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Abstract

This paper presents an investigation into the potential use of subspace identification methods (SIMs) for
model-based control of urban drainage systems (UDS) that play a crucial role in collecting and transporting
stormwater runoff and domestic sewage to Water Resource Recovery Facilities (WRRF) in urban areas.
To evaluate the feasibility of level control using model-based algorithms in UDS, a pilot tunnel system
was constructed. Three linear state-space models were identified using the system identification toolbox in
MATLAB and an open-source module in Python named SIPPY. The study finds that the identified models
can predict the system output with acceptable accuracy thus for model-based control of the system. The
findings of this study aim to contribute to the development of more efficient and effective control strategies
for UDS.

Keywords: Urban drainage systems, subspace system identification, drainage tunnel, model-based control,
Saint-Venant equations.

1 Introduction

Urban drainage systems (UDS) play an important role
in maintaining a healthy and safe living environment
in cities, collecting and transporting stormwater runoff
and domestic sewage to wastewater treatment plants.

This work aims to study the mathematical modeling
process of a pilot tunnel system, which is a simulator of
an existing tunnel system in Norway. The actual tunnel
is 42 km long and transports a total volume of up to
110 million m3/year combined sewage overflow (CSO)
to a Water Resource Recovery Facility (WRRF) named
VEAS. A simplified version of the tunnel was designed
and constructed to investigate the performance of real-
time control (RTC) algorithms, for example, model-
based predictive control (MPC) of the system (Lund
et al., 2018; Aakre Haugen, 2018; Ocampo-Martinez
et al., 2013; Breckpot et al., 2012). The goal of this
work is to present the system identification process of

the pilot tunnel system.
The pilot tunnel system can be viewed as an open

channel flow. The mathematical modeling of the flow
rate, velocity, depth, etc. of the flow in such a system
can be derived from the conservation of mass and mo-
mentum (Chanson, 2004; Litrico and Fromion, 2009).
A set of partial differential equations (PDEs) named
Saint-Venant equations (SVE) for a one-dimensional
open channel flow case such as in the pilot tunnel sys-
tem is given in (1)-(2).

∂a

∂t
+

∂q

∂x
= 0 (1)

∂q

∂t
+

∂

∂x

(
q2

a

)
+ ga

∂h

∂x
+ g(Sf − S0) = 0 (2)

In the SVE model, h(x, t) [mm] is the depth from
the free surface to the bed. a(x, t) [mm2] is the wetted
area. q(x, t) [L/s] is the discharge across section a. S0
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is the bed slope. Sf is the friction slope. t [s] is the
time axis. g [mm/s2] is the gravitational acceleration
constant.
To facilitate the simulation of the SVE model for

prediction purposes, various numerical methods can
be utilized(Kurganov and Levy, 2002; Kamboh et al.,
2016; Kurganov and Petrova, 2007). However, the
accuracy of the simulation results is typically depen-
dent on a high computational load, which can pose a
challenge for RTC applications with short time steps.
Additionally, for model-based control algorithms like
MPC, multiple simulations are often needed for each
optimization iteration, which can further lead to sig-
nificant difficulties for the optimization solver. To sim-
plify the model for real-time control applications, tech-
niques such as model deduction and linearization can
be applied to the SVE model (Xu et al., 2011, 2012;
Cen et al., 2010).

This work presents the modeling process of the sys-
tem using subspace identification methods and the per-
formance evaluation of the identified models for predic-
tive control applications.

The content is organized as follows: The pilot tun-
nel system and the system identification approach are
described in Section 2, followed by an introduction to
how to implement identified models for model-based
control algorithms such as MPC. The identification re-
sults are presented and the prediction performance of
different identified models are discussed in Section 3,
yielding conclusions in Section 4.

2 Methods and materials

This section presents the pilot tunnel system and the
modeling of the system.

2.1 Pilot tunnel system

Figure 1 and Figure 2 show the overview and a photo
of the pilot tunnel system, respectively. The system
consists of two sections, V1 and V2, with one inlet
each. The outflow of V1 and V2 can be manipulated
by a pump and a movable weir, respectively. Both
sections are made of transparent acrylic circular tubes
with inner diameter d = 94 mm, length l = 4000 mm,
and slope S0 = 85 mm/4000 mm ≈ 1.2◦.
This work focuses on the V1 section of the tunnel.

The water level at the end of V1 is manipulated by a
pump (Main Pump, MP) on the left end. V1 has one
inlet at the right end and the flow rate is controlled by
an inlet pump 1 (PV1). The left end is lower than the
right end so that the inflow from PV1 can flow freely
to the MP end. Both MP and PV1 are 12V DC pumps
that can be manipulated using PWM (Pulse Width

Modulation) from 0 to 100% duty cycle with a fixed
pulse frequency 50 Hz. The water level is measured
using a pressure sensor with a range of 0∼50 mbar,
equivalent to a maximum 50 cm level measurement.

2.2 System identification

This section outlines the system identification problem
and various methods that can be adopted, followed by a
practical approach to implementing the identified mod-
els for model-based control applications.

2.2.1 State-space model

A general dynamic system with deterministic inputs
and outputs is depicted in Figure 3.

In the system, yk ∈ Rny , xk ∈ Rn, uk ∈ Rnu , wk ∈
Rn, vk ∈ Rny are the system outputs, states, control in-
puts, process noise, and measurement noise vectors at
discrete time index k = 1, 2, ..., respectively. n, ny, nu

are integers representing the system order, number of
outputs, and number of inputs, respectively.

The process can be represented using a variety of
models. For example, Igreja et al. (2011) implemented
distributed MPC based on a linear state-space form of
an ARX (Auto Regressive Exogenous) model for con-
trolling water level in a canal. Yang and Chang (2005)
trained a neural networks model to estimate the veloc-
ity profile and discharge in an open channel flow using
experimental data. A few other examples of system
models are transfer functions, input-output polynomial
models, state-space models (SSMs), neural networks,
etc.

In this work, a linear time-invariant (LTI) SSM as in
(3)-(4) is utilized to model the system:

xk+1 = Axk +Buk + wk (3)

yk = Cxk +Duk + vk (4)

where, A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, D ∈
Rny×nu are the system matrix, input matrix, output
matrix, and feedthrough matrix. For LTI systems,
A,B,C,D are constant matrices.
The covariance matrices of the noise sequences wk, vk

are defined in appropriate shapes as in (5):
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2.2.2 System identification

Van Overschee and De Moor (1996) suggest that the
system identification aims to:
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Figure 1: Overview of the pilot tunnel system

Figure 2: A photo of the pilot tunnel system

System

Figure 3: A dynamic system

Given a set of input and output measure-
ments u1, u2, ..., us, and y1, y2, ..., ys, deter-
mine an appropriate system order n and esti-
mate the system matrices A,B,C,D,Q,R, S.

This process is based on the following assumptions:

� The matrix pair A,C is assumed observable, in-
dicating that all the modes in the system can be
observed in the output yk and identified.

� The matrix pair A, [B Q1/2] is controllable, im-
plying that all the modes of the system are exited
by either the deterministic input uk and/or the
stochastic noise wk.

The process and measurement noise are assumed to

be white and zero-mean in the following sections, giv-
ing zeros in S.

Identification procedures

In general, the process of identification involves the
following tasks (Ljung, 1998):

� Collection and pre-processing data obtained from,
i.e., real experiments. A common practice is to
split one experimental data set into two segments,
one for model parameter estimation and the other
one for validation. Data from different experi-
ments can also be used.

� Selection of a set of candidate models.

� Definition of a criterion of fit, i.e., the sum of
norms of the prediction error.

� Validation of the identified models. The identified
models must be tested using experimental data
sets that are different from the estimation pro-
cess. Muroi and Adachi (2015) compared several
validation criteria for system identification in the
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time domain, such as fit ratio, correlation coef-
ficient, index of agreement, etc. In MATLAB®

System Identification Toolbox (MATLAB, 2023),
MSE (mean squared error), NMSE (normalized
MSE), or NRMSE (normalized root mean squared
error) can be selected as the fitness criteria. See
Eq. (6)-(8) for details. In addition, Ljung (1999)
suggested a residual analysis consisting of a white-
ness test of the residuals and an independence test
between the residuals and the past inputs.

MSE =
1

N

N∑
k=1

(yk − ŷk)
2 (6)

RMSE =

√√√√ 1

N

N∑
k=1

(yk − ŷk)2 =
√
MSE (7)

NRMSE =

√∑N
k=1(yk − ŷk)2√∑N
k=1(yk − ȳ)2

=
RMSE

σy
(8)

where, N is the number of samples. yk and ŷk represent
the measured and the corresponding predicted output
at time step k, respectively. ȳ and σy stand for the
average and the standard deviation of the measured
output, respectively.
In addition to the above criteria, the compare() func-

tion in MATLAB utilizes the FitPercent or fit ratio
(FIT) in Eq. (9) to compare different models’ quality
(MathWorks, 2023; Muroi and Adachi, 2015).

FIT = (1−NRMSE)× 100% (9)

Data collection and processing

System identification relies on input and output data
from either simulations or real experiments. The qual-
ity of the identified model is highly dependent on the
design of the experiment and the data quality.
Open-loop or closed-loop can be adopted for sys-

tem identification experiments. Using a closed-loop
approach the system states can be safely under control.
However, the approach has a fundamental issue of cor-
relation between the noise and the input, making sub-
space methods such as CVA, N4SID, and MOESP bi-
ased. In contrast, the open-loop approach assumes the
data are independent of the past noise (Qin, 2006). To
implement an open-loop experiment, the inputs should
excite the system dynamics adequately. See (Ljung,
1999, p. 412) for details about the persistence of ex-
citation. A disadvantage of open-loop experiments is
that the system can be at risk of being driven away
from its operating point and thus becomes unsafe, for
example, an empty/ full tunnel system.

Pre-processing of the raw data sets including filter-
ing, removing trend and offset, and resampling should
be applied when necessary.

Subspace Identification Methods (SIMs)

SIMs identify directly state-space models of the system
using known input-output data pairs.

A variety of SIMs have been developed for identi-
fying the system model, such as traditional methods
(N4SID, MOESP, and CVA) (Qin, 2006) and parsi-
monious methods (PARSIM-K(Pannocchia and Calosi,
2010), PARSIM-P, PARSIM-S (Qin et al., 2005), and
PARSIM-E (Qin and Ljung, 2003)) and DSR (Di Rus-
cio, 1997), etc. Detailed mathematical derivation and
expression of these methods can be found in literature
such as (Qin, 2006; Ljung, 1999; Di Ruscio, 1997).

Although the detailed procedures may differ, there
are common steps involved in system identification,
such as regression or projection, model reduction, pa-
rameter estimation, and iteration. Overall, three dis-
crete representations of the system models used in
SIMs are (Qin, 2006):

� Process form:

xk+1 = Âxk + B̂uk + wk (10)

yk = Ĉxk + D̂uk + vk (11)

where, Â is the identified system matrix, which
can be seen as an estimate of the “true” matrix.
The ”ˆ” symbol is normally ignored. The same
applies to the other matrices.

� Innovation form:

x̂k+1 = Ax̂k +Buk +Kek (12)

ŷk = Cx̂k +Duk + ek (13)

where, K is the steady-state Kalman filter gain
matrix, which can be obtained by solving the (dis-
crete) algebraic Ricatti equation (Qin, 2006). x̂k

and ŷk are the (optimal) estimates of the process
states and output. ek = yk − ŷk is the prediction
error. Again, normally the symbol ”ˆ” is ignored.

� Predictor form:

x̄k+1 = AK x̄k +BKuk +Kyk (14)

ȳk = Cx̄k +Duk + ek (15)

with relations:

AK = A−KC (16)

BK = B −KD (17)
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Table 1: Comparison of identification software packages.

MATLAB SIPPY

Subspace
models

N4SID, CAV, MOESP N4SID, MOESP, CVA;
PARSIM-K, PARSIM-P, PARSIM-S.

Initial state
x0 estimate

Yes. Only for parsimonious algorithms.

Model type Continuous and discrete Discrete
Data pre-
processing

Detrend, input/output offset,
resample, merge experiments.

Input/output offset.

These three forms serve different purposes in system
identification and implementation of the system model.
Unlike the SVE model in (1)-(2), the obtained mod-

els typically are black-box models, meaning that the
state vector xk lacks physical meaning in most cases.

Toolboxes available

Several toolboxes are available for system identifica-
tion, such as the MATLAB® system identification
toolbox (MATLAB, 2023), DSR toolbox (MATLAB)
(Di Ruscio, 1997) and SIPPY (Armenise et al., 2018).
SIPPY is an open-source package for system identi-
fication, which requires several dependencies to access
the full functionality. For example, solving the discrete
Riccati equation requires Scipy/Slycot package.
Table 1 presents a brief comparison of these software

packages for subspace identification methods.
The system order n is decided by the user, depend-

ing on the complexity of the system and acceptance
criterion. Software packages in Table 1 offer default
orders if not specified.
Estimation of the time delay, τ , between the con-

trol action and the actual process response, is recom-
mended before estimating other parameters as it deter-
mines how to align the input-output data (Di Ruscio,
2001; Ljung, 1998). The MATLAB function delayest()
can help to determine the time delay if no prior infor-
mation is available (MATLAB, 2023).

2.3 Implementation of identification in
this work

In this work, open-loop experiments are to be
conducted using different excitation such as PRBS
(Pseudo-random binary sequence), and chirp-type sig-
nals. A first-order low-pass filter with filter time-
constant Tf = 4 seconds is to be applied to the raw
measurements to reduce the measurement noise. In
addition, all data sets are resampled with a fixed time
step Ts = 0.5 s.

As presented, the pilot tunnel system (V1) has:

� One output variable: The water level y [mm].

� One controlled input variable: The main pump
control signal uMP [%].

� One inlet flow: QPV1 [L/min]. This is a distur-
bance to the real system but will be treated as an
input variable in this case. The value is normally
unknown and should be obtained from estimation
or forecasting. In this work, the inlet flow is as-
sumed known until the current time step. uPV1

[%] will be used instead of QPV1 since the inlet
pump is controlled by control signal uPV1.

From a system identification point of view, the
pilot tunnel system is a MISO (Multi-Input-Single-
Output) system with ny = 1, nu = 2. Letting uk =
[uMP

k , uPV1
k ]T , the system model (3) can be rewritten

as:

xk+1 = Axk +BMPuMP
k +BPV1uPV1

k + wk (18)

= Axk +
[
BMP BPV1

]︸ ︷︷ ︸
B

[
uMP
k

uPV1
k

]
︸ ︷︷ ︸

uk

+wk (19)

Two algorithms, N4SID (in MATLAB and SIPPY) and
PARSIM-K (in SIPPY) will be tested and compared.
The following parameters are found to be appropriate
according to preliminary tests and analysis, thus used
for all identification algorithms:

� Model order n = 2.

� Time delay τMP = 2× Ts = 1 second and τPV1 =
15× Ts = 7.5 seconds.

� Forward- and backward-prediction horizons for
subspace algorithms: Sf = Sp = 15 samples.

� No feedthrough. Therefore for all models:

D = [ 0 0 ]

The Kalman filter gain matrix K will be obtained
as part of the system identification results in software
packages shown in Table 1.

Eq. (6)-(9) will be adopted for validation.

73



Modeling, Identification and Control

2.4 Using identified models for
Model-based control

After the system model is obtained, it can be used
for the design of real-time control algorithms, such as
MPC for water level reference tracking, in which the
model prediction of the process forms the basis of the
optimization problem (Di Ruscio and Foss, 1998).

2.4.1 Optimal prediction from identified models

For a prediction horizon j = 1, 2, ...,M , the prediction
of the system states and output can be obtained by
simulating the process form in (10)-(11), by omitting
the (white) noise terms, resulting (20)-(21):

x̄k+j+1 = Ax̄k+j +Buk+j (20)

ȳk+j = Cx̄k+j +Duk+j (21)

where, the system matrices A,B,C, and D are ob-
tained from the identification. The input sequence is
uk+j = [uMP

k+j , u
PV1
k+j ]

T with uMP
k+j to be obtained from

solving the MPC optimization problem at every time
step.

To validate the model performance, iterative simu-
lations of (20)-(21) can be done. In addition, func-
tions such as sim() in MATLAB or Scipy.signal.dlsim()
(SciPy.org, 2023) can also be used. The time delay of
the inputs τ must be taken into account.

2.4.2 Initial conditions

Simulating (20)-(21) requires the initial state vector
(at the first time step in each prediction horizon) x̄k+1,
which is unknown but can be estimated using the inno-
vation form and the present measurement and states:

x̄k+1 = x̂k+1 (22)

= Ax̂k +Buk +Kek (23)

= Ax̂k +Buk +K(yk − ŷk) (24)

= Ax̂k +Buk +K(yk − (Cx̂k +Duk)) (25)

All terms on the right-hand side in (25) are available
up to time step k. The initial state x̂0 can be estimated
or assumed to be zeros.

In this approach (known as output feedback), achiev-
ing feedback of the process output yk is realized
through model prediction utilizing the estimated pro-
cess states. A state observer such as the Kalman gain
K plays an essential role in this task.

2.4.3 M-step-ahead prediction

The 1-step-ahead prediction is the forced response of
the system under uk+1, as expressed in Eq. (26):

ȳk+1 =Cx̄k+1 +Duk+1 (26)

=C(A−KC)x̄k + CKyk+

+ C(B −KD)uk +Duk+1

(27)

Once new process measurements are available, the pro-
cedure, including estimating x̄k+1 from the updated
output and recalculating the model prediction, is re-
peated.

For a system with no feedthrough (strictly proper
system), Eq. (28) is the M -step-ahead prediction ex-
pressed in a matrix form, given current state x̂k, cur-
rent input uk, and future inputs uk+j . See more details
in (Di Ruscio, 2001, p. 150-151).

Ȳ k = Hx(A−KC)x̂k +HyKyk +HuUk (28)

where,

Ȳ k =


ȳk+1

ȳk+2

...
ȳk+M

 ,Uk =


uk

uk+1

...
uk+M−1

 ,

Hx = Hy =


C
CA
...

CAM−1

 ,

Hu =


CB 0 . . . 0
CAB CB . . . 0

...
...

. . . 0
CAM−1B CAM−2B . . . CB


According to (28), the predicted values
ȳk+1, ȳk+2, . . . , ȳk+M can all be related to x̂k and
yk. Therefore, the estimation of the process states x̂k

deserves an investigation. Note that predicting ȳk+M

requires inputs up to uk+M−1, as there is always one
step of delay from the input to the output in RTC.

3 Results and discussion

A few experiments were conducted to examine the sys-
tem responses under two different types of excitation
signals. The results of identification and validation are
presented and discussed.

3.1 Data sets for identification

The data set for model parameter estimation is pre-
sented in Figure 4 and the validation data sets are
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shown in Figure 5 and 6, respectively. Linear SSMs
are not able to model the system offset. Therefore, sub-
tracting the operating equilibrium or the sample mean
from offline transient data is recommended (Ljung,
1999, pp. 458-460). In practice, this can be done man-
ually or in MATLAB by using ”OutputOffset” and in
SIPPY by setting ”centering= InitVal”. In this work,
instead of raw values yraw, the modeling will use the
low-pass filtered data yLP , with output offset applied:

yid = yLP − yLP[0] (29)

where yLP[0] is the first element in the filtered output
sequence. In fact, all experiments started around the
operating point h∗

1 = 60 mm. The same applied to the
validation data sets.
Note that a few step changes of uMP and uPV1 were

applied to avoid a full/empty tunnel. This is a dis-
advantage of conducting open-loop experiments as dis-
cussed in Section 2.2.2.
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Data sets for model estimation
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Figure 4: Data sets for model estimation. u =

[uMP, uPV1]T : Input; yraw: Raw output; yLP:
Low-pass filtered output.
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Data sets for validation: PRBS
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Figure 5: Data sets for validation using PRBS excita-

tion. u = [uMP, uPV1]T : Input; yraw: Raw
output; yLP: Low-pass filtered output.
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Data sets for validation: Chirp
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Figure 6: Data sets for validation using chirp excita-

tion. u = [uMP, uPV1]T : Input; yraw: Raw
output; yLP: Low-pass filtered output.

3.2 Identified model parameters

Table 2 presents the parameters of three models.

3.3 Validation of models

With x̂0 = [0, 0]T , Figure 7 presents the validation re-
sults and Table 3.3 compares the model fits.

Overall, the results in Figure 7 and Table 3.3 show
that SSM-1 presented the best fit with the smallest
MSE and highest FIT (≈ 80%) under both types of
excitation. As a comparison, SSM-2 and SSM-3 predict
the process output equally well, yet worse than SSM-1,
particularly in the long-term horizon.

All models performed well in predicting the varia-
tions with relatively lower frequencies in the data sets.
However, none of the three caught the system dynam-
ics with relatively higher frequencies. This is partially
due to the relatively small system order (n = 2) used,
in addition to the nonlinear dynamics that are chal-
lenging for linear models to catch.

When the system was driven too far away from the
operating point, the performance of all models deteri-
orated. For instance, in the chirp excitation case, the
identified models failed to capture the free response of
the system after both pumps were deactivated at t =
380 s, even though SSM-1 still performed the best.

3.4 Prediction using identified models

The system models are intended for deployment in
model-based control of the pilot tunnel system. In this
section, more detailed prediction performances of the
identified models were evaluated, followed by a discus-
sion on state estimation. Figure 8 shows the results
with prediction horizons of 20 seconds.
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Table 2: Identified discrete-time SSMs of the pilot tunnel system

Parameter
SSM-1

(MATLAB, N4SID)
SSM-2

(SIPPY, N4SID)
SSM-3

(SIPPY, PARSIM-K)

A
[

0.9999 0.0196
−0.0034 0.9136

] [
0.9929 −0.0566
−0.0127 0.9046

] [
0.9953 −0.0596
−0.0071 0.9043

]
B

[
−6.99E− 6 1.42E− 5
−3.88E− 5 −8.49E− 6

] [
1.73E− 4 −3.52E− 5
−5.79E− 5 2.36E− 4

] [
−2.54E− 5 −2.49E− 5
1.37E− 4 −1.86E− 4

]
C [ 393.3 −2.818 ] [ −36.1534 −4.4308 ] [ 66.5356 1.2653 ]

K
[

0.00225
−0.00499

] [
−0.00816
−0.00115

] [
0.01443
0.00807

]
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(a) Validation using PRBS excitation
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(b) Validation using chirp excitation
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Figure 7: Validation of identified models. The measured outputs yPRBS and ychirp are compared with the
predicted outputs ŷSSM-1, ŷSSM-2, and ŷSSM-3.

Figure 8: Model prediction for a given prediction horizon of 20 seconds. Every line segment with an arrowhead
represents the prediction in the corresponding horizon. Note that a step-by-step prediction was
implemented but a few horizons are shown for clear visual effect.
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Table 3: Comparing the fitness of identified models

Model
PRBS excitation Chirp excitation

MSE RMSE NRMSE FIT [%] MSE RMSE NRMSE FIT [%]

SSM-1 8.16 2.57 0.204 79.6 6.87 2.62 0.187 81.3
SSM-2 52.85 7.27 0.518 48.2 38.59 6.21 0.44 55.7
SSM-3 76.40 6.81 0.486 51.4 44.20 6.65 0.47 52.6

3.4.1 Trends across the prediction

First of all, based on the results, the predictions under
both types of excitation signals generally followed the
trends of the actual measurements across most pre-
diction horizons, particularly for the chirp excitation
cases. However, wrong predictions exist. For example,
in Figure 8 (a), SSM-2 and SSM-3 calculated increas-
ing trends of the prediction from t = 60 s to 80 s, while
the real measurement decreased in the time interval.
Furthermore, comparing results between PRBS exci-

tation and chirp excitation, the PRBS cases were more
challenging for the models in terms of predicting the
system outputs. This is acceptable because the model
parameter estimation relying on only chirp-type exci-
tation can not fully capture the characteristics of the
PRBS excitation case. Using more complex excitation
signals, for example, combined chirp and PRBS inputs
can help to improve the model accuracy. In addition,
improved performance can be expected using longer
data sets for identification.

Lastly, it is worth noting that a longer prediction
horizon is more challenging, particularly in the PRBS
excited cases. This tells that the length of the predic-
tion horizon shall be carefully selected for model-based
control algorithms such as MPC as it is one of the key
factors in determining the overall performance.

3.4.2 Initial condition and state estimation

In the discussion above, the model prediction can fol-
low the trends in the measurement for most predic-
tion horizons. However, the predicted outputs ȳ do not
match the measured values precisely. In fact, large pre-
diction errors can be observed at the beginning stages
for all models. This is partially due to the inaccurate
state estimates at the beginning.
As given in the matrix form of the M -step prediction

in Eq. (28), the predicted values ȳk+1, ȳk+2, . . . , ȳk+M

can be derived from x̂k, yk, uk, and future inputs uk+j .
Inaccurate state estimate x̂k will result in inaccurate
x̂k+1(= x̄k+1) therefore errors in the prediction.

Using x̂0 = [0, 0]T as the initial condition, the results
of state estimation are presented in Figure 9.
As shown in Figure 9, all the estimated process out-

put converged to the real measurements in a few time

steps. However, compared with SSM-1 and SSM-3
which converged within only approximately 1 second
(2 steps) under both types of excitation signals, SSM-2
took more than 5 seconds (10 steps). The results imply
that SSM-1 and SSM-3 are more appropriate choices
than SSM-2 for faster convergence and output estima-
tion. For implementation of the identified models in
MPC, it is recommended to wait for a few seconds be-
fore switching on the controller, so that the beginning
phase of the estimation is skipped, if x̂0 is assumed ze-
ros rather than estimated. For example, if SSM-2 is to
be used, a waiting time of 5 to 10 seconds is necessary,
so that the estimated output is close to the measure-
ment. It is worth noting that changing the signs of both
K and C will result in inverted x̂1 and x̂2 with respect
to the Time axis with the same estimated output.

4 Conclusions

This work introduces a pilot tunnel system that was
developed to explore real-time level control in urban
drainage systems. The process dynamics are nonlinear,
as described in the SVE model. In this work, three
LTI SSMs identified using two subspace algorithms,
N4SID and PARSIM-K have been carried out and com-
pared for prediction performances for implementation
in model-based control algorithm. The SSM-1 model
estimated using the N4SID algorithm presented the
best overall results. In RTC, the initial condition is
mostly unknown and assumed to be zeros. To avoid
inaccurate state estimation, it is recommended to wait
a few seconds before switching on the real-time con-
troller when implementing the identified models.

Additional insights into the dynamics of the system
under study could be gained through further research
into nonlinear model structures and online identifica-
tion. A linear model structure such as SSM used in this
work is incapable of capturing the nonlinear dynamics
far from the operating point. Identification based on
offline data sets cannot compensate for altered dynam-
ics due to changes in system parameters, such as hard-
ware wear out over time (Garćıa et al., 1989). Improv-
ing accuracy and precision of model predictions can be
expected using longer data sets for identification.
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(e) Estimation of states: SSM-3 & PRBS
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Figure 9: Estimation of states x̂ = [x̂1, x̂2]
T using three identified models.
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ABBREVIATIONS

Abbr. Full name

ARX Auto Regressive Exogenous
CSO Combined Sewage Overflow
CVA Canonical Variate Algorithm
LTI Linear time-invariant
FIT Fit ratio
MISO Multi-Input-Single-Output
MSE Mean squared error
MOESP Multivariable Output Error State Space algorithm
MPC Model-based predictive control
NRMSE Normalized root mean squared error
NMSE Normalized mean squared error
PDE Partial differential equation
PWM Pulse Width Modulation
PRBS Pseudo-random binary sequence
RTC Real-time control
SIMs Subspace Identification Methods
SSM State-space model
SVE Saint-Venant equations
UDS Urban drainage system
PARSIM Parsimonious algorithm for system identification, such as PARSIM-K,

PARSIM-S, PARSIM-P, PARSIM-E, etc.
DSR Deterministic and Stochastic Realization algorithm for system identification
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NOMENCLATURE

Symbol [Unit] Default value Description

a [mm2] The wetted area of open channel flow.
A,B,C,D The system, input, output, and feedthrough matrix of SSMs.
d [mm] 94 The inner diameter of the circular tunnel.
e The prediction error.
g [mm/s2] The gravitational constant.
h [mm] The water depth of open channel flow.
h∗ [mm] 60 The operation equilibrium in the open-loop experiments.
K The steady-state Kalman filter gain matrix.
l [mm] 4000 The length of the tunnel (V1 section).
M The length of the prediction horizon.
n, ny, nu The number of system states, outputs, and inputs.
q [L/s] The flow rate of the flow inside the tunnel.
QPV 1 [L/min] The inlet pump flow rate.
Q,R, S The covariance matrices of the noise sequences.
r [mm] The reference signal.
S0 1.2◦ The bed slop of the pilot tunnel system.
Sf The friction slope of open channel flow.
t, k [s] The continuous and discrete time index.
Ts [s] 0.5 The sampling interval.
uMP, uPV1 [%] The control signal to the main pump and inlet pump.
w, v The process noise and measurement noise vectors.
x, y, u The system state, output, and input vector.
x̄, ȳ The predicted process states and output.
x̂, ŷ The estimated process states and output. x̂ = [x̂1, x̂2]

T .
x0 The initial state of the identified process model.
yraw, yLP [mm] The raw and low-pass filtered measurements.
τMP, τPV1 [s] Time delay of main pump and inlet pump.
Ȳ , Ū Output and input vector in the prediction.
Hx,Hy,Hu M -step-ahead prediction matrix form coefficients.
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