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Abstract

This paper presents a scenario-based optimization framework applied to Daily Production Optimization
(DPO) for an Electric Submersible Pump lifted oil field under parametric uncertainty. The study also
develops a simplified combined well–reservoir model, which is used solely to assess the performance of
the methods in a more realistic setting. The combined model consists of the steady-state model of wells
combined with the reservoir model through bottom hole pressure and well flow. Moreover, it successfully
represents the change in uncertain parameters based on reservoir dynamics rather than random variations.
The superiority of scenario-based DPO and the importance of considering uncertainty are demonstrated
through extensive comparisons between deterministic and robust methods. The comparisons show that
the deterministic DPO fails to satisfy output constraints, leading to violations, particularly in wellhead
pressure. Conversely, the scenario-based DPO exhibits significant potential for real oil field application,
effectively respecting all input and output constraints. Nevertheless, this safety comes at the cost of
sacrificing net profit to some extent. The research emphasizes the importance of considering uncertainty
in DPO for oil field operations, providing valuable insights for achieving robustness and operational safety.

Keywords: ESP Lifted Oil Well, Scenario-based Robust Optimization, Constrained Optimization under
Uncertainty, The MATLAB Reservoir Simulation Toolbox (MRST), Combinded Well–Reservoir Model

1 Introduction

Decisions made at various time scales have a signif-
icant impact on the cost and revenue of an oil and
gas production unit. Depending on the goals, these
decisions can span from immediate choices made in
seconds to long-term plans encompassing the entire
lifespan of the field. Daily Production Optimization
(DPO), also known as Real-Time Optimization (RTO)
in the context of process systems, corresponds to the
decisions and plans that are taken within a timeframe
ranging from a few hours to a couple of days to maxi-
mize the daily operating revenue from the production

unit. Typical decisions in this area involve selecting
the choke opening of the different wells or allocating
shared resources such as available electric power and
lift gas. These decisions aim to maximize the daily
operational profit while simultaneously ensuring the
fulfillment of process and operating constraints Krish-
namoorthy et al. (2019). Studies have reported the
advantageous impact of daily production optimization,
resulting in an increase in production within the range
of 1-4% Stenhouse et al. (2010); Teixeira et al. (2013).
These improvements are even more pronounced for
fields in the late plateau and decline phases than ear-
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lier phases Foss et al. (2018). On the other hand, it is
widely acknowledged that real-life implementations of
constrained optimization may be jeopardized by the
presence of uncertainty as the mismatch introduced
due to uncertainty may potentially lead to constraint
violation and make an optimal solution practically in-
feasible Janatian and Sharma (2023a); Janatian et al.
(2022). Thus, this paper aims to extend the current
boundaries of daily production optimization under un-
certainty one step further by investigating the daily
production optimization problem for an Electric Sub-
mersible Pump (ESP) lifted oil field under the presence
of uncertainty to bring it closer to practical implemen-
tation in real-world scenarios.

Mathematical modeling of a single ESP oil well was
proposed in Pavlov et al. (2014). Furthermore, a lin-
ear model predictive control (MPC) was designed in
the Statoil Estimation and Prediction Tool for Identi-
fication and Control (SEPTIC) based on the step re-
sponse model of the process, which was later imple-
mented on a Programmable Logic Controller (PLC) in
Binder et al. (2014). It was shown in Krishnamoorthy
et al. (2016a) that the linear model of an ESP lifted well
varies significantly depending on the choke opening.
Therefore, a model adaptation based on the homotopic
transition between models was proposed in Delou et al.
(2019), where an adaptive linear MPC strategy was
implemented as a Quadratic Dynamic Matrix Control
(QDMC) algorithm in order to control the pump inlet
pressure, minimizing the pump power and respecting
the variable’s constraints. An adaptive infinite horizon
MPC strategy was also implemented in Santana et al.
(2021), where the proposed control law used succes-
sive linearization of the dynamic model of ESP to up-
date the model internally. The ESP model was used in
Binder et al. (2019) to investigate the implementation
aspects of measured disturbances in MPC. The main
control objective in this work was to sustain a given
production rate from the well while maintaining ac-
ceptable operating conditions for the pump. Recently,
an Echo State Neural Network was trained in Jordanou
et al. (2022) to capture the dynamic model of ESP well.
The trained neural network was used for two nonlinear
model predictive controllers that aimed to track the
bottom-hole pressure subject to constraints on control
inputs, bottom-hole and well-head pressures, and liq-
uid flows. Nevertheless, the control presented in the
aforementioned studies aimed to track a certain set
point (mostly bottom-hole pressure). This type of ob-
jective corresponds to the lower layer (Control and Au-
tomation layer as described in Foss et al. (2015)) in the
multilevel control hierarchy, where the set points are
determined by the higher level called Production Opti-
mization to be tracked. Therefore, none of these works

have answered the principal question of DPO, which
is: What is the optimal production allocation from each
well to maximize the overall economic objective?

A similar first principle model was developed in
Sharma and Glemmestad (2014b) for multiple ESP
wells that share a common production manifold. The
steady-state version of this model was used in Sharma
and Glemmestad (2013) to develop a nonlinear op-
timization based on Sequential Quadratic Program-
ming (SQP) for two optimal control strategies. The
same model was used later in Sharma and Glemmes-
tad (2014a) to calculate and identify the number of oil
wells that should be used for special cases with low pro-
duction demand by formulating a Mixed Integer Non-
linear Programming problem (MINLP). The dynamic
version of the model was also exploited in Sharma and
Glemmestad (2014c), where the nonlinear model pre-
dictive control framework was implemented as an eco-
nomic optimizer for maximizing profit. Despite assum-
ing constant controls throughout the prediction hori-
zon, the length of the prediction horizon was restricted
to one second due to the fast dynamics of ESP and
the significant computational expenses associated with
a longer prediction horizon. Furthermore, the uncer-
tainty was neglected, while it is well known that the
uncertainty in the parameters can make the optimal
solution practically infeasible due to the mismatch be-
tween the prediction model and the real process Jana-
tian and Sharma (2023b).

In spite of the numerous studies on daily production
optimization, such as Mohammadzaheri et al. (2016);
Mej́ıa et al. (2018); Epelle and Gerogiorgis (2019); Hoff-
mann and Stanko (2017); Müller et al. (2022) to name
a few, the uncertainty has rarely been taken into ac-
count in the optimization problem explicitly. Therefore
this paper aims to fill this knowledge gap by extending
our previous research work presented in Janatian and
Sharma (2023c) by incorporating a more sophisticated
representation of the actual plant in order to facilitate
the implementation of the method in real-life applica-
tion. To accomplish this objective, the scenario-based
optimization framework has been used in this paper for
robust optimization under uncertainty. The Principal
aspect of the method involves incorporating a scenario
tree to represent finite realizations of uncertainty. The
method was integrated into a nonlinear model predic-
tive control scheme in Lucia et al. (2013) for dynamic
optimization of semi-batch polymerization reactor un-
der uncertainty. It was also used in the domain of oil
production to optimally allocate a limited amount of
available lift gas between multiple wells in a gas-lifted
oil field Janatian and Sharma (2022); Krishnamoorthy
et al. (2016b). However, using the dynamic model of
ESP for DPO becomes problematic since the fast dy-
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namics of the pumps require a short sampling time,
and the number of decision variables over a relatively
long horizon, such as in DPO, becomes intractable. Ac-
cordingly, the piecewise steady operation of the plant
is assumed throughout the prediction horizon. More
specifically, the prediction horizon of DPO is divided
into segments, and the plant is considered to operate at
a possibly new steady state over each segment. There-
fore, the steady-state model of the plant is used as the
prediction model to determine the future of the sys-
tem over each segment. The authenticity of this as-
sumption is discussed thoroughly in Foss et al. (2018);
Janatian and Sharma (2023c), which state that succes-
sive static optimization suffices in most relevant DPO
cases and the ESP system is sufficiently fast that the
transition between steady states is negligible and can
be disregarded. As a result, the daily production op-
timization is formulated as successive scenario-based
optimization problems in a receding horizon fashion to
address the constraint fulfillment under the presence
of uncertainty. In other words, only the first optimal
decision is implemented in the plant, and the whole op-
timization process will be repeated at each time step.

Although both the current and previous work in Ja-
natian and Sharma (2023c) make use of a simple linear
well flow model with productivity index and water cut
in the optimization problem, the distinction between
the two works lies in the inclusion of a more advanced
plant model in this work to accurately portray the ac-
tual process. To this end, a reservoir model is coupled
in a simple and efficient way to represent the real pro-
cess. Particularly, instead of testing the optimization
algorithm against the same linear model with differ-
ent parameters, a coupled well-reservoir model is tai-
lored to evaluate the performance of the optimization
algorithm. Thus, this work contributes to two major
aspects:

• First, incorporating the explicit notion of uncer-
tainty in DPO as a short-term production opti-
mization.

• Second, investigating the performance of the
method against a more sophisticated representa-
tion of the real process.

The rest of the paper is organized as follows. Sec-
tion 2 describes the process, including the mathemat-
ical modeling of the ESP oil wells and the coupled
well–reservoir model. The problem formulations for
both standard deterministic DPO and robust scenario-
based DPO are presented in Section 3. The considered
case study and the simulation setup are presented in
Section 4. The simulation results are presented and
discussed in Section 5 before concluding in Section 6.

Reservoir

ESP1 ESP2 ESP3

Figure 1: Schematic diagram of three ESP lifted oil
wells.

2 Process Description

2.1 ESP Lifting Method

ESP lifting method is an ideal artificial lifting method
for producing substantial quantities of dense and vis-
cous hydrocarbons Takacs (2017). In this method, an
electrical submersible multistage centrifugal pump is
installed at the bottom of the wellbore Sharma and
Glemmestad (2014b) to produce the required pres-
sure gradient for bringing the fluid to the surface. A
schematic diagram of ESP lifted production unit with
three oil wells is presented in Figure 1. Each well, as
demonstrated in Figure 1, is equipped with a separate
ESP unit at the bottom hole and a production chock
valve at the wellhead. During normal operation, the
volumetric production rate of individual wells can be
regulated by adjusting the pump speed, as it is more
beneficial to maintain the production choke valves in a
fully open position. Eventually, the oil produced from
each well is routed through the top-side network to-
ward the separator for further processing.

Simple mechanistic models of ESP-lifted oil wells
are developed in Pavlov et al. (2014); Sharma and
Glemmestad (2014b) for optimization and control pur-
poses. Both models are derived by applying the mass
and momentum balance principles to the pipelines.
This paper considered a similar mathematical model
adopted from Sharma and Glemmestad (2014b) with
minor adjustments made to certain assumptions:
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• Modeling the electrical motors subsystem is ne-
glected due to the fast response of electrical sys-
tems.

• Water cuts of the wells are considered to be differ-
ent to draw a meaningful optimization problem.

• Modeling the common production manifold and
transportation lines are neglected, as it is elabo-
rated upon below.

It is worth mentioning that the well model, in a nut-
shell, is nothing but a flow model through a pipe.
And it is typically defined by two boundary pressures,
namely the reservoir pressure on one end and the sepa-
rator or manifold pressure on the other end. However,
for the considered model in this paper, the top-side
boundary pressure is discarded, and two boundary con-
ditions are considered at the bottom hole, namely the
boundary pressure (bottom hole pressure) and bound-
ary flow (reservoir inflow). As a result, the produc-
tion choke valve is excluded, and the top-side pressure
(wellhead pressure) is treated as a free variable. The
justification for this assumption is threefold:

• Firstly, the well model is going to be coupled with
the reservoir model through the flow and pressure
at the bottom hole; therefore, specifying a bound-
ary pressure at the top side of the well model re-
sults in an overdetermined subsystem.

• Secondly, the main objective of this paper is to
find the optimal production from each well that
maximizes the total economic profit, and routing
the produced fluid through the top-side network
toward the separator falls out of the scope of this
paper. Accordingly, putting constraints on the
wellhead pressure is sufficient to address the top-
side operational constraint in this work.

• Finally, although a more sophisticated coupling
between the well model and reservoir model could
be possible, it requires solving both the reservoir
and well model simultaneously. This is compu-
tationally expensive and makes the optimization
problem intractable.

2.2 Governing Equations

This section only briefly presents the governing equa-
tions of the process since modeling is not the main fo-
cus and contribution of this work. However, the readers
are referred to Sharma and Glemmestad (2014b) for a
more detailed explanation of the modeling.

The process is described by three states for each well,
namely, the pressure at the bottom hole pibh, the pres-
sure at the wellhead piwh, and the average volumetric

flow rate of the well qit, where the superscript i refers
to the ith oil well. The corresponding differential equa-
tions are given by:

ṗibh =
β

V i

[
qir − qit

]
(1a)

ṗiwh =
β

V i

[
qit − qic

]
(1b)

q̇it =
Ai

ρilL
i

[
pibh − piwh + ρilgH

i
esp − ρilgL

i −∆pif
]

(1c)

The steady-state equations of the model can simply
be determined by setting the right-hand side of differ-
ential equations (1) to zero.

qir − qit = 0 (2a)

qit − qic = 0 (2b)

pibh − piwh + ρilgH
i
esp(q

i
t, f

i)− ρilgL
i −∆pif = 0 (2c)

And the set of algebraic equations is given by:

qir = PIi
(
pr − pibh

)
(3)

∆pif =
fDLρυ2

2Dh
(4)

Hi
esp = c̄0(

f

f0
)2 + c̄1(

f

f0
)qit + c̄2q

i
t

2
+ c̄3(

f0
f
)qit

3
(5)

BHP i
esp = ĉ0(

f

f0
)3 + ĉ1(

f

f0
)2qit + ĉ2(

f

f0
)qit

2
+

ĉ3q
i
t

3
+ ĉ4(

f0
f
)qit

4
(6)

ρil = WCiρw + (1−WCi)ρo (7)

qio = (1−WCi)qit (8)

qiw = WCiqit (9)

All the algebraic variables of the model are intro-
duced in Table 1. The Darcy friction factor fD in
equation (4) can be evaluated using Serghides’ explicit
approximation to Colebrook-White equation Serghides
(1984). The polynomial coefficients of ESP in equa-
tions (5) and (6) are also presented in Table 2 and all
the numerical values of the parameters are presented
in Table 3.

Note that the model is described by a set of algebraic
equations presented in eqs. (2) to (9), which can be
encapsulated in a compact form as:

F(x, u, d) = 0 (10)

where x ∈ R10nw and u ∈ R2nw are the algebraic vari-
ables and system inputs, and d ∈ R2nw is the vector of
the uncertain parameters of the process. nw represents
the number of wells, and bold typeface in (11) means
the vector that encompasses that variable for all the
wells.
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Table 1: List of the algebraic variables and parameters.

Variable Description

qr Volumetric flow rate from reservoir into well
qt Volumetric flow rate through well
qc Volumetric flow rate through production choke valve
pbh Bottom hole pressure
pwh Wellhead pressure
f Frequency of ESP
Hesp Head developed by ESP
BHPesp ESP brake horsepower
ρl Density of the fluid in the well
∆pf Frictional pressure drop in the pipe
qo Volumetric flow rate of oil
qw Volumetric flow rate of water
PI Productivity index
WC Water cut

Table 2: Polynomial coefficients of ESP.

c̄0\ĉ0 c̄1\ĉ1 c̄2\ĉ2 c̄3\ĉ3 c̄4\ĉ4
Hesp 467.248 10.937 -0.212 7.649e-04

BHPesp 224.988 0.740 -6.884e-04 2.178e-06 -5.469e-09

x =

[
pbh pwh qr qc qo qw

Hesp BHPesp ρl ∆pf

] T (11a)

u =
[
f qt

]T
(11b)

d =
[
PI WC

]T
(11c)

2.3 Well–Reservoir Coupling

The interactions between the two main components of
the coupled model, namely the reservoir and well mod-
els, are demonstrated in the block diagram presented
in Figure 2, in which the optimal values of the decision
variables are denoted by the ∗ superscript. As shown
in this figure, the optimal values of the ESP frequency
f∗ and production rate q∗t are calculated by the op-
timizer and injected into the plant as inputs. More
specifically, the optimal production rate q∗t is fed into
the reservoir model as the ”well control,” while the true
response from the reservoir (i.e., true production rate
qt and bottom hole pressure pbh) is utilized alongside
the optimal pump frequency f∗ in the well model to
compute other outputs, such as wellhead pressure pwh

and head of the pump Hesp, etc.
Employing this straightforward coupled model in-

stead of a well model with synthetic varying param-
eters makes it possible to benefit from a more accurate

representation of the plant by capturing the variation
of uncertainty interactively in accordance with the dy-
namic of the reservoir and its history.

2.4 Uncertainty Description

Given the fact that the water cut and productivity in-
dex are computed at every sampling time, and their
values at each sampling time are potentially different
from their previous values at the previous sampling
time, the uncertainty is inherently incorporated into
the plant. However, a deviation of ±10% and ±20%
from their actual values are added to them, respec-
tively, as demonstrated in Figure 2, to represent the
fact that the actual values of the uncertainties are un-
known to the controller.

3 Problem Formulation

3.1 Standard Deterministic DPO

This section presents the standard deterministic op-
timization using the steady-state model over a finite
prediction horizon. The plant is assumed to operate in
a piecewise steady manner throughout the prediction
horizon. This implies that the prediction horizon of
DPO is divided into segments, and the plant is con-
sidered to operate at a possibly new steady state over
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Table 3: List of the parameters and their corresponding values.

Parameter Value Unit Comments

L 2100 [m] Length of well above ESP
D 0.1569 [m] Diameter of all pipelines
A 0.0193 [m2] Cross section area of all pipelines
ρo 900 [kg/m3] Density of water
ρw 1000 [kg/m3] Density of oil
pr 400 [bar] Pressure of the reservoir
µo 100e-6 [m2/s] Kinematic viscosity of oil
µw 1e-6 [m2/s] Kinematic viscosity of pure water
f0 60 [Hz] ESP characteristics ref. freq.

Qf0,min 161.591 [m3/d] ESP minimum flow at ref. freq.
Qf0,max 395.252 [m3/d] ESP maximum flow at ref. freq.

Reservoir
Model

Robust DPO

Well Model

Optimizer

Well Model

𝑓∗

𝑞𝑡 , 𝑝𝑏ℎ

𝑞𝑡
∗

𝑃𝐼 , 𝑊𝐶

𝑝𝑤ℎ
𝑞𝑜
𝑞𝑤
𝐻𝑒𝑠𝑝
𝐵𝐻𝑃𝑒𝑠𝑝

𝛿𝑃𝐼 ,𝛿𝑊𝐶

Plant

Figure 2: Block diagram of the coupled model and ro-
bust optimizer.

each segment.
The primary objective is to adjust the decision vari-

ables, namely pump frequencies and inflow to the wells,
in order to produce an optimal amount of fluid from
each well which maximizes the total profit from the
production and takes into account all the operational
constraints. Therefore, the economic objective func-
tion includes the total income from selling the pro-
duced oil with a negative sign to pose it as a min-
imization problem. Additionally, the costs associated
with electric power consumption of the ESPs and water
treatment are incorporated into the objective function.
Hence, over the prediction horizon K = {1, ..., Np} with
the length Np the objective function is given by:

Jeco =

Np∑
k=1

(
−co

nw∑
i=1

qi,ko + ce

nw∑
i=1

BHP i,k
esp + cw

nw∑
i=1

qi,kw

)
(12)

where co, ce, and cw denote the price of oil and costs
due to the use of electricity and water treatment, re-
spectively.

The most important operational constraints in the
problem arise from separator handling capacity and the
ESP operating envelope, and the pressures. In particu-
lar, the magnitude of produced fluid (comprising both
oil and water) should not exceed the separator capac-
ity, and the ESP pumps need to be maintained within
a safe operating window to avoid mechanical failure.
Additionally, it is required to keep the bottom hole
pressure and wellhead pressure within range to ensure
the safe operation of the system. Thus, the optimal
control problem formulation over the prediction hori-
zon is given by:

min
x,u

Jeco(x,u,d) (13a)

s.t. F (xk, uk, dk) = 0, ∀k ∈ K (13b)
nw∑
i=1

qi,kt ≤ Qsep, ∀k ∈ K (13c)

Qi,k
min ≤ qi,kt ≤ Qi,k

max, ∀k ∈ K (13d)

pmin
bh ≤ pi,kbh ≤ pmax

bh , ∀k ∈ K (13e)

pmin
wh ≤ pi,kwh ≤ pmax

wh , ∀k ∈ K (13f)

fmin ≤ f i,k ≤ fmax, ∀k ∈ K (13g)

The equality constraint in (13b) denotes the steady
state of the system at each segment of the prediction
horizon. The constraint on the total produced fluid is
enforced in (13c), where Qsep stands for the maximum
handling capacity of the separator. The safe opera-
tion of the ESP pumps within the pump envelope is
denoted in (13d) by maintaining the pump flow be-
tween the minimum and maximum allowed flow which
is provided by the ESP manufacturer. The lower and
upper bounds on bottom hole pressure and wellhead
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pressure are also implemented in (13e) and (13f), re-
spectively. Finally, (13g) ensures the pump frequency
is maintained within the range. The optimization prob-
lem should be solved in a receding horizon fashion,
meaning only the first control action is implemented,
and the optimization problem will be solved again at
the next sampling time. It should also be noted that
the parameters used in the control design are deviated
(uncertain) parameters, as the exact values of the pa-
rameter are not known.

3.2 Robust Scenario-based DPO

According to the scenario-based optimization ap-
proach, the uncertainty region is discretized into a fi-
nite number of distinct possible realizations. These
realizations are used to evaluate the system’s future by
employing a scenario tree. This implies that the future
evolution of the plant is split into multiple branches,
each representing a different trajectory based on the
specific realization of the uncertainty that occurs in re-
ality. Nonetheless, the drawback of the method is that
the calculations may become intractable as the num-
ber of scenarios grows exponentially with the number
of considered uncertainty and the length of the pre-
diction horizon. Accordingly, the concept of robust
horizon emerged to address this limitation. The ro-
bust horizon means the continuation of branching is
limited to only a limited number of samples which is
typically one or two sampling times ahead in time. The
justification for a robust horizon lies in the fact that
the corresponding control variables and state trajecto-
ries will be recalculated and refined in future sampling
times; hence, the far future uncertainty does not need
to be represented precisely.
In this paper, the scenario-based optimization

method is employed, considering a total of Ns =
26 + 1 = 65 possible realizations or branches for un-
certainties. These realizations encompass all combina-
tions of the maximum and minimum values of the six
uncertain parameters and the nominal case. The sce-
nario tree, depicted in Figure 3, illustrates the branch-
ing structure with a robust horizon of Nr = 1. Each
path from the root node to a leaf node represents a sce-
nario; hence the term ”scenario-based optimization” is
used to describe this method.
It is worthwhile to mention that this formulation im-

poses an extra constraint which is known as a non-
anticipativity constraint. This constraint represents
the fact that in real-time decision-making, the decision-
maker is not able to anticipate the future realization
of the uncertainty. Therefore, all the decisions that
branch from a parent node are equal.

After defining the scenario tree and its prerequisites,
the objective function for each scenario j can be com-

Prediction horizon

Robust horizon

Figure 3: Scenario tree with Ns = 65 scenarios and
robust horizon Nr = 1.

puted as follows:

Jj
eco =

Np∑
k=1

(
−co

nw∑
i=1

qi,j,ko + ce

nw∑
i=1

BHP i,j,k
esp + cw

nw∑
i=1

qi,j,kw

)
(14)

Accordingly, the optimization problem can be for-
mulated over all the discrete scenarios of the scenario
set S = {1, ..., Ns}, throughout the prediction horizon
K = {1, ..., Np} as follows:

min
x,u

Ns∑
j=1

ωjJ
j
eco (15a)

s.t. F
(
xj
k, u

j
k, d

j
k

)
= 0, ∀k ∈ K,∀j ∈ S

(15b)
nw∑
i=1

qi,j,kt ≤ Qj
sep, ∀k ∈ K,∀j ∈ S

(15c)

Qi,k
min ≤ qi,j,kt ≤ Qi,k

max, ∀k ∈ K,∀j ∈ S
(15d)

pmin
bh ≤ pi,j,kbh ≤ pmax

bh , ∀k ∈ K,∀j ∈ S
(15e)

pmin
wh ≤ pi,j,kwh ≤ pmax

wh , ∀k ∈ K,∀j ∈ S
(15f)

fmin ≤ f i,j,k ≤ fmax, ∀k ∈ K,∀j ∈ S
(15g)

uj
k = ul

k if x
p(j)
k = x

p(l)
k , ∀k ∈ K,∀j&l ∈ S

(15h)

where Jj
eco in (15a) is the objective function of the jth

scenario and ωj is the corresponding tuning weight that
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reflects the relative likelihood of occurring jth scenario.
The steady condition of the system is implemented as a
constraint in (15b). It ensures that the states at every
time k ∈ K from scenario j are at a steady condition
which is a function of their corresponding control uj

k

and uncertainty realization djk. The constraints on the
separator capacity, pump envelope, and pressures are
imposed in (15c), (15d), (15e), and (15f), respectively.
And the constraints on the pump frequency are en-
forced in (15g). Moreover, the non-anticipativity con-
straint is introduced in (15h), which reflects the fact
that at each time step k, controls uj

k and xl
k from sce-

narios j and l with the same parental node x
p(j)
k = x

p(l)
k

have to be equal. In other words, all the controls that
are branched from the same parental node are equal. It
should be noted that, as shown in Figure 3, branching
has been done only for the first sampling time. There-
fore, u1

1 = u2
1 = ... = u64

1 = u65
1 is the only set of

non-anticipativity constraints in the problem, and ac-
cording to the receding horizon strategy, this first con-
trol action is the one that will be applied to the real
system. Hence, the non-anticipativity constraint guar-
antees that this value is unique.

4 Case Study

4.1 Reservoir Model

The ‘Egg Model’ is a synthetic reservoir model con-
sisting of an ensemble of 101 relatively small three-
dimensional realizations of a channelized oil reservoir
produced under water flooding conditions with eight
water injectors and four oil producers. The ‘standard
version’ of the model introduced in Jansen et al. (2014)
is used as the case study in this paper. The reservoir is
demonstrated in Figure 4. The majority of the charac-
teristics of the reservoir, such as rock properties, geom-
etry, etc., remained unchanged. Nevertheless, there are
a few minor modifications to meet our requirements.
These modifications include:

• The model originally consisted of four production
wells and eight injection wells; however, as demon-
strated in Figure 4 only three producers are con-
sidered in this study.

• The compressibility of oil is set to 1e-3 in order to
avoid an unrealistic response.

• The limits on all producer wells are removed as the
controller is responsible for satisfying these con-
straints.

• The injection rate is scaled up to 112.5 [m3/d] to
be consistent with the top side model and require-
ments.

Figure 4: The modified reservoir model with three pro-
ducers and eight injectors.

• The well control for the producers is changed from
bottom hole pressure to total rate, which is pro-
vided by the optimizer.

4.2 Simulation Setup

The standard deterministic DPO presented in Sec-
tion 3.1 and the robust scenario-based DPO proposed
in Section 3.2 and a third ’No Control’ scenario are sim-
ulated to investigate the different aspects of the meth-
ods. The so-called ’No Control’ scenario, as its name
suggests, does not involve any production optimization
and assumes the separator capacity is shared equally
between three producers. More specifically, each pro-
ducer produces one-third of the separator capacity. All
scenarios are tested against the coupled model in a
setup demonstrated in the block diagram of Figure 2.

All the parameters of the wells are presented in Ta-
ble 2 and Table 3. The price of oil and the costs asso-
ciated with the electricity and water treatment, which
are used in equations (12) and (14), are presented in
Table 4. All the sixty-five weights ωj for sixty-five sce-
narios in the robust method (15a) are considered to
be equally one as all the scenarios are equally likely
to occur. The other boundaries of the constraints in
the optimization problems defined in (13) and (15) are
the same. The separator capacity is considered to be
Qsep = 900 [m3/d]. The bottom hole pressures are
considered to be limited between pmin

bh = 200 [bar]
to pmax

bh = 400 [bar]. The lower and upper limits
on the Wellhead pressures are pmin

wh = 150 [bar] and
pmax
wh = 300 [bar], respectively. The production from

each well is limited between Qmin = 150 [m3/d] to
Qmax = 500 [m3/d]. The pump frequencies are main-
tained between fmin = 45 [Hz] and fmax = 80 [Hz], and
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(a) Well 1 (b) Well 2 (c) Well 3

Figure 5: Frequency of ESPs for the production wells.

the pump envelope at each frequency is computed by
the affinity law.
A prediction horizon of three days with a sampling

time of one day is used for both optimization prob-
lems. The optimization problems are implemented in
CasADi v.3.5.5 in MATLAB R2022b. The IPOPT
v.3.14.1 solver has been used to solve the problem on
a 1.8 GHz laptop with 16 GB memory. The MAT-
LAB Reservoir Simulation Toolbox (MRST) Lie and
Møyner (2021) has been used for reservoir simulation.

Table 4: Price of oil, electricity, and water treatment.

Price Value Unit

co 20.03 [$/bbl]
ce 0.146 [$/kWh]
cw 3.02 [$/bbl]

5 Results and Discussion

Two simulation cases are conducted to examine vari-
ous aspects of the method. The first simulation case
presents a comparison among three scenarios: deter-
ministic DPO, robust DPO, and the ’No Control’ sce-
nario, which serves as the baseline. The frequency of
ESPs for each of these three scenarios is plotted in Fig-
ure 5. The other decision variable, which is the pro-
duction rates, is also Figure 6. It can be seen that all
upper and lower bounds are successfully respected, as
there is no uncertainty associated with the control in-
puts. For the same reason, the ESPs for both methods
operate within the operating envelope as demonstrated
in Figure 7.
However, the other constraint on the outputs, such

as the bottom hole and wellhead pressures, may be vi-
olated due to the presence of uncertainty. Bottom hole
pressures of three scenarios are presented in Figure 8,
and the wellhead pressures are presented in Figure 9.
The simulation results clearly show that the robust
DPO effectively handles the uncertainty, whereas the

deterministic DPO leads to constraint violations for a
great amount of time.

The subplot (a) in Figure (10) depicts the cumulative
profit for each of the three scenarios. In comparison to
the baseline scenario, the deterministic DPO shows a
total increase of 9.5% in net profit, whereas the robust
DPO increases the net profit only by 1.9%. On the
other hand, the instantaneous profit from subplot (10b)
indicates that both the robust and deterministic DPOs
exhibit similar behavior during the initial phases of
production. However, as production continues, their
divergence becomes more noticeable. Notably, it can
be seen from Figure 9 that this differentiation between
the two controllers aligns with the constraint violation.
In other words, ensuring robust constraint fulfillment
comes at a cost, and the price that needs to be paid is
to sacrifice potential profit in order to ensure safe and
reliable operations.

A second comparison is performed to demonstrate
the capability of robust DPO for handling uncertainty.
To this end, both methods are tested against the un-
certain plant in 20 scenarios with 20 extreme realiza-
tions of uncertainty. These uncertainty realizations, as
presented in Table 5, are random combinations of the
uncertainty bounds. The results of these forty simula-
tions are presented throughout Figure 11 to Figure 15.
As depicted in Figure 11 and Figure 12, the frequency
and pump flow for both methods remain within the
constrained bounds since no uncertainty is associated
with the control inputs. Consequently, the pump en-
velope constraint is successfully fulfilled by both meth-
ods, as illustrated in Figure 13. However, the con-
straint on pressures may be violated. Figure 14 and
Figure 15 depict the bottom hole and wellhead pres-
sure, respectively. It can be observed that the con-
straint on wellhead pressure is violated by determin-
istic DPO, whereas the robust DPO effectively fulfills
the constraint all the time.
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(a) Well 1 (b) Well 2 (c) Well 3

Figure 6: Total fluid flow rates through ESPs in Production wells.

(a) Deterministic DPO (b) Multistage DPO

Figure 7: Operating window of ESPs for different scenarios.

(a) Well 1 (b) Well 2 (c) Well 3

Figure 8: Bottom hole pressure of the production wells.

(a) Well 1 (b) Well 2 (c) Well 3

Figure 9: Wellhead pressure of the production wells.
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(a) Cumulative profit (b) Instantaneous profit

Figure 10: Net profit (−Jeco) from production in three scenarios.

Table 5: Twenty random extreme scenarios considered for simulation.

Scenario δPI1 δPI2 δPI3 δWC1 δWC2 δWC3

1 -10% -10% -10% -20% 20% -20%
2 10% 10% -10% -20% -20% -20%
3 10% -10% 10% -20% -20% -20%
4 10% -10% -10% 20% -20% -20%
5 -10% 10% -10% -20% 20% -20%
6 -10% -10% -10% 20% -20% 20%
7 10% 10% 10% -20% -20% -20%
8 10% 10% -10% 20% -20% -20%
9 10% 10% -10% -20% 20% -20%
10 10% -10% 10% 20% -20% -20%
11 10% -10% 10% -20% -20% 20%
12 10% -10% -10% 20% -20% 20%
13 -10% 10% 10% -20% 20% -20%
14 -10% 10% -10% 20% -20% 20%
15 -10% -10% 10% 20% -20% 20%
16 10% 10% 10% 20% -20% -20%
17 10% 10% 10% -20% 20% -20%
18 10% 10% 10% -20% -20% 20%
19 10% 10% -10% 20% -20% 20%
20 -10% 10% 10% -20% 20% 20%
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(a) Deterministic - Well 1 (b) Deterministic - Well 2 (c) Deterministic - Well 3

(d) Robust - Well 1 (e) Robust - Well 2 (f) Robust - Well 3

Figure 11: Frequency of ESPs for the production wells.

(a) Deterministic - Well 1 (b) Deterministic - Well 2 (c) Deterministic - Well 3

(d) Robust - Well 1 (e) Robust - Well 2 (f) Robust - Well 3

Figure 12: Total fluid flow rates through ESPs in Production wells.
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(a) Deterministic DPO (b) Robust DPO

Figure 13: Operating window of ESPs for different scenarios.

(a) Deterministic - Well 1 (b) Deterministic - Well 2 (c) Deterministic - Well 3

(d) Robust - Well 1 (e) Robust - Well 2 (f) Robust - Well 3

Figure 14: Bottom hole pressure of the production wells.
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(a) Deterministic - Well 1 (b) Deterministic - Well 2 (c) Deterministic - Well 3

(d) Robust - Well 1 (e) Robust - Well 2 (f) Robust - Well 3

Figure 15: Wellhead pressure of the production wells.

6 Conclusion

This paper utilized the scenario-based optimization
framework to address the robust fulfillment of the con-
straint in Daily Production Optimization for an ESP
lifted oil field under parametric uncertainty. Addition-
ally, it presented a simple coupled well–reservoir model
to analyze the performance of the method in a more re-
alistic setting.

In order to achieve this objective, the steady-state
model of the ESP wells was coupled with the reser-
voir model in a simple and efficient way. As a result,
although the optimization algorithms themselves are
based on top-side well models, their performance was
evaluated against a more sophisticated model in which
the uncertain parameters change interactively in accor-
dance with the dynamic of the reservoir and its history
rather than randomly.

The triumph of the proposed method and the im-
portance of considering uncertainty were highlighted
through comprehensive comparisons between deter-
ministic and robust DPO applied to the coupled model
in the presence of uncertainty. It has been shown that,
contrary to the deterministic method, the scenario-
based optimization for DPO yields a safe solution,
and robust satisfaction of the operational constraints is
guaranteed. More specifically, the constraints on pump
frequency and flow were fulfilled by both methods, as
no uncertainty was associated with the decision vari-
ables. However, the simulation results demonstrated
that the deterministic DPO is not sufficient for satisfy-
ing the constraints on the outputs, and the constraint

bounds on some outputs, such as wellhead pressure,
were violated. On the other hand, the scenario-based
DPO demonstrated a huge potential to be used in a
real oil field by effectively respecting all the constraints
on both input and output variables. Nevertheless, this
safety is achieved at the cost of sacrificing the net profit
to some extent.

Despite the contributions of this work, there are po-
tential opportunities for further improvement yet to
be explored. The first future direction that should be
pursued is to extend the method using Mixed Integer
Optimization, which makes it possible to shut down the
wells, if it is necessary, as it is reasonably likely that it
may be beneficial to shut down some wells during some
periods. Another future direction that is worth explor-
ing is to extend the top-side model and consider a more
complex network with more oil wells and transporta-
tion lines, and gathering manifolds. By pursuing these
future directions, the research can further contribute
to the field and offer even more valuable insights and
solutions for optimizing oil field operations under un-
certainty.
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