
Modeling, Identification and Control, Vol. 44, No. 4, 2023, pp. 141–154, ISSN 1890–1328

Programming Fine Manufacturing Tasks on
Collaborative Robots: A Case Study on Industrial

Gluing

D. Schäle M. F. Stoelen E. Kyrkjebø

HVL Robotics, Western Norway University of Applied Sciences, N-6812 Førde, Norway. E-mail: dasc@hvl.no

Abstract

This paper explores programming of fine manufacturing tasks using collaborative robots. We conduct
a case study based on an industrial gluing task, comparing two programming approaches: Learning
from Demonstration (LfD) and Computer-Aided Manufacturing (CAM). We investigate the suitability
of these approaches for ad-hoc automation of fine manufacturing tasks by expert operators, and discuss
the strengths and weaknesses associated with their usage. The case study reveals that there are benefits
and limitations to both approaches. The CAM-based approach provides a precise path for execution with-
out the need for robot programming expertise, but is strongly dependent on the quality of the gauging
process. The LfD approach is intuitive and quick to set up, but is strongly dependent on the quality of
the demonstrations. Our findings suggest that there is a potential for a hybrid solution combining the
best of both approaches in a unified interface, and provide a foundation for future research on hybrid
programming interfaces for fine manufacturing tasks using collaborative robots.

Keywords: Cobots, Manufacturing, Robot programming, CAM, Learning from Demonstration

1 Introduction

Collaborative robots (Cobots) are a promising alter-
native to conventional industrial robots for small-
and medium-sized enterprises (SME’s). Their built-in
safety features allow them to work together or in physi-
cal proximity of human operators. The ability to make
physical contact with human operators opens up new
programming interfaces for these robots. At the same
time, the programming interfaces for cobots require
higher levels of intuitiveness and efficiency compared
to conventional industrial robots. In cobot settings,
it is the operator on the factory floor who is respon-
sible for programming the robots, unlike conventional
industrial robots where this task falls to robot experts.

A common way of programming cobots today is to
move the robot manually into key-poses (waypoints),
store them and connect them with different movement

commands on the robot’s teach pendant - a process
known as walk-through programming (Villani et al.,
2018). A second approach used predominantly for
programming traditional industrial robots, but also
applicable to cobots, is offline programming (OLP)
(Heimann and Guhl, 2020). OLP allows for precise
motion planning, although it may disrupt the collabo-
ration between robots and operators and requires for-
mal education in programming and robotics. A more
recent approach in the rise of robot learning methods
is learning from demonstration (LfD). In LfD, the op-
erator provides multiple examples of the full trajectory
through kinesthetic teaching or teleoperation (Siciliano
and Khatib, 2016, Ch. 74). The information demon-
strated by the operator to the robot encompasses the
complete implementation of the movement, including
its kinematic and dynamic properties, as well as auxil-

doi:10.4173/mic.2023.4.1 © 2023 Norwegian Society of Automatic Control

http://dx.doi.org/10.4173/mic.2023.4.1


Modeling, Identification and Control

iary sensor signals. The aim is to capture the nuances
of the expert’s task performance and transfer them to
the robot.

The walk-through programming and especially LFD
enable intuitive and fast programming of robots by
workers without a strong robotics background, which
enables workers to manifest their expertise in manu-
facturing in a robot program, without the need for a
system integrator in between. However, these two ap-
proaches have limitations when it comes to program-
ming fine manufacturing tasks that involve complex
geometries and which approach the upper limit of the
accuracy cobots typically can deliver; tasks, that con-
ventionally would be described with fine-grained tool-
paths or machine code. Approaching such tasks with
lead-through programming would require a very high
number of waypoints, resulting in cluttered robot pro-
grams. Changes in the task often result in tedious re-
programming, limiting the flexibility of the production.
The LfD approach circumvents the problem of defin-
ing waypoints, but it can be difficult to achieve the
desired accuracy by demonstration. And if all dimen-
sions of the task are supposed to be programmed by
demonstration, not just the Cartesian poses of e.g. a
sanding machine, but also its rate of rotation, then the
tools/hardware need to be prepared with sensors to
record these parameter values during the demonstra-
tions.

In this paper, we present and discuss two contrasting
programming approaches for automating fine manufac-
turing tasks for a case study on industrial gluing with a
Franka Emika Panda collaborative robot. We want to
showcase their potential strengths and shortcomings in
the light of programming precise manufacturing tasks
on cobots by factory workers. Our goal is to identify
a potential gap in programming precise manufactur-
ing tasks on cobots, and to point to future directions
of research towards interfaces that enable operators to
program such tasks on the factory floor.

The first programming approach is based on com-
puter aided manufacturing (CAM), and is in line with
the common practice in robot machining of generating
tool paths from CAD models. The second approach is
based on LfD, common to physical human-robot inter-
action, and enables the operator to generate a tool path
based on their demonstration of the task. The ratio-
nale behind selecting these approaches, which we view
as two opposing ends of a spectrum of programming
interfaces, is to explore whether they are principally
suited for programming fine manufacturing tasks on
cobots, and to facilitate the identification of potential
intermediate solutions that can leverage the advantages
offered by both ends of the spectrum.

The case study we consider in this paper is based

Figure 1: Case study task: Gluing operation in the as-
sembly of an industrial sensor housing. The
blue arrows indicate the groove where glue
is applied.

on a real-world manufacturing task from an indus-
trial research partner. The partner company has a
long-term vision to automate production lines by aug-
menting the workforce with flexible robot fleets made
up of cobots mounted to autonomous guided vehicles
(AGVs). These Cobot-AGVs are designed to move
around the factory floor, docking to different worksta-
tions, dynamically support human coworkers, or take
over and complete certain tasks autonomously. One
of these workstations is dedicated to a precise gluing
operation in the assembly of an industrial sensor hous-
ing. The sensor housing consists of a top and a bottom
part, which when put together, leave a 1×1 mm groove
along the sensor’s circumference (Fig. 1). The sensor
has a diameter of 40mm.

The groove must be filled with an UV curable adhe-
sive to hold top and bottom part together and to seal
the sensor. At present, the adhesive is applied man-
ually with a glue gun equipped with a dosing needle.
In this process, the workers put the sensor on a rotat-
ing fixture and spin the sensor around slowly with one
hand while applying the adhesive with the glue gun in
the other hand (Fig. 2). The sensor is then removed
from the fixture and cured in an UV chamber.

The company’s goal is to automate the gluing oper-
ation with cobots in a flexible manufacturing process
where the factory workers can quickly create gluing
programs for new sensor shapes. Thus, this task makes
a good example to investigate the challenges of pro-
gramming manufacturing operations that require con-
ventional robot precision, but also an accessible pro-
gramming interface in a cobot-centric setting.

The control parameters that must be programmed

142



Schäle et.al., “Programming Fine Manufacturing Tasks on Cobots”

Figure 2: Case study task: Manual gluing operation
similar to the process used in the partner
company today.

in this gluing task are the relative motion between the
glue gun mounted to the robot flange and the sensor,
and the rate of glue flow. The relative motion between
sensor and glue gun is comprised of the 1 degree of
freedom (DOF) rotation of the sensor and the 6DOF
movement of the glue gun in Cartesian space. These
movements are comprised of a geometric path, defining
the spatial properties, and time, which together define
the dynamic properties of the movements. The dy-
namic properties of the movement are correlated with
the glue flow rate and need to be synchronized. Within
limits, depending on the viscoelastic properties of the
glue, the same amount of glue per unit length along the
path can be dispensed by moving the glue gun faster
with a higher glue flow rate, or by moving slower with
a lower flow rate. The desired amount of glue per unit
length depends on the design of the sensor, e.g. the
volume of the cavity at an instance along the gluing
path. In the case study in this paper, we focus on pro-
gramming the geometric path, and only briefly discuss
the dynamic properties and glue flow; which we leave
for future work.

2 Related Work

Robot programming can be separated into online meth-
ods such as lead-through programming, and offline
methods which utilize software tools to generate pro-
grams without the need for direct involvement of the
physical robot (Villani et al., 2018). Offline meth-
ods minimize downtime of the robot, but usually re-
quire advanced knowledge in 3D modelling and pro-
gramming. For online methods, researchers have been
studying various input modalities such as kinesthetic

teaching, hand-gestures and vocal commands; often
with the goal to make the programming as intuitive
as possible for non-experts.

The factors that constitute efficient and intuitive
programming are diverse and dynamic, and will change
from operator to operator and from task to task. Ide-
ally, the operator should be presented with a modular
interface, where it is possible to switch between modal-
ities and programming tools on the go to utilize their
specific advantages for the work at hand.

In the following, we present different approaches to
programming manufacturing tasks to give an overview
of the wide range of interfaces used in the literature,
and to provide a backdrop for our case study. We
start with looking at online approaches to program-
ming with human-like interfaces, continue along the
spectrum with some interesting hybrid approaches, and
end with CAD-based offline programming.

In Halim et al. (2022), a multimodal interface for
no-code programming of cobots is presented. The op-
erator can teach poses with hand and finger gestures
captured with a camera system, as well as give certain
voice commands to the robot which trigger actions in
a finite state machine. They implemented a graphical
user interface which provides feedback to the user and
serves as a backup if the speech input fails e.g. due to
background noise.

In Nemec et al. (2018), a LfD framework is presented
that is focused on kinesthetic teaching and relies on
the physical interaction between operator and robot as
the main programming interface. The authors combine
Dynamic Movement Primitives (DMPs) with a con-
troller that allows for variable stiffness in the tangential
and normal directions of the demonstrated path. The
stiffness is coupled to spatial variability in the demon-
strations and the speed of motion during the execution
of the trajectory by the robot. This enables the oper-
ator to tackle difficult demonstrations by teaching the
spatial and temporal components of the trajectory sep-
arately, and refining the previously learned trajectory
through physically intervention during the execution
by the robot.

In Iturrate et al. (2021), a LfD-based framework
is proposed for programming and executing industrial
gluing tasks, e.g. applying glue to PCBs. In contrast
to Nemec et al. (2018), this approach uses only a sin-
gle demonstration of a given task and instead of in-
cremental refinement of the trajectory during execu-
tion, Iturrate et al. (2021) support the operator dur-
ing kinesthetic teaching with an admittance controller
with time-varying damping. To assist the operator in
demonstrating a task, the authors estimate the surface
normal of the workpiece to adjust the damping dur-
ing kinesthetic teaching such as to maintain a higher

143



Modeling, Identification and Control

damping in the direction constrained by the workpiece
and lower damping in the non-constrained directions.
The surface normal is recorded and encoded with a
mixture of radial basis functions. During reproduction
of the task the robot runs a hybrid force-position con-
troller. The force in direction of the surface normal
is treated as process parameter and is manually set by
the operator in a software interface. The authors argue
that setting the contact force manually is more practi-
cal and accurate than trying to teach all aspects of the
task through demonstration.

Hein et al. (2008) proposed a hybrid interface, utiliz-
ing ideas from offline programming to support the op-
erator during online programming. The operator can
control the robot with a camera-tracked, hand-held in-
put device. In contrast to conventional tele-operation,
the operator is supported through assisting algorithms
informed by a CAD model of the workcell while driv-
ing the robot. During tele-operation, the CAD model
is used e.g. for collision avoidance, adapting jogging
speed, and dividing the workspace into different sub-
spaces which affect the movement characteristics of the
robot. The CAD model can also be used for automatic
path planning which only require a start and end pose.
Using this approach, the operator can create robot pro-
grams which consist of both automatically and manu-
ally taught motions.

Fossdal et al. (2021) present an approach for ma-
chine control from a CAD environment. The idea be-
hind their approach is to shorten the feedback loop
between user input in software and machine out-
put/performance, such that the operator can quickly
gain understanding on how the machine/robot actions
their intent, and thus make for a steep learning curve
of how to specify their intent in software to achieve
the desired result on the machine/robot. For this, the
system must enable swift experimentation with ma-
chine/robot parameters and communicate clearly the
state, scope and limitations of the machine/robot. The
authors argue that such a system has potential to ben-
efit operators who are proficient in CAD but not in
machine/robot programming.

While some of the authors in the papers above iden-
tified kinesthetic teaching and LfD as a fast and in-
tuitive way for lay users to program manufacturing
tasks on cobots, Neto and Mendes (2013) argue in
equal measure for their CAD-based workflow for of-
fline programming of industrial robots. The authors
argue that CAD drawings are a useful tool for robot
programming since humans are used to use drawings
for explaining complex tasks to fellows, making CAD
drawings an intuitive abstraction of robot programs.
The OLP approach in Neto and Mendes (2013) gener-
ates robot programs directly from CAD drawings in a

common CAD software (Autodesk Inventor) and does
not require any additional commercial OLP (e.g. Ro-
boDK) or CAM software. The starting point of the
workflow is a CAD assembly model of the workpiece
and the robot cell. To define a robot tool path, the
operator either places end effector/tool models in the
assembly which represent the desired tool pose in each
segment of the path, or draws lines in the assembly
which represent the positional data of the toolpath and
then again places end effector/tool models to define the
orientation in each segment of the path. Potential col-
lisions must be anticipated by the user while creating
the toolpath. After defining the toolpath in CAD, the
actual robot tool path is generated through a custom
software interface. As usual for OLP, the accuracy of
the operation depends on the accuracy of the robot.
Absolute positioning accuracy with a robot is not al-
ways easy to achieve and typically requires effortful
calibration procedures. Furthermore, if objects in the
modelled work cell have erroneous transformations to
the common reference frame (e.g. robot base frame)
that do not correspond precisely with the real world
set-up, the operation is not performed accurately. De-
termining the transformations of objects to the refer-
ence frame in the real set-up can be costly. Depending
on the required accuracy, an advanced external mea-
surement system or probing with the robot is reported
to be necessary.

The digest of literature above gives an impression of
the many approaches to programming manufacturing
tasks. The user interfaces and the modalities the au-
thors choose to transfer instructions from operator to
robot are substantially different. While some of the
design choices can be explained in that the approaches
are catering to different user groups or applications, we
find it interesting that all of the authors consider their
approach as intuitive and/or convenient. The question
of what constitutes intuitive programming in the con-
text of automating fine manufacturing tasks is there-
fore still very much an open question.

3 Case Study on Industrial Gluing

In this section, we first describe the experimental setup
of the case study on programming fine manufacturing
tasks based on the cooperative gluing scenario of our
industrial partner described in Sec. 1. We then go into
detail on how we implemented this task with a CAM-
based approach, and how a gauging procedure is neces-
sary when using a CAM-based approach to program-
ming. Subsequently, we detail how we implemented
the gluing task with a LfD-based approach. Our de-
scription of the two approaches has an emphasis on the
different steps and software tools needed to complete

144



Schäle et.al., “Programming Fine Manufacturing Tasks on Cobots”

the programming of the gluing task. Lastly, we sum-
marize the hardware and software implementation of
the experimental setup for a comprehensive overview.

3.1 Experimental Setup

The experimental setup in our case study is inspired
by the setup the workers use during the manual gluing
operation (Fig. 3). The workpiece in the case study is a
slightly modified mock-up of the industrial sensor; fea-
turing an elliptic footprint (d1 = 40mm, d2 = 30mm)
and a groove that runs along the circumference in vari-
able heights. The cross section of the groove on the
mock-up is similar to the one on the sensor (1 × 1mm).
The design of this workpiece enforces movements of the
glue gun tip along at least two axes, and thus makes the
comparison between hand-guided toolpaths and com-
puter generated toolpaths more general. The work-
piece is placed on a rotary axis which is actuated by a
Dynamixel MX-106T servo motor. In order to rotate
the servo motor during manual demonstration of the
task, the servo can be driven with a rotary encoder.
Using the rotary encoder to rotate the workpiece has
the advantage that the human demonstrator does not
have to overcome the high gearbox friction and inertia
of the servo motor that would be present when turn-
ing it manually. With this external axis and the glue
gun mounted to the robot flange, the gluing paths can
be reproduced in a similar way as done by the fac-
tory workers. However, rotating the workpiece with the
servo motor is not merely emulating the human work-
flow, but is necessary to circle around the workpiece
with a desired orientation of the glue gun. The Franka
Emika Panda robot alone cannot orbit the workpiece
with arbitrary end effector orientations (when mounted
to a table top) since its 7th joint cannot rotate a full
360 degrees. A cobot without this restriction of its last
joint, the Universal Robots UR5e, was considered as
an alternative for the case study. However, the UR5e
has 6 joints compared to the 7 joints of the Panda. The
lack of kinematic redundancy, which is clearly notice-
able during fine kinesthetic teaching on the UR5e, was
deemed as a greater limitation and hence the Panda
was chosen for the case study. Further details on
the hardware integration of the setup can be found in
Sec. 3.5.

3.2 CAM-based Programming Approach

This programming approach has much in common with
conventional off-line programming of industrial robot
manipulators and the programming of CNC machines.
The idea is to create a controlled environment that
can be modelled with sufficient precision, and then

Figure 3: Case study: Setup. A Rotary encoder to
drive the servo motor during demonstration.
B Servo motor for rotating the workpiece.
C Workpiece/Sensor mock-up. D Glue gun
mock-up. E Robot flange.

rely on the model and planning algorithms to gener-
ate toolpaths for the machine or robot. Just as in
CNC machining, we use a CAD model of our work-
piece to predefine where and how the tool is supposed
to move along the part. This process of generating ma-
chine instructions based on geometries of a CAD model
is commonly referred to as CAM. Professional CAD
software often offers integrated CAM environments;
we use the manufacturing environment integrated in
AutoDesk Fusion 360. This CAM environment offers
various machining operations for standard manufactur-
ing techniques such as laser/water jet cutting, additive
manufacturing, turning and milling along three to five
axes.

Fusion 360 does not offer gluing as a manufactur-
ing technique, but the ”Multi-Axis Contour” is a 5
axis milling operation that follows 3D curves lying on
the surface of a CAD model while keeping normal to

145



Modeling, Identification and Control

the model surface, and can be adjusted to accommo-
date manipulating a glue gun with a robot arm. Fully
defining the movement of the robot’s end effector in
Cartesian space requires a toolpath with 6 instead of
5 degrees of freedom. With Multi-Axis Contour, the
rotation about the tool axis remains undefined, since
this is irrelevant for milling with tools that are rota-
tional symmetrical around the tool axis. In our case,
we have to define the rotation about the tool axis in a
customized post-processing step in Matlab.

The curve which is traced by the operation can ei-
ther be an existing feature on the model surface, or
can be created by drawing a spline onto the surface.
When drawing the spline onto the model, it is impor-
tant that the spline lays exactly on the model surface
at all points, otherwise the toolpath will have gaps dur-
ing sections where the spline lifts off of the surface. We
ensure that the spline we draw lays on the surface by
first including the relevant surfaces of the model as 3D
geometries into the sketch, drawing the spline onto the
included surfaces, and finally projecting the spline onto
the model surface. Projecting the spline onto the sur-
face is necessary, since even when placing the spline
anchors on the included surfaces, the sections between
the anchors will deviate from the surface if the curva-
ture of spline and the surface do not match (Fig. 4).

The available tools in Multi-Axis Contour are milling
cutters, but we can modify the dimensions of a generic
ball end mill to match the dosing needle on the glue
gun. Some of the remaining settings in Multi-Axis
Contour are only relevant when milling (e.g. feed &
speed). For our case study, we adjust the tolerance
to control how fine-grained the toolpath is going to
be. We also adjust the entry position and the lead-
in and -out movements to define where and how the
tool approaches the part. After computing the Multi-
Axis Contour operation, the resulting toolpath can be
previewed within Fusion 360 as shown in Fig. 5.

The toolpath now embodies our desired operation,
but it is still a generic set of instructions within Fu-
sion 360 that can’t be used to control a specific piece
of hardware. To convert the toolpath to machine code
that can be interpreted by the controller of the machine
or robot at hand, an additional post-processing step
is required. The post-processors allow to make hard-
ware specific settings, convert the generic toolpath into
machine-readable code and output it in the correct file
format.

Fusion 360 comes with a library of post-processors
for some common machines and some robots. How-
ever, there is no post-processor for the Franka Emika
Panda robot we use, and in any case, a standard post-
processor for the Panda would not work in our custom
setup with an external axis controlled by a servo motor.

(a) Spline (blue line) deviating from the model surface in-
cluded in the sketch (purple line).

(b) Final result after projecting the spline (purple) back
onto the model surface.

Figure 4: Drawing a spline as reference for the ”Multi-
Axis Contour” operation.

Figure 5: Toolpath generated with ”Multi-Axis Con-
tour”. The dark blue line shows the toolpath,
the light blue lines show the orientation of
the tool, the green lines show the lead-in and
lead-out movements.

146



Schäle et.al., “Programming Fine Manufacturing Tasks on Cobots”

Therefore, we use a generic post-processor from Au-
toDesk that exports the toolpath as a text file contain-
ing a list of Cartesian coordinates and orientations of
the tool axis in terms of unit vectors, and perform ad-
ditional, custom post-processing steps in Matlab. We
use the Mathworks Robotics System Toolbox to build
and solve the kinematic model of our setup.

To obtain the complete reference trajectory for
our setup from the exported toolpath, we compute
the closed-loop inverse kinematics from the toolpath
frames on the workpiece attached to the external axis
to the dosing needle on the glue gun mounted to the
robot’s end effector. We modify the kinematic model
of the robot by moving the Tool Center Point (TCP) to
the glue gun tip; this transformation can be obtained
from the CAD-model of the glue gun. We also add
the external axis as a revolute joint to the model; the
transformation from the robot base frame to the ex-
ternal axis is determined with our gauging procedure
detailed in Sec. 3.3.

We set up a generalized inverse kinematics solver
with three constraints: The first constraint is on the
joint bounds of the robot and the servo motor, the sec-
ond one is a revolute joint constraint that aligns the
z-axis of the glue gun with the tool axis from the tool-
path, the third constraint limits the tip of the glue
gun to stay within a small working envelope to ensure
that most of the relative rotational movement between
the workpiece and the glue gun is done by rotating
the servo motor. We iterate through the toolpath by
attaching the tool frames one after another to the ex-
ternal axis, updating the revolute joint constraint to
the current frame and solving the inverse kinematics
(Fig. 6). The previous inverse kinematic solution serves
as the initial value of the next computation.

After obtaining the joint positions of the robot and
external axis, we compute the forward kinematics to
obtain the movement of the glue gun in Cartesian
space. The gluing operation is now represented as a
list of servo motor positions of the external axis and
homogeneous transformation matrices of the glue gun.

Since the position controller of the Franka Emika
Panda is prone to acceleration discontinuities and
throws errors easily if the reference trajectories are
not perfectly smooth, we encode the trajectories in a
continuous-time regression model. With the regression
model, the trajectory samples for the current time step
can be computed online and we do not have to rely
on that the discretization of the reference trajectory
and the sample rate of the controller match. We use a
linear regression model with Gaussian basis functions
just as it is used in probabilistic movement primitives

Figure 6: Kinematic model of the robot and the ex-
ternal axis in Matlab. a Origin of the exter-
nal axis, modelled as a revolute joint rotating
about the z-axis (blue). b Toolpath frame at
one time instance, attached to the revolute
joint of the external axis. c Toolframe at-
tached to the tip of the dosing needle on the
glue gun. The constraint between the z-axes
(blue) of frames b and c is not fully engaged
in this picture, since the frame origins do not
coincide. d Robot base frame. e Transfor-
mation from robot base frame to origin of
the external axis.

(ProMPs) (Paraschos et al., 2013). The orientations
are converted to unit quaternions prior to encoding.
An overview of the work flow is shown in Fig. 7.

3.3 Gauging the Work Cell

The CAM-based approach generates Cartesian trajec-
tories based on a CAD-model of the workpiece localized
in the robot base frame. For an ideal reproduction of
the movement, the pose of the workpiece in the robot
base frame used in software during the generation of
the trajectory and the pose of the workpiece in the
robot base frame in the real world set up should be
identical. Determining the pose of the workpiece is a
common issue in OLP and CNC machining, and of-
ten solved with touch probing or optical measurement
systems.

For the purpose of our case study, we use a kine-
matic coupling on the end effector together with the
robot’s proprioceptive sensors to estimate the pose of
the workpiece in the robot base frame. Kinematic cou-

147



Modeling, Identification and Control

Figure 7: Schematic description of the CAM-based programming approach.

plings are fixtures used in exact constraint design which
constrain parts with the minimum of necessary contact
points (e.g. 6 contact points to constrain 6DOF), by
which they ensure a precise and repeatable placement
of the part (Blanding, 1999). The pattern we use in
our coupling is a common choice in exact constraint
design, and consists of a female-side with three radi-
ally oriented v-slots and a male-side with three spher-
ical surfaces. We integrated identical male-sides of the
coupling into the bottom of the workpiece and into a
custom-made gauging tool. The female-side is mounted
to the external axis. We assume that we can manufac-
ture the male-sides on the gauging tool and the work-
piece with acceptable accuracy using a 3D printer, such
that a common reference frame placed at the center of
the mount will be identically located with respect to
the female-side when the mount is engaged with either
the workpiece or the gauging tool.

For gauging the setup, the operator first defines the
robots TCP to the reference frame of the coupling on
the gauging tool; the transformation from the flange
to the reference frame is taken from the CAD model of
the gauging tool. The operator then removes the work-
piece from the external axis, moves the external axis
to its zero position and hand-guides the robot with the
gauging tool into the kinematic coupling (Fig. 8). Once
the coupling is engaged, the transformation from the
robot base to the TCP can be captured. This transfor-
mation corresponds to the pose of the reference frame
on the workpiece in the robot base frame. The trans-
formation is then used to adjust the workpiece pose in
the kinematic model (Fig. 6).

3.4 LfD-based Programming Approach

This programming approach draws on practices from
physical human-robot interaction (pHRI) to create an
immediate and undiluted connection between the op-
erator, task and robot. We use a LfD related technique
to transfer the expert operator’s gluing performance to
the robot.

Technically, we do not use LfD in the conventional
sense (Siciliano and Khatib, 2016, Chap. 74), since we
only record and play a single demonstration and do
not arrange for generalization. We argue that this is
a valid approach since we consider our case study as
a form of robot programming rather than robot learn-
ing, and since we keep the task and environment con-
trolled and unchanged. However, it must be considered
for discussion that multiple demonstrations, maybe in
connection with incremental learning, could help the
operator to provide better toolpaths to the robot.

For recording a demonstration, the robot is put into
a compliant hand-guiding mode where it can be moved
around easily by the operator. Similarly, the external
axis is also put into hand-guiding mode such that it
can be actuated by the operator using the rotary en-
coder. Once the operator has moved the setup into an
appropriate starting configuration, the recording of the
robot joint states and the position of the servo motor is
started. The operator proceeds to perform the demon-
stration of the gluing operation: moving the glue gun
with one hand while turning the nob of the rotary en-
coder with the other (Fig. 9). After completing the
gluing path, the operator stops the recording.

The operator runs a Matlab script to import the
recorded data into Matlab where the joint states and
servo positions are extracted and the servo positions
interpolated such that the sampling of the joint states

148



Schäle et.al., “Programming Fine Manufacturing Tasks on Cobots”

Figure 8: Gauging the setup for running the CAM-generated trajectories. The pose of the workpiece relative
to the robot base frame is determined through a kinematic coupling. The coordinate frames in the
center of the couplings are used to match the transformations of the gauging tool and the workpiece.
A: Initial situation with workpiece mounted to the kinematic coupling on the external axis and glue
gun attached to the robot flange. Bottom right corner shows the CAD model of the workpiece with
the male-side of the kinematic coupling and the reference frame on the bottom. B: The workpiece is
removed from the external axis and the glue gun replaced by the gauging tool featuring the identical
male-side of coupling as the workpiece. The CAD model of the gauging tool with its reference frame
is shown in the bottom right corner. C: The operator hand-guides the gauging tool onto the external
axis. In the bottom right corner the CAD model of the female-side of the coupling on the external
axis is shown. D: The operator ensures that the kinematic coupling is fully engaged, i.e. the three
spherical features on the gauging tool are each in touch with one of the slots, by pushing the end
effector gently downwards. E: Close up of the engaged coupling. The engaged coupling ensures that
the location of the reference frames on the gauging tool and the workpiece coincide.

Figure 9: Operator providing a demonstration of the
gluing task to the robot for the LFD-based
programming approach.

and servo positions match. The glue gun poses are ob-
tained by computing the forward kinematics from the
joint states. From here on the steps are similar to the
CAM-based approach (Sec. 3.2): Converting the glue
gun orientations to unit quaternions and fitting a lin-
ear regression model with Gaussian basis functions to
the data. An overview of the work flow is shown in
Fig. 10.

3.5 Details on Hardware Integration

The setup is integrated with the Robot Operating

System (ROS) running on a desktop computer. The
servo motor is connected to the PC through a TTL
to USB converter; motor commands can be sent from
ROS using the Dynamixel SDK. The rotary encoder is
connected to an Arduino Uno microcontroller board,
which counts the encoder impulses using the Encoder

library, and makes the encoder readings available to
the ROS network using the rosserial protocol over
a USB connection to the PC. In the LfD approach,
we use an Elgato Stream Deck as a physical user in-
terface, such that the operator can easily switch into
hand-guiding mode and start and stop the demonstra-
tion recording with one hand while working in the
setup. The robot is connected to the PC via the Franka
Control Interface (FCI). Real-time control commands

149



Modeling, Identification and Control

Figure 10: Schematic description of the LfD-based programming approach.

can be sent, and the robot states be read, at a sam-
ple rate of 1000Hz from ROS using franka ros, which
is the ROS integration of libfranka, an open-source
C++ interface Franka Emika provides for their robots.
franka ros provides several control interfaces imple-
mented in the ros control framework, from which we
use the Cartesian pose interface in a custom pose con-
troller. The pose controller commands both glue gun
poses to the robot and positions to the servo motor.

4 Comparison and Discussion

In the case study presented in this paper we compared
two opposing approaches to programming fine manu-
facturing tasks on a collaborative robot. We wanted
to explore what the different approaches could offer
in terms of accuracy and easy of use, and get an im-
pression of what requirements where present on the
operator side to use them effectively. We also aimed
at getting an impression if it would be realistic to use
them in practice for programming fine manufacturing
tasks.
For comparing the two approaches, we generated

a toolpath with the CAM-approach as described in
Sec. 3.2, and recorded toolpath demonstrations for the
LfD-approach as described in Sec. 3.4. We let the robot
perform these toolpaths while recording the joint states
of robot and workpiece as well as videos from three per-
spectives.

4.1 Comparison of Performance

For the comparison, we selected a LFD toolpath we
consider to be representative for the task (neither
worst, nor best performance), based on our experience
from setting up the experiment and previous trials.

0.63

0.62
0.185

0.19

0.61

z 
[m

]

0.195

0.135

x [m]

0.60.13

y [m]

0.125 0.59
0.12

0.580.115
0.11

LFD demonstration
LFD performed

Figure 11: LFD Approach: Demonstration and per-
formed movement.

Fig. 11 shows the selected demonstrated and performed
toolpath. The paths are reconstructed from the rela-
tive movement of the glue gun tip and the workpiece.
Except for the faster lead-in and -out movements the
performed path is quite similar to the demonstration.
Some minor deviations can be explained by errors in
the regression model and tracking errors caused by in-
accuracies of the robot and by physical contact between
workpiece and glue gun. The demonstration shows
some minor jiggle which is a sign of inaccuracies in
the human demonstration.

Fig. 12 shows the toolpath generated from the CAD
model of the workpiece and the same path performed
by the robot. There are sections with considerable
deviations between the planned and performed path.
However, compared to the reference trajectory of the
LFD-based approach, the planned path of the CAM
approach is perfectly smooth.

150



Schäle et.al., “Programming Fine Manufacturing Tasks on Cobots”

0.63
0.625

0.184
0.186
0.188

0.62

0.19

z 
[m

] 0.192

0.135

0.194

0.615
0.610.13

x [m]

0.605

y [m]

0.125
0.6

0.12 0.595
0.115 0.59

0.5850.11

CAM generated
CAM performed

Figure 12: CAM Approach: Generated and performed
movement.

For a better comparison of the approaches, their de-
viations and levels of noise, we plotted the Cartesian
coordinates of the toolpaths in the robot base frame
over the angle swept through by the relative rotation
of workpiece and glue gun tip (Fig. 13).

We notice that the demonstrated path in our exper-
iment is rather steady for a hand guiding operation,
which is not always the case. During handguiding, the
robot typically disturbs the operator in their movement
due to imprecise compensation of the torques acting on
the robot, such that the operator experiences friction
and overshooting. In this task, the required movements
of the glue gun are smooth and the groove on the work-
piece helps the operator to stay on the desired path.
A movement performed in free space, and containing
more variations in acceleration, would likely show more
noise. A characteristic inaccuracy for this task can be
seen around 1

2π where the operator accidentally slips
the glue gun tip out of the groove on the workpiece.
Figure 14 shows a detailed view of the Z-coordinate of
the LFD toolpaths together with corresponding video
frames of the glue gun tip during the demonstration.
The demonstration shows a ”dent” where the operator
slipped out of the groove. The dent is not visible in
the performed path, since the glue gun tip is guided by
and remains inside the groove during execution.

Figure 13 shows that the biggest deviation between
planned and performed path occurs along the z-axis
around 5

4π with the CAM approach. Based on the sim-
ulation of the generated path and the video data of the
performed path, we know that the glue gun tip followed
the groove on the workpiece during both planning and
performance. Thus, we suspect that these deviations
are a result of errors in the gauging procedure (Sec. 3.3)
and tracking errors caused by physical contact between
the glue gun and the workpiece: Due to small errors in

the gauging procedure, the pose of the planned path
does not perfectly match the groove in the physical
workpiece. Since the Franka Emika Panda is not in-
finitely stiff even in position control mode (in fact, it
implements position control internally through a stiff
impedance controller), the glue gun tip can get caught
in the groove and be guided by it, leading to devia-
tions between the planned and performed movements.
Figure 15 shows the z-axis plot of the CAM approach
from Fig. 13 zoomed in to the section between π and
7
4π, together with four video frames showing that the
glue gun tip was inside the groove during the entire
section.

4.2 Discussion

We find in our case study that the CAM approach lead
to bigger path deviations due to insufficient gauging, as
compared to the LfD approach. Yet, it must be kept in
mind that the path deviation alone only permits con-
clusions about the reproduction quality of the planned
path. It does neither provide information about the
quality of the planned path, nor indicate how well the
task was performed in terms of following the groove on
the workpiece. We know from video data that despite
the path deviations during the CAM approach, the task
performance was acceptable, owing to the characteris-
tics of the task and robot. For other tasks, without
physical constraints facilitating the tracking/correcting
errors in the gauging or with a stiff and powerful robot,
the performance could be much worse or even danger-
ous. The case study emphasized the importance of a
suitable gauging procedure to determine the pose of the
workpiece in common reference frame. The procedure
must be accurate to profit from the precise path plan-
ning with CAM, but it must also be fast and easy to
use to enable the quick set-up of new tasks. Without
such a procedure, the supposedly more precise CAM
approach can perform worse than the LfD approach -
even for fine manufacturing tasks.

The accuracy of the gauging procedure used in our
case study may be limited by the manufacturing pro-
cess (3D printing) and the size of the kinematic cou-
pling. The coupling could be improved by machin-
ing it with high tolerances from metal, resulting in a
more precise coupling and smoother surfaces. In ad-
dition, increasing the distance between the spheres on
the male-side of the coupling could help to reduce the
impact of manufacturing inaccuracies on the gauging.

We consider the quality of the demonstration in the
LfD approach to be reasonable for such a fine task.
We do not observe severe noise in the data in Fig. 13.
The video data shows minor slip-ups while following
the groove on the workpiece, but the overall accuracy
is acceptable. Certainly, our case study is too limited

151



Modeling, Identification and Control

! 1
4: 0 1

4:
1
2:

3
4: : 5

4:
3
2:

7
4: 2: 9

4:

580

600

620

X
 [m

m
]

LFD demonstration
LFD performed
CAM generated
CAM performed

! 1
4: 0 1

4:
1
2:

3
4: : 5

4:
3
2:

7
4: 2: 9

4:

110

120

130

140

Y
 [m

m
]

! 1
4: 0 1

4:
1
2:

3
4: : 5

4:
3
2:

7
4: 2: 9

4:

theta [rad]

185

190

195

Z
 [m

m
]

Figure 13: The Cartesian coordinates (in the robot base frame) of the toolpaths shown in Fig. 11 and Fig. 12
plotted over theta, the angle between the Y-axis of the workpiece frame and the radial vector con-
necting the origin of the frame and the toolpath samples.

1
4:

1
2:

3
4:

183

184

185

Z
 [m

m
]

LFD demonstration
LFD performed

Figure 14: Detailed view of the z-axis plot from Fig. 13
and the corresponding video frames of the
demonstration. The figure exemplifies a
typical inaccuracy during a demonstration
where the operator accidentally slips the
glue gun tip out and beneath of the groove
on the workpiece.

to make conclusions about the accuracy that can be
achieved when automating fine manufacturing tasks on
the basis of human demonstrations, yet we can say that
it generally does not seem to be infeasible. Providing
high-quality demonstrations may be more difficult in
tasks without physical constraints that help the oper-
ator during hand-guiding, in more dynamic tasks, and
in precise tasks with a larger scale where the operator
can not sit still and rest their elbows as in our case
study (Fig. 9).

From an operator’s perspective, the LfD approach
requires hands-on knowledge and the practical skills
for doing the task. If these requirements are given,
programming the robot by demonstration is straight-
forward and requires minimal preparation of the task
set-up. The CAM approach, on the other hand, re-
quires competence in CAD modelling and CAM, but
not the ability to do the task manually. An understand-
ing of the manufacturing processes involved in the task
is still required to properly plan toolpaths with CAM,
especially if the task involves control parameters that
cannot readily determined based on the geometries of
the workpiece. The accurate gauging and modelling of
the setup can be challenging and can lead to produc-
tion errors despite precisely planned toolpaths.

We did not include the control of additional process

152



Schäle et.al., “Programming Fine Manufacturing Tasks on Cobots”

: 5
4:

3
2:

7
4:

184

186

188

190

192

Z
 [m

m
]

CAM generated
CAM performed

Figure 15: Detailed view of the CAM z-axis plot from
Fig. 13 together with the corresponding
video frames of the glue gun tip from π
to 7

4π. This figure shows how the rela-
tively large deviation between the gener-
ated and performed CAM path between π
to 7

4π arises: the video frames confirm that
the glue gun tip stays in the groove dur-
ing the entire segment, and thus, the per-
formed path corresponds with the desired
robot movement. However, the planned
path does not match the performed path
which indicates errors in the gauging pro-
cess of the setup (Sec. 3.3).

parameters such as glue flow in our case study. Yet,
similarly to programming the toolpath, the best inter-
face for programming of such parameters depends on
the nature of the task. If parameters are to be kept
constant or a multitude of simple signals must be con-
trolled simultaneously, programming them in software
may be easier. If the task requires adaptive, closed-
loop control of a parameter, exploiting the cognitive
abilities of the operator with a demonstration-based
approach may be at advantage.

5 Conclusion

Based our experience from the case study described
in this paper, we believe that both the CAM-based
and LfD-based approaches have something to offer for
automating fine manufacturing tasks in cobot environ-
ments. The specific task characteristics that decide
which approach is best suited are difficult to define on
a general basis, and will depend on the operator’s skills
and preferences. The LfD approach is a quick and in-
tuitive way for skilled operators to transfer their expert
knowledge to the robot without any robot training, but
the quality of the execution is highly dependent on how
well the robot can compensate for torques, and act as
a near perfect compliant device for the operator. The

CAM approach requires competence in CAD-modelling
and CAM in addition to an overall understanding of
the manufacturing tasks, but provides a perfect geo-
metric path for execution. However, the accuracy of
the execution is highly dependent on the quality of the
gauging between the workpiece mounting and the robot
base frame.

For future work, we aim to investigate a hybrid pro-
gramming interface that enables the operator to choose
more fluidly which aspects of a task should be pro-
grammed through which approach. Such a hybrid in-
terface allows operators to accommodate their skills
and preferences, and leverages the strengths of the
CAM approach and the LfD approach in programming
fine manufacturing tasks on collaborative robots.

Acknowledgments

The contributions to this work according to the
Contributor Roles Taxonomy CRediT are as follows:
Daniel Schäle: Conceptualization, Methodology, Inves-
tigation, Software, Writing - original draft. Martin F.
Stoelen: Conceptualization, Writing - review & edit-
ing. Erik Kyrkjebø: Conceptualization, Funding ac-
quisition, Writing - review & editing.

This work was partially funded by the Norwegian
Research Council under grant number 22071, and par-
tially supported by the Polish National Centre for
Research and Development under the project “Auto-
mated Guided Vehicles integrated with Collaborative
Robots for Smart Industry Perspective” (Project Con-
tract no.: NOR/POLNOR/CoBotAGV/0027/2019-
00).

References

Blanding, D. L. Exact constraint: Machine design us-
ing kinematic principles. ASME Press, New York,
1999. doi:10.1115/1.800857.

Fossdal, F., Heldal, R., and Peek, N. Interactive
digital fabrication machine control directly within
a cad environment. In S. N. Spencer, E. Whit-
ing, J. Hart, and C. Sung, editors, Proceedings,
SCF 2021. The Association for Computing Machin-
ery, Inc, New York, New York, pages 1–15, 2021.
doi:10.1145/3485114.3485120.

Halim, J., Eichler, P., Krusche, S., Bdiwi, M., and Ih-
lenfeldt, S. No-code robotic programming for agile
production: A new markerless-approach for multi-
modal natural interaction in a human-robot collab-
oration context. Frontiers in robotics and AI, 2022.
9:1001955. doi:10.3389/frobt.2022.1001955.

153

http://dx.doi.org/10.1115/1.800857
http://dx.doi.org/10.1145/3485114.3485120
http://dx.doi.org/10.3389/frobt.2022.1001955


Modeling, Identification and Control

Heimann, O. and Guhl, J. Industrial robot program-
ming methods: A scoping review. In 2020 25th IEEE
International Conference on Emerging Technologies
and Factory Automation (ETFA). IEEE, pages 696–
703, 2020. doi:10.1109/ETFA46521.2020.9211997.

Hein, B., Hensel, M., and Worn, H. Intuitive
and model-based on-line programming of industrial
robots: A modular on-line programming environ-
ment. In 2008 IEEE International Conference on
Robotics and Automation. IEEE, pages 3952–3957,
2008. doi:10.1109/ROBOT.2008.4543818.

Iturrate, I., Kramberger, A., and Sloth, C. Quick
setup of force-controlled industrial gluing tasks using
learning from demonstration. Frontiers in Robotics
and AI, 2021. 8. doi:10.3389/frobt.2021.767878.

Nemec, B., Likar, N., Gams, A., and Ude, A. Human
robot cooperation with compliance adaptation along
the motion trajectory. Autonomous Robots, 2018.
42(5):1023–1035. doi:10.1007/s10514-017-9676-3.

Neto, P. and Mendes, N. Direct off-line robot pro-
gramming via a common cad package. Robotics
and Autonomous Systems, 2013. 61(8):896–910.
doi:10.1016/j.robot.2013.02.005.

Paraschos, A., Daniel, C., Peters, J. R., and Neumann,
G. Probabilistic movement primitives. In C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 26, pages 2616–2624.
Curran Associates, Inc, 2013.

Siciliano, B. and Khatib, O., editors. Springer Hand-
book of Robotics. Springer International Publishing,
Cham, 2016. doi:10.1007/978-3-319-32552-1.

Villani, V., Pini, F., Leali, F., and Secchi, C.
Survey on human–robot collaboration in indus-
trial settings: Safety, intuitive interfaces and ap-
plications. Mechatronics, 2018. 55:248–266.
doi:10.1016/j.mechatronics.2018.02.009.

154

http://dx.doi.org/10.1109/ETFA46521.2020.9211997
http://dx.doi.org/10.1109/ROBOT.2008.4543818
http://dx.doi.org/10.3389/frobt.2021.767878
http://dx.doi.org/10.1007/s10514-017-9676-3
http://dx.doi.org/10.1016/j.robot.2013.02.005
http://dx.doi.org/10.1007/978-3-319-32552-1
http://dx.doi.org/10.1016/j.mechatronics.2018.02.009
http://creativecommons.org/licenses/by/3.0

	Introduction
	Related Work
	Case Study on Industrial Gluing
	Experimental Setup
	CAM-based Programming Approach
	Gauging the Work Cell
	LfD-based Programming Approach
	Details on Hardware Integration

	Comparison and Discussion
	Comparison of Performance
	Discussion

	Conclusion

