systems. Future research avenues could include:

• Enhancing the actuator selection approach by in-
corporating specific criteria to address bandwidth
limitations.

• Introducing a performance criterion that is more
“directly” comparable to the cost of equipment.
For example, quantifying the extent to which the
setpoint can approach a hard constraint offers a
more direct comparison to equipment costs than
conventional measures of controllability or observ-
ability.

• Incorporating considerations for uncertainties
within the framework, leading to more robust con-
trol architectures.

• Incorporating considerations for practical con-
straints in system variables.

Our paper contributes to the field of oil and gas pro-
duction by advocating for a paradigm shift in control
architecture design process. Specifically, we highlight
the imperative for a more holistic approach, integrat-
ing both performance and cost considerations. The
key contribution lies in bringing into perspective sev-
eral distinct yet related metrics to achieve this holis-
tic perspective. In essence, our research propels the
advancement of control system design in the oil and
gas industry, offering valuable insights that can be ap-
plied to address similar challenges in other complex
processes.
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A. Linearized Oil Field Model

The nonlinear oil field model presented by Jayamanne
(2021) was linearized around the following operating
point:

x0 =
[
1.8208, 1.1773, 2.2191, 1.7053, 1.1492, 1.9696

]
,

u0 =
[
4.1500, 30.0000, 4.1500, 30.0000

]
.

The following ranges were used to normalize the lin-
earized model:

[
xmin xmax

]
=


1.4580 2.1823
1.1622 1.2321
2.1530 2.2540
1.3648 2.0445
1.1321 1.1970
1.9057 2.0119

 ,

[
umin umax

]
=


3.4583 4.8417
25.0000 30.0000
3.4583 4.8417
25.0000 30.0000

 ,

[
ymin ymax

]
=



459.37 687.58
526.98 788.78
129.94 132.51
33.45 34.96
3.46 4.84
63.71 83.30
463.44 694.26
533.84 799.72
128.24 131.74
32.94 34.22
3.46 4.84
58.74 76.28



.

The state space model matrices of the normalized oil
field model are as follows:

94

http://dx.doi.org/10.1016/0005-1098(72)90044-1
http://dx.doi.org/10.1109/TAC.2014.2351673
http://dx.doi.org/10.1002/aic.690490612
http://dx.doi.org/10.1017/jfm.2022.1043
http://dx.doi.org/10.1109/TAC.2015.2437525
http://dx.doi.org/10.1016/j.compfluid.2017.10.002
http://dx.doi.org/10.1016/j.apenergy.2016.08.006
http://dx.doi.org/10.4173/mic.1996.3.1
http://dx.doi.org/10.1109/TAC.1987.1104550
http://dx.doi.org/10.3182/20140824-6-ZA-1003.00226
http://dx.doi.org/10.3182/20140824-6-ZA-1003.00226
http://dx.doi.org/10.1016/S0005-1098(00)00181-3
http://dx.doi.org/10.1109/JSEN.2018.2789523


Jayamanne and Lie, “Optimal Control Architecture in Oil and Gas Production”

A =


−0.0002 0 0 0 0 0
0.0200 −0.0385 −0.0234 0 0 0

0 −0.0808 −0.0870 0 0 0
0 0 0 −0.0002 0 0
0 0 0 0.0216 −0.0460 −0.0296
0 0 0 0 −0.0650 −0.0704

 ,

B =


0.0002 0 0 0

0 −0.0099 0 0
0 −0.0129 0 0
0 0 0.0002 0
0 0 0 −0.0107
0 0 0 −0.0112

 ,

C =



1.0000 0 0 0 0 0
1.0000 0 0 0 0 0

0 1.9538 2.9475 0 0 0
0 3.1259 2.2228 0 0 0

1.0090 0.0178 0.0268 0 0 0
0 2.5143 1.8743 0 0 0
0 0 0 1.0000 0 0
0 0 0 1.0000 0 0
0 0 0 0 1.3538 2.3496
0 0 0 0 3.4518 2.5670
0 0 0 1.0124 0.0168 0.0292
0 0 0 0 2.8832 2.2484



,

D =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0.7009 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0.7152



.
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