
Modeling, Identification and Control, Vol. 45, No. 1, 2024, pp. 15–28, ISSN 1890–1328

CostTrust: A Fast-Exploring, Iteratively Expanding

Frontier-Based Kinodynamic Motion Planner

Fetullah Atas 1 Grzegorz Cielniak 2 Lars Grimstad 1

1Faculty of Science and Technology (REALTEK), Norwegian University of Life Sciences, N-7491 Aas, Norway.
E-mail: {fetullah.atas,lars.grimstad}@nmbu.no

2Lincoln Centre for Autonomous Systems (LCAS), University of Lincoln, Lincoln, UK. E-mail: gciel-
niak@lincoln.ac.uk

Abstract

Sampling-based motion planning has recently experienced considerable advancements, particularly in the
domain of geometric motion planning for diverse robotic systems. Nonetheless, kinodynamic motion
planning, which additionally considers a robot’s kinematics and dynamics to generate a motion plan,
remains an open challenge, necessitating further research. Kinodynamic planning, inherently more complex
than geometric planning, mandates that the planner not only adheres to motion constraints but also
account for system dynamics, including limitations in velocity and acceleration.

Furthermore, kinodynamic planning often requires the navigation of extensive state and control spaces,
rendering the process both computationally demanding and time-consuming. To effectively tackle kino-
dynamic motion planning, our proposed approach introduces a dynamic balance between exploration and
exploitation, continuously adjusted throughout the execution. Our bi-directional and multi-threaded al-
gorithm is specifically tailored to fulfill the efficiency requisites of kinodynamic motion planning. Our
comprehensive benchmarks, conducted on an Ackermann-steered robot and a dynamic quadrotor, demon-
strate that our method notably outperforms state-of-the-art baselines in terms of solution rate percentage
and path cost.

To facilitate accessibility and further research within the community, we have made the implementa-
tion of our method available ∗. It is integrated with the Open Motion Planning Library (OMPL), a widely
utilized resource in the field, enhancing our approach’s practical applicability †

Keywords: Motion Planning, Kinodynamic Planning, Sampling-Based Motion Planning

1 Introduction

Motion planning constitutes a fundamental aspect of
robotics, focusing on developing algorithms and tech-
niques that enable a robot or an autonomous agent to

∗https://github.com/NMBURobotics/ompl
†https://github.com/NMBURobotics/vox nav

have a trajectory from an initial to a goal state. This
process must adhere to motion constraints and avoid
obstacles. Broadly, motion planning is categorized into
geometric and kinodynamic planning, differentiated by
the nature of the constraints involved. Geometric plan-
ning is primarily concerned with generating a collision-
free path, disregarding the dynamic constraints of the

doi:10.4173/mic.2024.1.2 © 2024 Norwegian Society of Automatic Control

https://github.com/NMBURobotics/ompl
https://github.com/NMBURobotics/vox_nav
http://dx.doi.org/10.4173/mic.2024.1.2

Modeling, Identification and Control

robot. Conversely, kinodynamic planning delves into
optimizing a robot’s motion by meticulously consider-
ing its kinematics and dynamics, such as limitations on
acceleration, velocity, and specific motion constraints.

Kinodynamic planning finds its application in
various domains, including robotic manipulation,
aerospace systems, unmanned aerial vehicles, and au-
tonomous vehicles. The dynamics of these systems typ-
ically involve constraints on velocity, acceleration, and
other parameters, which inherently limit their maneu-
verability. This limitation presents a significant chal-
lenge for kinodynamic planners, necessitating a keen
focus on the system’s maneuverability during method
development. Consequently, this elevates the complex-
ity and intricacy of kinodynamic planning problems.

Thanks to their efficiency, sampling-based methods
have been the mainstay of kinodynamic planning. The
basic idea behind these methods is to explore the state
space by generating many samples and then use the
information gathered to guide the search for a feasi-
ble trajectory. These methods benefit systems with
high-dimensional state spaces and complex constraints,
as they can efficiently explore the state space without
needing an explicit representation of the entire state
space.

Our method represents a progressive stride in kin-
odynamic motion planning, focusing on a strategy
that harmoniously balances exploration and exploita-
tion. Recent advancements in geometric motion plan-
ning, exemplified by contributions such as ABIT*
and BIT* Strub and Gammell (2020b); Gammell
et al. (2020), emphasize exploiting established solu-
tions through informed sampling. This technique se-
lectively samples regions with the potential to enhance
the current solution, incorporating these samples into
the underlying data structure, typically a tree or graph.
However, adapting this strategy to kinodynamic mo-
tion planning presents unique challenges, primarily due
to the added complexity of motion constraints inher-
ent in dynamic systems. For instance, establishing a
connection between two states in such systems is not
straightforward, as it requires a steering function ca-
pable of solving a two-point boundary value problem
(BVP). Addressing these limitations, we introduce a
tree-search methodology that leverages random for-
ward propagation of system states while conforming
to the kinematic and dynamic constraints of the sys-
tem. A notable advantage of our approach is its inde-
pendence from boundary value problems (BVPs) that
necessitate solving complex differential equations for
diverse dynamic systems. Furthermore, our method
excels in rapid exploration, attributed to its selective
mechanism for choosing frontiers. Simultaneously, it
can continuously refine and improve the current solu-

tion, demonstrating effective exploitation.
Our research introduces several significant advance-

ments in kinodynamic planning:

• Development of a heuristic-like function that effec-
tively balances rapid pre-solution exploration with
post-solution exploitation, enhancing solution re-
finement—a capability not prevalent in existing
state-of-the-art planners.

• Implementation of a multi-threaded, bi-directional
tree search method, significantly surpassing the
capabilities of current state-of-the-art kinody-
namic planners in terms of efficiency.

• Integration of our planner into the widely-used
Open Motion Planning Library (OMPL), enhanc-
ing its usability and practical application, and pro-
vision of benchmarking code to facilitate further
research and comparisons.

2 Related Work

For the last two decades, sampling-based motion plan-
ning algorithms have gained popularity in robotic mo-
tion planning due to their effectiveness and flexibility in
handling complex systems and environments. Among
the most well-known and widely-used algorithms in
this category are the Probabilistic RoadMap (PRM)
algorithm Kavraki et al. (1996) and the Rapidly-
exploring Random Tree (RRT) algorithm Lavalle and
Kuffner (2000), along with a plethora of their vari-
ants. To gain a deeper understanding of the optimal-
ity properties of sampling-based planners, the authors
in Karaman and Frazzoli (2011) conducted a compre-
hensive examination of their completeness and guar-
antees. Several libraries and frameworks have been
developed to facilitate the use, and implementation
of sampling-based motion planning algorithms, such
as the Open Motion Planning Library (OMPL) Su-
can et al. (2012). This library contains a wide range
of sampling-based planners, including RRT* Karaman
and Frazzoli (2011) and PRM Karaman and Fraz-
zoli (2011), as well as more recent algorithms that
incorporate both graph and tree structures, such as
BIT* Gammell et al. (2020), ABIT Strub and Gammell
(2020b) and AIT* Strub and Gammell (2020a). Addi-
tionally, some planners utilize parallelized approaches,
such as CFOREST Otte and Correll (2013) and Any-
timePartShortening (APS) Luna et al. (2013), which
allow for concurrent execution of multiple planners on
different threads, resulting in improved performance
overall.

To extend the applicability of sampling-based plan-
ners to systems with dynamics (e.g., velocities, ac-

16

Atas et.al., “CostTrust: A Kinodynamic Motion Planner”

Figure 1: A series of snapshots illustrating the progression of our planner’s execution is presented. In snapshot
a., we observe the initial phase where multiple trees start their bi-directional search to connect the
start and goal vertices. Upon finding an initial solution, as shown in snapshot c., the focus of the
trees shifts towards exploitation of the current solution. This phase involves continuous optimization
of the path. Snapshot e. displays the culmination of this process, showcasing the optimized motion
plan. Throughout this sequence, the planner demonstrates its capability to dynamically transition
from exploration to exploitation, effectively refining the path to achieve an optimal solution.

celerations, etc.), i.e., kinodynamic planning, sev-
eral variants of RRT algorithm have been proposed.
Two notable examples include the RRT-Extend algo-
rithm LaValle and James J. Kuffner (2001) and the Ex-
pansive Space Trees (EST) algorithm Hsu et al. (1997).
These methods focus on the forward propagation of
dynamics and aim to efficiently and evenly explore the
state space, regardless of obstacles. Additionally sev-
eral works extended on Karaman and Frazzoli (2011) to
benefit from asymptotic optimality, e.g. Karaman and
Frazzoli (2013); Perez et al. (2012); Xie et al. (2015).
However, these works relied on the availability of a
steering function. A steering function computes the
optimal path between two states in a scenario with
no obstacles. Implementing a steering function is of-
ten associated with solving a two-point boundary value
problem (BVP). This problem involves solving a dif-
ferential equation while adhering to specific boundary
conditions. It is widely acknowledged in the field that
this can be challenging, considering the complexity of

some systems (e.g., a quadrotor with 15 DOF). Re-
cently, there has been an intense effort to remove the
need for the steering function in the motion planning
community. In Li et al. (2014), a kinodynamic asymp-
totically optimal planner named as SST was proposed
based on a simplified random forward search tree that
does not rely on a steering function. A theoretical
analysis of the proposed algorithm was provided, which
showed that as long as an adequate number of Monte
Carlo propagations (random controls and duration) are
added to the search tree, the algorithm ensures asymp-
totic optimality. A meta-algorithm that produces an
asymptotically optimal kinodynamic planner was pre-
sented in Hauser and Zhou (2016), given any feasi-
ble kinodynamic planner as a subroutine without using
steering functions or numerical boundary-value prob-
lem solvers. The increase in the use of heuristics has
also become prevalent in kinodynamic planners Little-
field and Bekris (2018). Authors in Kleinbort et al.
(2018, 2019) have led to a deeper understanding of

17

Modeling, Identification and Control

the properties of asymptotically optimal kinodynamic
planning with milder assumptions, which the proposed
method also takes advantage of. Most recently, authors
of Shome and Kavraki (2021) proposed a new approach
for kinodynamic motion planning using sampling tech-
niques to estimate the connectivity of high-dimensional
configuration spaces. The approach uses bundles of
kinodynamic edges to cover the state space before a
query arrives and is shown to be asymptotically opti-
mal and to find high-quality solutions quickly in exper-
imental validation. Upon analyzing the existing liter-
ature in sampling-based motion planning, a noticeable
trend emerges: the increasing adoption of heuristics in
the most effective geometric motion planners. Yet, this
trend has not been as prevalent in kinodynamic motion
planning, likely due to its added complexity. Our work
distinguishes itself from existing kinodynamic planners
by placing a significant emphasis on the use of heuris-
tics. This strategy is employed to rapidly explore the
extensive state space. Once an initial solution is found,
our approach shifts towards exploitation, which can
also be construed as a heuristic-driven strategy. This
dual focus on exploration followed by exploitation, un-
derpinned by heuristic principles, sets our approach
apart in kinodynamic motion planning.

3 Problem Setup

In the present work, we delve into the domain of kin-
odynamic motion planning, a detailed exposition of
which is provided in Sec. 4. Kinodynamic motion plan-
ning is a specialized subset of motion planning that
intricately incorporates the dynamics of a system into
the planning process. This includes considering con-
straints imposed by the system’s velocity and acceler-
ation, as well as its equations of motion while charting
a trajectory from an initial state to a designated goal
state. The primary objective of kinodynamic planning
is to identify a path that is not only feasible but also
optimal, adhering to both geometric and dynamic con-
straints.

We assume a d-dimensional smooth manifold for the
state space X. The goal region is assumed to be in
the free region of state space XF such that XF ⊂ X,
xgoal ∈ XF , δgoal > 0 and Xgoal = Bδgoal

(xgoal). δgoal
denotes obstacle clearance andBδgoal

(xgoal) is ball (Eu-

clidean) centered at xgoal ∈ Rd with radius r. Since we
consider a dynamic system, a control space is denoted
with U ⊆ RD. The considered system evolves from the
current state with given control inputs in the following
manner;

˙x(t) = f(x(t), u(t)), x(t) ∈ X,u(t) ∈ U (1)

The system is assumed to be Lipschitz continu-
ous for both x and u such that; ∃Kx,Ku > 0,
∀x0, x1 ∈ X,u0, u1 ∈ U ;

||f(x0, u0)− f(x0, u1)|| ≤ Ku||u0 − u1||
||f(x0, u0)− f(x0, u1)|| ≤ Kx||x0 − x1||

(2)

Definition 1. A valid kinodynamic trajectory π is
produced by propagating system forwards (see Eq. 1)
starting from π(0) by applying control function Υ :
[0, tπ] ⊂ U resulting in π : [0, tπ] ⊂ F .
Definition 2. A piecewise constant control func-

tion Υ is composed of multiple constant control func-
tions Υi, each defined over a specific interval of time
[0,∆t], where each constant control function Υi maps
to a specific control value ui that belongs to set U . The
number of constant control functions is represented by
a natural number k ∈ N .

In optimal kinodynamic motion planning, the goal is
to identify a control function Υ and a trajectory π that
lives in subset F . The planner should also minimize the
overall cost of the trajectory, which is calculated as the
integral of a cost function g(π(t),Υ(t)) over the entire
duration of the trajectory, from time 0 to tπ. More
compactly the cost of π, g is denoted as COST (π).

4 Approach

Our algorithm is designed to identify an optimal mo-
tion plan for a specified start-goal pose, utilizing ran-
dom forward propagation of the system’s states. To
achieve this, the algorithm accommodates input con-
straints of the system, such as limits on velocity and ac-
celeration. A prerequisite for the algorithm’s effective
operation is the prior knowledge of the system model,
which enables the calculation of subsequent system
states based on the current state and control inputs.
This approach often necessitates navigating extensive
state spaces, presenting a significant challenge to the
algorithm’s time efficiency. In our novel approach, the
algorithm concurrently grows 2N trees, with N trees
originating from the start pose and the remaining N
from the goal pose. Here, N represents the number of
threads, a configurable parameter in our method. This
design inherently renders our planner multi-threaded, a
distinction that, to the best of our knowledge, is unique
in this field of study. The rationale for allocating an
equal number of trees to both the start and goal poses
is to enhance the likelihood of discovering an initial
solution faster. This strategy addresses the inherently
stochastic nature of the process, stemming from the
non-deterministic control sampling, which significantly
influences the initial solution discovery. Upon finding

18

Atas et.al., “CostTrust: A Kinodynamic Motion Planner”

Figure 2: On the left side, we visualize the exploratory phase of the algorithm. Before finding an initial solution,
the algorithm employs a predominantly explorative heuristic alongside multiple bi-directional trees.
On the right side, following the discovery of an initial solution, all trees adapt to focus on the current
solution. They aim to enhance the solution’s cost-effectiveness, guided by the direction of the tree
that first identified the initial solution.

the initial solution, the algorithm enters a phase of con-
tinuous exploitation and optimization of this solution.
This optimization process persists until a predefined
termination condition is satisfied. In the subsequent
subsections, we will elaborate on the specific subcom-
ponents of our planner, which we have named ’Cost-
Trust’.

4.1 Definitions

A tree structure is initiated from a root vertex and sys-
tematically extends outward. This expansion aims to
establish a linkage between the root and the designated
target vertex. Subsequently, we explain the concept of
a vertex, elaborating on its intrinsic properties and sig-
nificance.

Vertex in Motion Planning: In the context of
our motion planning algorithm, a vertex is conceptual-
ized through a structure encapsulating key attributes
essential to the planning process:

Our motion planning algorithm utilizes this struc-
tured vertex representation for the search space; see
Tab. 1. Furthermore, these vertices are organized
within a nearest-neighbor structure, facilitating effi-
cient query processing Sucan et al. (2012).

It is crucial to note that the terms ’root-target’ and

’start-goal’ are not used interchangeably in our ap-
proach. Our bi-directional strategy means that for
some trees, the ’target’ vertex may actually be the
’start ’ vertex. Similarly, the ’root’ vertex could be syn-
onymous with the ’goal’ vertex in certain contexts. In
any given problem setup, while the ’start’ and ’goal’
vertices remain consistent, the trees, depending on
their direction, may treat either of these vertices as
the ’root’ or ’target’.

4.2 Selecting Frontier Vertexes

After initializing a tree with the root vertex, we cre-
ate branches by applying random control samples to
the root vertex’s states. As the algorithm progresses,
the vertex count escalates, making selecting vertices for
further expansion increasingly critical. Our objective
is initially to identify and select vertices most benefi-
cial to rapid exploration. In this context, such vertices
are termed ’frontiers.’ Random control sampling is ap-
plied to these frontiers, a process we will present in the
following subsection.

In Fig. 3, we illustrate the opposing trees utilized
in our approach. The criteria for selecting frontier
vertices are based on several key properties: firstly,
the number of branches in a vertex nb; secondly, the

19

Modeling, Identification and Control

Table 1: Vertex Attributes in Our Planner

Attribute Description
State The current state of the sys-

tem, capturing its position,
orientation, and other rele-
vant parameters.

Control The control input applied to
the system, influencing its
transition to the next state.

Cost A numerical value represent-
ing the cumulative cost in-
curred to reach this vertex
from the root.

Control Duration The time period for which a
specific control input is ap-
plied.

Blacklisted Status A flag indicating whether the
vertex is excluded from fur-
ther exploration due to fac-
tors like infeasibility or colli-
sion.

Root Status A designation that identifies
whether the vertex serves as
the starting point of a search
tree.

Solution Relevance A boolean status indicating
whether the vertex is part
of the path identified by the
planner.

Branches A collection of subsequent
vertices originating from the
current vertex, representing
possible paths forward.

Parent A reference to the preceding
vertex, forming the connec-
tion in the path or search tree.

accumulative cost associated with a vertex c, calcu-
lated from the root; and thirdly, the density of vertices
within its immediate neighborhood d.
The selection process is conducted in two steps.

First, we calculate an initial score, denoted by s, for
each vertex, based on the parameters: the number of
branches (nb) and the cumulative cost (c).

s = 1/(nb + 0.001) + c (3)

In the subsequent phase of the selection process, the
vertices are arranged in descending order based on their
score, denoted as s, see Eq. 3. Vertices with higher
scores are typically those at the interface of explored
and unexplored spaces. The second step involves con-
sidering the neighborhood density, represented as d,

Figure 3: The presented figure depicts the bi-
directional tree expansion strategy, which
operates by simultaneously expanding two
distinct trees rooted at the start and goal
to enhance the algorithm’s efficiency. The
dashed paths represent the propagation of
states forward with a given control input.
Note that the branches of one tree do not
need to be connected to the branches of the
incoming tree. The aim is to connect Xs to
Xg with any tree.

for a predefined subset of frontiers, identified in the
initial phase. This subset is then re-sorted, taking into
account the cumulative distance of each vertex to its
K nearest neighbors. Following this re-sorting, ver-
tices located in sparser neighborhoods are given higher
priority. The two-step nature of the frontier selection
process is fundamentally driven by considerations of
efficiency. Calculating the nearest K vertices for every
vertex in the tree becomes increasingly inefficient as the
tree expands. Therefore, the initial step serves as an
efficient preliminary process, identifying frontiers with
a higher likelihood of enhancing the algorithm’s ex-
ploratory capability. The subsequent step is designed
to ensure efficiency by focusing on these pre-selected
frontiers, thereby streamlining the overall process.

4.3 Frontier Expansion

As indicated previously, the frontiers designated for
tree expansion act as a heuristic. In the ensuing phase,
the algorithm expands these frontiers, employing ran-
dom control inputs with random duration alongside a
random number of branches. As outlined in Tab. 1,
control inputs and their durations are applied to the
states of these frontier vertices. Upon confirmation of

20

Atas et.al., “CostTrust: A Kinodynamic Motion Planner”

Figure 4: Initially, our algorithm initiates tree growth from both the start and goal vertices, as illustrated in
panels a., b., and c. Following discovering a solution, all trees and their respective threads shift focus
to exploit this initial solution. The objective is to enhance the solution, aligning with the direction
established by the tree that first identified the solution. For instance, as shown in panel f., a path
with a more favorable cost is achieved by strategically exploiting the current optimal solution. The
solution exploitation can run indefinitely.

being collision-free, the new vertices are integrated into
the tree. In instances where all branches originating
from a particular frontier vertex do not progress due to
a collision, such a vertex is designated as ’blacklisted.’
Consequently, this status leads to its exclusion from
being selected in the subsequent iteration of frontier
identification.

After the successful expansion of a frontier, an ad-
ditional critical evaluation is conducted. This assess-
ment determines whether the newly added vertex can
be connected to the goal at a lower cost than that of
the existing solution if one exists. If this condition is
met, the trees are reset, and the current best solution
is updated accordingly.

4.4 Initial Solution and Plan Optimization

Prior to the discovery of an initial solution, the trees,
which operate independently, undergo bi-directional
growth. Each tree is rooted either at the start or the
goal, as depicted in Fig. 3. The tree represented in
red color originates from the start pose, denoted as
Xs, while the blue tree originates from Xg, the goal
pose. It is important to note that, although these trees
are independent, the multi-threaded architecture of our
method enables their simultaneous growth, increasing
the efficiency dramatically as evidenced by findings in
Sec. 5. Upon the identification of an initial solution, all
trees are reinitialized to commence from the same root
vertex as the tree that initially identified the solution.
A detailed illustration of the planner’s progression is
provided in Fig. 4.

The algorithm persistently exploits the current opti-

21

Modeling, Identification and Control

mal solution, intending to improve its cost. This persis-
tent refinement process underpins the asymptotic op-
timality of our approach. The stages of this ongoing
solution exploitation are visually detailed in d., e., and
f. of Fig. 4.

4.5 Algorithms

In this subsection, we delve into the core algorithms of
our approach, accompanied by a detailed discussion of
the corresponding pseudocode.

Algorithm 1 Solve Planning Problem

Require: ptc {Planner Termination Condition}
Ensure: PlannerStatus ∈
{EXACT,APPROXIMATE, INVALID}

1: Initialize start state and goal state
2: if isValid(start state) = FALSE ∨

isValid(goal state) = FALSE then
3: return INVALID
4: end if
5: for t = 1 to numThreads do
6: direction ← t%2 = 0 ? start to goal :

goal to start
7: CALL Algorithm 2
8: CALL Algorithm 3
9: end for

10: Wait for all threads to complete
11: bestPath← findBestPath()
12: if bestPath ̸= NULL then
13: Update bestControlPath and controlTrees
14: VisualizePaths
15: PlannerStatus← EXACT or APPROXIMATE
16: end if
17: Clear data structures
18: return PlannerStatus

In the proposed multi-threaded control planning
framework, three core algorithms interact to refine the
solution path in a kinodynamic planning problem it-
eratively. The primary algorithm, Solve Planning
Problem (Algorithm 1), orchestrates the overall plan-
ning process. It initializes the planning scenario, in-
cluding the start and goal states, and then iteratively
invokes parallel threads. Each thread independently
executes a cycle of explorative frontier selection and
expansion, managed by Algorithms 2 and 3, respec-
tively.

Select Explorative Frontiers (Algorithm 2) plays
a critical role in guiding the search process. Within
each thread cycle, this algorithm selects a subset of
frontier nodes from the rapidly-exploring tree. The se-
lection is based on a scoring mechanism that considers
both the cost associated with each node and the num-

Algorithm 2 Select Explorative Frontiers

Require: max number, nn structure
Ensure: Selected set of frontier nodes
1: frontier nodes← listNodes(nn structure)
2: Remove blacklisted nodes from frontier nodes
3: for each node ∈ frontier nodes do
4: score[node]← computeScore(node)
5: end for
6: Sort frontier nodes based on score
7: frontier nodes ←

clip(frontier nodes,max number)
8: for each node ∈ frontier nodes do
9: density[node]← computeDensity(node)

10: end for
11: Sort frontier nodes based on density
12: frontier nodes ←

clip(frontier nodes,max number)

Algorithm 3 Expand Frontiers

Require: frontier nodes, num branch to extend,
nn structure, ptc, target property, path,
control paths vertices, exact solution found,
should stop exploration, current best path

Ensure: Expanded set of frontier nodes
1: for each node ∈ frontier nodes do
2: for i = 1 to num branch to extend do
3: if ptc = TRUE then
4: return
5: end if
6: (new state, valid) ←

propagate(node, randomControl())
7: if valid then
8: vertex← createVertex(new state)
9: vertex.cost ←

computeCost(node, new state)
10: if isCloseToGoal(vertex, target property)

then
11: path← updatePath(vertex)
12: end if
13: Add vertex to nn structure
14: end if
15: end for
16: end for
17: EvaluateBranches(frontier nodes,
18: current best path, should stop exploration)

22

Atas et.al., “CostTrust: A Kinodynamic Motion Planner”

ber of existing branches, thereby balancing exploration
and exploitation. The algorithm prioritizes nodes that
present a beneficial trade-off between these two fac-
tors, ensuring an efficient yet thorough exploration of
the search space.
Expand Frontiers (Algorithm 3) is then called to

expand the selected frontiers. This algorithm gener-
ates new states by applying random controls to the
chosen frontier nodes, effectively growing the search
tree. It ensures that new states are valid and checks
for their proximity to the goal, updating the solution
path whenever a more cost-effective route is discovered.
Extending frontiers is pivotal in exploring unseen ar-
eas of the state space and getting closer to an optimal
solution.
Together, these algorithms enable a dynamic and

adaptive approach to kinodynamic planning. By utiliz-
ing multiple threads, the Solve Planning Problem
algorithm ensures diverse search directions and a ro-
bust state space exploration. The interplay between
Select Explorative Frontiers and Expand Fron-
tiers algorithms allows for a guided yet flexible search
strategy, continually adapting to the evolving topol-
ogy of the tree. This synergy effectively balances ex-
ploration and exploitation, significantly enhancing the
planner’s ability to find optimal or near-optimal solu-
tions for systems with complex kinodynamics.

5 Experimental Results

Our evaluation methodology encompassed two distinct
dynamic systems: an Ackermann-steered vehicle-like
robot and a dynamic quadrotor with 15 state dimen-
sions. Both systems included state and control com-
ponents, with the controls for each system being sam-
pled within a range specified by the user. To assess
the efficacy of our proposed method in addressing kin-
odynamic planning problems, we employed two maps
featuring a variety of objects. The map illustrated in
Fig. 2, for instance, spans an area of 18x6 meters.
Our study included all prominent kinodynamic plan-

ners available in the Open Motion Planning Library
(OMPL) to ensure a comprehensive evaluation. These
planners were compared against our proposed planner.
The ensuing sections detail the results, generated on a
laptop equipped with an Intel Core i7-6700HQ CPU,
operating at 2600 MHz with eight cores, and supple-
mented by 16GB of memory.

Our primary metric for evaluation is the resulting
path cost, quantified by the accumulative control du-
ration of the solutions generated by the planners. The
exact solution rate is also presented as a metric in the
benchmarks. Each planner is allowed an identical time
frame to produce its results. Given the larger state

and control dimensions of the Quadrotor compared to
the Ackerman robot, a different amount of time allo-
cation is employed for these two benchmarks. Specifi-
cally, planners are provided 10 seconds for the Acker-
man robot and 40 seconds for the Quadrotor.

A majority of the baseline planners, including our
own, fall under the category of optimizing planners.
This implies that these planners are designed to uti-
lize the entirety of their allotted time to enhance their
solutions, provided they achieve a solution within this
timeframe. To ensure a fair comparison, all planners
are assigned a fixed time duration for operation. How-
ever, due to the significantly larger state space encoun-
tered in dynamic quadrotor planning, these planners
are allocated four times the amount of time given for
planning with the Ackermann-steered robot. This ad-
justment acknowledges the increased complexity and
computational demands of the quadrotor’s state space.

5.1 Ackermann-steered vehicle-like robot

Figure 5: The figure illustrates a sample from our
benchmark results for kinodynamic motion
planning of an Ackermann-steered robot.
The motion plans generated by the various
contestant planners are depicted using dis-
tinct colors for clarity. Alongside each plan-
ner’s name, the corresponding path costs are
enumerated. Notably, our planner, Cost-
Trust, achieves the lowest cost path, which
is marked with a green color.

The Ackermann steering system, often used in vehicle-
like robots, is characterized by a unique geometry that
allows the front wheels to turn at different angles.
This system is ideal for ensuring that all wheels fol-
low their respective circular paths during a turn, min-
imizing slippage. The typical equations governing an
Ackermann-steered vehicle are:

23

Modeling, Identification and Control

xnext = x+∆t · v · cos(ψ + β)

ynext = y +∆t · v · sin(ψ + β)

ψnext = ψ +∆t · v
Lb
· sin(β)

vnext = v +∆t · a

β = arctan

(
La

La + Lb
· tan(df)

)
(4)

In these equations: ∆t is the time step. x, y, ψ, v
are the current state variables representing position,
orientation, and velocity. df is the front wheel steer-
ing angle. a is the acceleration. La, Lb are distances
from the vehicle’s center of gravity to the front and
rear axles, respectively. β is the slip angle, which is
a function of the steering angle df and the vehicle’s
geometric parameters La, Lb.

The forward propagation of a vehicle-like robot sys-
tem states is described in Eq. 4. The system’s state
vector, Xc = [x, y, ψ, v], is subjected to a randomly
sampled control vector, Uc = [a, df], for a randomly
selected duration in the interval [0, Tmax prop], result-
ing in the system transitioning to next state Xn. This
process is repeated to expand the tree as outlined in
Subsec. 4.5. The environment used for this use-case is
a house-like setting, as depicted in Fig. 1.

The start and goal states are placed such that the
algorithm is forced to explore the state space since the
only connection point where the planners can connect
start-goal states is a gate at the bottom right of the
map. For the start-goal states depicted in Fig. 1 with
3D axes, a benchmark is run 100 times. The results,
presented in Fig. 6, indicate that the proposed plan-
ner’s solve rate for 100 problems is comparable to that
of RRT*, both showing a solve rate of 89 % while
outperforming all other baselines. However, the pro-
posed method’s efficiency lowers the resulting path cost
within the given time, depicted in the bottom image of
Fig. 6. Regarding the solve rate, the proposed planner
failed to find a solution in 11 cases. In rare instances,
the planner may struggle to establish a connection as
the number of nodes in the tree increases, leading to
longer execution times for each iteration. We believe
the cause of the missed cases could be attributed to the
dense tree structure utilized in the proposed planner.
Specifically, maintaining a dense tree structure may in-
crease the likelihood of prolonged exploration of some
narrow passages, potentially increasing the number of
missed cases. To address this issue, we have modi-
fied the implementation of our approach such that the
planner can be configured to maintain a sparse tree
structure similar to that of SST, which may reduce the
occurrence of missed cases.

(a)

(b)

Figure 6: In (a), we present the exact solve rate per-
centages for kinodynamic motion planning
of an Ackermann-steered vehicle-like robot.
In (b), we focus on the resulting path costs,
taking into account only those paths derived
from exact solutions. Our planner, Cost-
Trust, demonstrates superior performance
over baseline planners in terms of path cost
efficiency. It achieves a comparable solve rate
to RRT*, registering an 89% success rate
in finding solutions while outperforming the
rest of the baselines.

24

Atas et.al., “CostTrust: A Kinodynamic Motion Planner”

Figure 7: The figure showcases a representative sample
focusing on kinodynamic motion planning for
a quadrotor. Notably, as depicted in the fig-
ure, CostTrust surpasses existing methods in
its performance. It stands out as the sole ap-
proach that consistently finds the exact so-
lution. In contrast, the other baseline meth-
ods predominantly yield infeasible or approx-
imate solutions.

5.2 Quadrotor

Sampling-based motion planning demonstrates marked
effectiveness in higher-dimensional state spaces, where
discretization-based methods become computationally
infeasible due to exponential computation cost escala-
tion. To showcase the efficacy of our kinodynamic mo-
tion planner, we extended our benchmarking to include
kinodynamic planning for a quadrotor characterized by
15 state dimensions and six control dimensions. Con-
trol sampling for the quadrotor was confined within
a user-defined range, conforming to the design limita-
tions of quadrotors. The forward propagation model
employed for the quadrotor is detailed in Eq. 5.

In Eq. 5; The system’s state vector comprises 15 el-
ements. The positions are denoted [x, y, z]. T is the
thrust. m is the mass. g is the gravitational accel-
eration. ax, ay, az are the accelerations in respective
axes. Kp,Kd,Kϕ,Kθ,Kψ are proportional gains for z,
roll, pitch, and yaw. zd, ψd are the desired z position
and yaw angle. z, ϕ, θ, ψ are the current z position
and orientation angles. R is the rotation matrix. a⃗
is the acceleration vector. ¨⃗r, ˙⃗r, r⃗ are the acceleration,
velocity, and position vectors. ∆t is the time step. In
comparison, the control vector comprises six elements
denoted by [zd, żd, ψd, ax, ay, az]. These control inputs
correspond to the desired z position, z velocity, yaw
angle, and x, y, z accelerations, respectively. As the
system’s complexity increases, the performance dispar-
ity between our proposed planner and other planners
becomes more pronounced, as illustrated in Fig. 8.

Figure 8: In (a), we present the exact solve rate per-
centages, and in (b), resulting path costs for
kinodynamic motion planning of a quadro-
tor. Our planner, CostTrust, surpasses other
planners significantly in terms of the number
of exact solutions achieved.

T = m · (g + az +Kp · (zd − z) +Kd · (żd − ż)),

τϕ = Kϕ ·
(
(ax · sin(ψ)− ay · cos(ψ))

g
− ϕ

)
,

τθ = Kθ ·
(
(ax · cos(ψ)− ay · sin(ψ))

g
− θ

)
,

τψ = Kψ · (ψd − ψ),
ϕ̇+ = τϕ ·∆t,
θ̇+ = τθ ·∆t,
ψ̇+ = τψ ·∆t,
R = RotationMatrix(ϕ, θ, ψ),

a⃗ =

R ·
0
0
T

−
 0

0
m · g

 /m,

¨⃗r = a⃗,

˙⃗r+ = ¨⃗r ·∆t,

r⃗+ = ˙⃗r ·∆t

(5)

The results unequivocally indicate that our pro-

25

Modeling, Identification and Control

posed planner achieves a considerably higher solve
rate compared to baseline planners. In this analy-
sis, we exclusively consider exact solutions, disregard-
ing any approximate results produced by the plan-
ners. Specifically, the solve rate achieved by our plan-
ner is 78%, markedly outperforming the next best-
performing planner, RRT*, which registers a solve rate
of 17%. The resulting path costs for all the plan-
ners that are able to provide an exact solution seem
reasonably similar. Based on these findings, we draw
that our planner is particularly advantageous for high-
dimensional systems requiring extensive sampling and
rapid state space exploration to obtain a solution. For
example, as illustrated in Fig. 8, existing planners ex-
cept RRT* and SST cannot navigate the sole pas-
sage (lower left) to the goal. As the number of sam-
ples increases, it becomes increasingly time-consuming
to identify the passage due to the growing number
of nodes in the tree structure. Our method’s bi-
directional approach offers benefits in navigating sharp
turns, preventing tree growth from becoming trapped,
and prolonging exploration. The proposed planner
achieves a threefold improvement in mean trajectory
cost compared to the next best-performing planner,
SST.

5.3 Discussion

The results distinctly demonstrate the advantages of
our newly introduced motion planner over current
state-of-the-art techniques, particularly in scenarios in-
volving a dynamic quadrotor characterized by high-
dimensional state and control spaces. The effectiveness
of our proposed planner can be attributed to several
pivotal characteristics:
Dynamic Balance between Exploration and Ex-

ploitation: The planner adeptly navigates between ex-
ploring new areas of the state space and exploiting
known paths. This is achieved through the strategic
selection of frontier vertices within the tree, which are
instrumental in guiding the exploration process, cou-
pled with the continuous refinement of existing solu-
tions.

Multi-threaded Bi-directional Tree Approach: A sig-
nificant strength of our planner is its implementation
of multi-threaded, bi-directional trees. This architec-
ture has proven particularly beneficial in enhancing
the solution rate for the dynamic quadrotor, outper-
forming traditional single-threaded or uni-directional
approaches in terms of both efficiency and effective-
ness.

These attributes underscore our planner’s robustness
and adaptability in complex motion planning scenar-
ios. The combination of an intelligent exploration-
exploitation balance and the innovative use of multi-

threaded bi-directional trees not only facilitates a
higher solution rate but also contributes to more nu-
anced and effective navigation through challenging
state spaces.

In comparing the benchmark results for the two sys-
tems, namely the Ackermann-steered robot and the dy-
namic quadrotor, a notable observation emerges. De-
spite allocating four times more time for the quadro-
tor, the solution rate for all planners, except ours, sig-
nificantly diminishes. This phenomenon underscores
the non-linear correlation between the state dimen-
sion complexity and the time required to find a solu-
tion. The exceptional performance of our planner can
be attributed to its inherent exploratory instinct and
the efficiency of its multi-threaded, bi-directional tree
search approach. These characteristics are pivotal in
effectively navigating the complex state space of the
quadrotor, thereby facilitating a higher solution rate
compared to other planners.

While our proposed motion planner exhibits notable
strengths, it is not without limitations, as reflected in
the solution rate results for both the Ackerman robot
and the quadrotor. In certain cases, the planner fails to
derive an exact solution. This limitation is suspected
to stem from the planner’s inherent tendency towards
extensive exploration. Before identifying an initial so-
lution, the planner prefers areas with fewer branches
and lower vertex density. Consequently, in scenarios
where numerous vertices are proximal to the goal yet
remain unconnected to the tree, the planner may in-
advertently prioritize frontiers distant from the goal
region. Over time, this reduces the likelihood of estab-
lishing a connection to the goal, as vertices near the
goal are less frequently selected as frontiers.

However, this limitation could be mitigated by im-
plementing goal biasing. Such an approach would in-
volve incorporating a proportion of the nearest neigh-
bors of the goal at each iteration of frontier selection.
This strategy could enhance the planner’s ability to
identify and prioritize goal-proximate vertices, thereby
improving the likelihood of establishing a connection
to the goal.

We have made the source code for our proposed mo-
tion planner, as well as the benchmarking code, pub-
licly available as open-source resources. This initia-
tive aims to facilitate further experimentation by re-
searchers and allows for the comparison of newly de-
veloped planners against our proposed method. From
a practical standpoint, users intending to deploy our
motion planner (or other baseline methods) must pos-
sess an understanding of the system model. Crucially,
they need to define a propagate function, which esti-
mates the next state of the system based on current
state parameters and control inputs. To assist users,

26

Atas et.al., “CostTrust: A Kinodynamic Motion Planner”

we provide exemplar codes for two system models: an
Ackermann-steered robot and a quadrotor. Addition-
ally, for effective utilization of the sampling-based mo-
tion planner, a collision-check function is required to
determine whether a given state is in a collision or is
collision-free.

6 Conclusion

This paper introduces a novel approach to kinody-
namic planning, showcasing enhanced performance
compared to existing state-of-the-art methods, partic-
ularly in high-dimensional contexts such as dynamic
quadrotors. Distinctive in its strategy, our method
employs a balanced interplay between exploration and
exploitation, complemented by a multi-threaded, bi-
directional tree search process. This dual-pronged ap-
proach yields significant performance improvements, as
evidenced by our results in two benchmarks. The po-
tential of our method to address real-world problems
in autonomous robotics is evident from the results. In
certain instances, our planner may not yield an exact
solution, a limitation primarily attributed to its de-
votion to fast exploration of unknown spaces initially.
To address this issue, future iterations of our planner
will explore the incorporation of goal-biasing sampling.
This enhancement would adjust the frontier selection
criteria to balance the exploration with a more delib-
erate effort to connect to the goal in each iteration.
Such a modification aims to refine the planner’s effec-
tiveness, ensuring a more targeted approach towards
achieving the desired goal state.

References

Gammell, J. D., Barfoot, T. D., and Srinivasa,
S. S. Batch informed trees (bit*): Informed
asymptotically optimal anytime search. The In-
ternational Journal of Robotics Research, 2020.
39(5):543–567. URL https://doi.org/10.1177/

0278364919890396, doi:10.1177/0278364919890396.

Hauser, K. and Zhou, Y. Asymptotically op-
timal planning by feasible kinodynamic plan-
ning in a state–cost space. IEEE Trans-
actions on Robotics, 2016. 32(6):1431–1443.
doi:10.1109/TRO.2016.2602363.

Hsu, D., Latombe, J.-C., and Motwani, R. Path plan-
ning in expansive configuration spaces. In Proceed-
ings of International Conference on Robotics and
Automation, volume 3. pages 2719–2726 vol.3, 1997.
doi:10.1109/ROBOT.1997.619371.

Karaman, S. and Frazzoli, E. Sampling-based al-
gorithms for optimal motion planning. CoRR,
2011. abs/1105.1186. URL http://arxiv.org/abs/

1105.1186.

Karaman, S. and Frazzoli, E. Sampling-based optimal
motion planning for non-holonomic dynamical sys-
tems. In 2013 IEEE International Conference on
Robotics and Automation. pages 5041–5047, 2013.
doi:10.1109/ICRA.2013.6631297.

Kavraki, L., Svestka, P., Latombe, J.-C., and Over-
mars, M. Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 1996.
12(4):566–580. doi:10.1109/70.508439.

Kleinbort, M., Solovey, K., Bonalli, R., Bekris, K. E.,
and Halperin, D. RRT2.0 for fast and optimal kin-
odynamic sampling-based motion planning. CoRR,
2019. abs/1909.05569. URL http://arxiv.org/

abs/1909.05569.

Kleinbort, M., Solovey, K., Littlefield, Z., Bekris,
K., and Halperin, D. Probabilistic com-
pleteness of rrt for geometric and kinodynamic
planning with forward propagation. IEEE
Robotics and Automation Letters, 2018. PP:1–1.
doi:10.1109/LRA.2018.2888947.

Lavalle, S. and Kuffner, J. Rapidly-exploring random
trees: Progress and prospects. Algorithmic and com-
putational robotics: New directions, 2000.

LaValle, S. M. and James J. Kuffner, J. Randomized
kinodynamic planning. The International Journal
of Robotics Research, 2001. 20(5):378–400. URL
https://doi.org/10.1177/02783640122067453,
doi:10.1177/02783640122067453.

Li, Y., Littlefield, Z., and Bekris, K. E. Asymp-
totically optimal sampling-based kinodynamic plan-
ning. CoRR, 2014. abs/1407.2896. URL http:

//arxiv.org/abs/1407.2896.

Littlefield, Z. and Bekris, K. E. Efficient and
asymptotically optimal kinodynamic motion plan-
ning via dominance-informed regions. In 2018
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). pages 1–9, 2018.
doi:10.1109/IROS.2018.8593672.

Luna, R., Şucan, I. A., Moll, M., and Kavraki, L. E.
Anytime solution optimization for sampling-based
motion planning. In 2013 IEEE International Con-
ference on Robotics and Automation. pages 5068–
5074, 2013. doi:10.1109/ICRA.2013.6631301.

27

https://doi.org/10.1177/0278364919890396
https://doi.org/10.1177/0278364919890396
http://dx.doi.org/10.1177/0278364919890396
http://dx.doi.org/10.1109/TRO.2016.2602363
http://dx.doi.org/10.1109/ROBOT.1997.619371
http://arxiv.org/abs/1105.1186
http://arxiv.org/abs/1105.1186
http://dx.doi.org/10.1109/ICRA.2013.6631297
http://dx.doi.org/10.1109/70.508439
http://arxiv.org/abs/1909.05569
http://arxiv.org/abs/1909.05569
http://dx.doi.org/10.1109/LRA.2018.2888947
https://doi.org/10.1177/02783640122067453
http://dx.doi.org/10.1177/02783640122067453
http://arxiv.org/abs/1407.2896
http://arxiv.org/abs/1407.2896
http://dx.doi.org/10.1109/IROS.2018.8593672
http://dx.doi.org/10.1109/ICRA.2013.6631301

Modeling, Identification and Control

Otte, M. and Correll, N. C-forest: Parallel short-
est path planning with superlinear speedup. IEEE
Transactions on Robotics, 2013. 29(3):798–806.
doi:10.1109/TRO.2013.2240176.

Perez, A., Platt, R., Konidaris, G., Kaelbling, L., and
Lozano-Perez, T. Lqr-rrt*: Optimal sampling-based
motion planning with automatically derived exten-
sion heuristics. In 2012 IEEE International Confer-
ence on Robotics and Automation. pages 2537–2542,
2012. doi:10.1109/ICRA.2012.6225177.

Shome, R. and Kavraki, L. E. Asymptotically opti-
mal kinodynamic planning using bundles of edges.
In 2021 IEEE International Conference on Robotics
and Automation (ICRA). pages 9988–9994, 2021.
doi:10.1109/ICRA48506.2021.9560836.

Strub, M. P. and Gammell, J. D. Adaptively In-
formed Trees (AIT*): Fast asymptotically optimal
path planning through adaptive heuristics. In Pro-
ceedings of the IEEE International Conference on

Robotics and Automation (ICRA). pages 3191–3198,
2020a. doi:10.1109/ICRA40945.2020.9197338.

Strub, M. P. and Gammell, J. D. Advanced
bit* (abit*): Sampling-based planning with ad-
vanced graph-search techniques. 2020 IEEE
International Conference on Robotics and Au-
tomation (ICRA), 2020b. URL http://dx.

doi.org/10.1109/ICRA40945.2020.9196580,
doi:10.1109/icra40945.2020.9196580.

Sucan, I. A., Moll, M., and Kavraki, L. E.
The open motion planning library. IEEE
Robotics Automation Magazine, 2012. 19(4):72–82.
doi:10.1109/MRA.2012.2205651.

Xie, C., van den Berg, J., Patil, S., and
Abbeel, P. Toward asymptotically optimal mo-
tion planning for kinodynamic systems using a
two-point boundary value problem solver. In
2015 IEEE International Conference on Robotics
and Automation (ICRA). pages 4187–4194, 2015.
doi:10.1109/ICRA.2015.7139776.

28

http://dx.doi.org/10.1109/TRO.2013.2240176
http://dx.doi.org/10.1109/ICRA.2012.6225177
http://dx.doi.org/10.1109/ICRA48506.2021.9560836
http://dx.doi.org/10.1109/ICRA40945.2020.9197338
http://dx.doi.org/10.1109/ICRA40945.2020.9196580
http://dx.doi.org/10.1109/ICRA40945.2020.9196580
http://dx.doi.org/10.1109/icra40945.2020.9196580
http://dx.doi.org/10.1109/MRA.2012.2205651
http://dx.doi.org/10.1109/ICRA.2015.7139776
http://creativecommons.org/licenses/by/3.0

	Introduction
	Related Work
	Problem Setup
	Approach
	Definitions
	Selecting Frontier Vertexes
	Frontier Expansion
	Initial Solution and Plan Optimization
	Algorithms

	Experimental Results
	Ackermann-steered vehicle-like robot
	Quadrotor
	Discussion

	Conclusion

