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Abstract

This paper proposes simplification of the scenario ensembles that describe the uncertainty present in a
hydropower plant. The simplified scenario tree is further used with a multistage model predictive control
for optimal operation of the hydropower station. The proposed method reduces the number of considered
scenario ensembles of water inflow forecast into the reservoir in the Dalsfoss hydropower plant, which leads
to less computational demand of the multistage MPC. The method takes two steps: the creation of three
synthesis scenario ensembles and the estimation of the probability of occurrence of the three synthesis
scenario ensembles. The simulation results of multistage MPC with 4 different types of scenario ensembles
demonstrate that the proposed simplified method reduces the computation demand of the multistage MPC
by 15 times approximately, without degrading its performance.
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1 Introduction

Hydropower is an attractive renewable energy with
two significant benefits; flooding management and en-
ergy security. The presence of a reservoir in a hy-
dropower system enables it to hold the water for gen-
erating power or ensure the steady water flow in down-
stream in the future (IEA, 2021; Torabi Haghighi et al.,
2019). However, the operation of a hydropower system
is challenging. Some operational constraints and re-
quirements must comply when operating a hydropower
system, for ensuring safety in the operation and pre-
venting damage to the ecosystem (NVE, 2021). Fur-
thermore, the presence of uncertainty, such as water
inflow to a reservoir, exacerbates the difficulty of the
operation of a hydropower system.

The operation of the Dalsfoss hydropower plant is
not exceptional for the challenge because there are

several operational constraints and requirements posed
by NVE(NVE, 2021), and uncertainty of water inflow.
Thus, Skagerak Kraft, the operator of the plant, has
been considering the implementation of model predic-
tive control (MPC). MPC is an appealing control strat-
egy for a constrained multi-input and multi-output sys-
tem and optimal operation (Morari and Lee, 1999). It
aims to achieve optimal operation and satisfy the posed
constraints. MPC computes the optimal control se-
quence by solving an optimal control problem (OCP)
and applies the first element of the sequence to the
system (Mayne et al., 2000).

The first attempt of utilizing MPC for the Dals-
foss hydropower plant was made internally in Skagerak
Kraft AS. It suggested a system model of the Dals-
foss hydropower system and simulated the determinis-
tic MPC with reference region tracking OCP that aims
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to keep the water level in a specific range instead of
maximizing it. Then, later, the model and the OCP
are used to test the stochastic MPC in (Menchacatorre
et al., 2019). However, because of the reference region
tracking OCP, it is observed a large amount of water
was thrown away through floodgates instead of being
used for power generation in the future, despite the
constraints on the water level being seldom activated.

To address this issue, the new OCP was formulated
in (Jeong et al., 2021). The new objective function was
designed to maximize the water level at the reservoir
and explicit constraints on the water level bounds were
posed. As the result, the water level was maximized
during the simulations and the constraint of the max-
imum water level became activated. However, due to
the activation of the constraint, the constraint was not
satisfied when uncertainty was realized differently from
the predicted value. Later, the newly proposed OCP
was tested with various sets of weight parameters for
finding preferred operational condition in Jeong and
Sharma (2022b).

Uncertainty in the system, such as model mismatch
and disturbances, can lead to the failure of the op-
timal operation and even to potential constraint vio-
lations during operation (Birge, 1997; Shapiro et al.,
2009). There has been much research to counteract
the influence of the uncertainty in the MPC frame-
work (Mesbah, 2016). Firstly, Min-max MPC was in-
troduced in (Campo and Morari, 1987). Min-max cal-
culates the control sequence over a single trajectory
that aims to counteract the influence of all possible
realizations of uncertainty. In other words, it pro-
vides the control input for the worst-case scenario of
uncertainty. This approach frequently yields a highly
conservative control input, while ensuring the robust
satisfaction of constraints. Later, multistage MPC ap-
peared as the solution of the highly conservative solu-
tion of Min-max MPC in (Scokaert and Mayne, 1998;
Lucia et al., 2013). The uncertain system behavior is
described by a discrete-time scenario tree, which ac-
counts for the future evolution of uncertainty. Mul-
tistage MPC computes many control trajectories over
the scenario tree. The effectiveness and performance
of the multistage MPC approach have been demon-
strated in various industrial applications(Lucia et al.,
2013; Klintberg et al., 2016; Maiworm et al., 2015).

Multistage MPC was effective in counteracting the
uncertain water inflow in the operation of the Dalsfoss
hydropower plant as well (Jeong and Sharma, 2022a).
The 50 scenario ensembles of the water inflow forecast
are used as the scenario tree for implementing the mul-
tistage MPC. As result, no violation was observed. To
reduce the computational time, instead of the whole
scenario ensembles, the three synthesis scenario en-

sembles were created and used for multistage MPC.
Although the computational demand was significantly
reduced and no violation of constraints was observed,
the performance was degraded.

This paper proposes a solution, the simplified
method, to compensate for the performance degrada-
tion when using the synthesis scenario ensembles to en-
hance the computation speed of the multistage MPC.
The simplified method consists of two stages: (1) Gen-
eration of synthesis scenario ensembles and (2) estima-
tion of the probability of each synthesis scenario ensem-
ble. The synthesis scenario ensemble must encapsulate
the original scenario ensembles and encompass all re-
alizations of uncertainty. The probabilities add more
information on uncertainty in the synthesis scenario
ensembles. The implementation of this method signif-
icantly reduces the size of the optimization problem,
yet does not degrade the performance of the multistage
MPC framework. The mentioned advantage of the pro-
posed method is demonstrated through a simulation of
the Dalsfoss hydropower station system. The simula-
tions of multistage MPCs with 4 different structures of
scenario ensembles of water inflow prediction are per-
formed under the moderate water inflow situation, and
the flooding situation.

The organization of this paper is as follows: Sec-
tion 2 provides overviews of multistage MPC, robust
horizon, and open-loop robustness analysis. Section 3
introduces the method to simplify the scenario ensem-
bles. The system model of the Dalsfoss hydropower
plant system, its operational constraints, and the for-
mulation of the OCP for multistage MPC are explained
in Section 4. The simulation setup and the given data
of water inflow forecasts and power production plan
for running the simulations are described in Section
5. Section 6 presents the simulation results, and the
conclusion is discussed in Section 7.

2 Preliminary

2.1 Multistage model predictive control

In a multistage MPC framework, the uncertainty, such
as model parameters or disturbances, can be repre-
sented by a form of a discrete scenario tree as illus-
trated in Figure 1. The possible evolution of the un-
certainty in the future and the corresponding control
inputs are described by branches from a node. The
control inputs from multistage MPC can counteract
the effects of the uncertainties as new information will
be available as the future sampling in the setting of the
scenario tree (Lucia et al., 2013).

The system can be expressed as:
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Figure 1: The structure of the scenario tree
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time sample k.

It is possible to formulate OCP for multistage MPC
as:

minimize
uj
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Equation (2a) is the cost function which considers a
probability of a scenario by ωi, and where L(xk+1, uk)
is the stage cost and Np is the prediction horizon.
Equation (2b) is the system model. Equations (2c) and
(2d) are bounds of states and control inputs. Equation
(2e) denotes non-anticipativity constraints that all the
control inputs uk

k on branches from the same parent

node x
p(k)
k have to be equal. the non-anticipativity

constraints are necessary because the control inputs
cannot anticipate the realization of the uncertainty in
the future (Lucia et al., 2013).

When implementing multistage MPC, the biggest
challenge is to solve the OCP in a reasonable time.
It is because of the large size of OCP. The size of the
OCP grows exponentially with the prediction horizon

and with the number of uncertainties and the number
of branches in the scenario tree (Lucia et al., 2013).

2.2 Robust horizon

Figure 2: The structure of the scenario tree with a ro-
bust horizon

It is critical to have a proper size of OCP by de-
signing the scenario tree properly when running the
multistage MPC. One method to avoid the exponen-
tial growth of the scenario tree is to utilize a robust
horizon. It considers the evolution of the uncertainty
up to certain time steps and assumes that the uncer-
tainty remains constant until the end of the prediction
horizon, as depicted in Figure 2 (Lucia et al., 2013).

2.3 Open-loop robustness analysis

Figure 3: The procedure of open-loop robustness anal-
ysis

The open-loop robustness analysis aims to check the
constraint violations due to the occurrence of uncer-
tainties in the process. The analysis procedure is illus-
trated in Figure 3. Once the MPC controller computes

45



Modeling, Identification and Control

the control inputs, the first element of the control in-
puts is applied to the model with all possible uncer-
tainties in parallel, and the violation of the constraints
is accessed (Jeong et al., 2021).

3 Simplification of scenario
ensembles

Figure 4: An example of scenario ensembles of uncer-
tainty

The scenario ensembles consist of a collection of dis-
tinct scenarios of unpredictability. They resemble a
scenario tree with a robust horizon of 1 for the hydro
power case study, but the values are not assumed to re-
main constant after branching. Five example scenario
ensembles are displayed in Figure 4. Each color repre-
sents one scenario in the ensemble of uncertainty. The
number of scenario ensembles, S, over the prediction
horizon, Np, at time sample k can be mathematically
expressed as follows:

dk =


d
(1)
k · · · d

(S)
k

...
. . .

...

d
(1)
k+Np

· · · d
(S)
k+Np

 (3)

The simplified method streamlines the scenario en-
sembles to three when there are more than three sce-
nario ensembles present. This is achieved through the
following two steps:

Step. 1: The process of creating synthetic scenario
ensembles, which represent the original ensembles, can
be accomplished by using statistical data such as the
minimum, mean, and maximum values of the ensem-
bles at each time step throughout the predicted hori-
zon. As an illustration, consider the five scenario en-
sembles of uncertainty depicted in Figure 4. These

Figure 5: The three synthetic scenario ensembles of the
uncertainty from the five example scenario
ensembles

ensembles can be transformed into three synthesis sce-
nario ensembles, as demonstrated in Figure 5 with red
dotted lines, by using Equation (4),(5), and (6).
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...
. . .

...
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(1)
k+Np
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A simplified scenario ensembles at each time sample k,
represented as dsyn,k, is constructed as:

dsyn,k =
(
dmax,k dmean,k dmin,k

)
(7)

The three synthetic scenario ensembles, as described
in Equation 7, encompass the full extent of uncertainty
represented by the original scenario ensembles in Equa-
tion 3.

Step. 2: The use of synthetic scenario ensem-
bles, each with its own probability of occurrence, pro-
vides a better representation of uncertainty given by
the original scenario ensembles. The probabilities of
the three synthetic scenario ensembles are calculated
by determining the number of uncertainty points from
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Figure 6: The defined boundary line, when s1 and s2
are set as 0.5

Figure 7: The defined boundary region to calculate the
probabilities of occurrences of the synthesis
scenario ensembles

the original scenario ensembles that fall within prede-
fined boundary regions. These boundaries can be de-
termined based on either engineering expertise or sta-
tistical analysis. For example, the boundaries 1 and 2,
denoted by B1 and B2, can be established statistically
as shown in Figure 6 and are described as follows:

B1 = dmean,k + s1 · (dmax,k − dmean,k)

B2 = dmean,k − s2 · (dmean,k − dmin,k)

where s1 and s2 are parameters that allow for the ad-
justment of the boundary ranges. As a result, the
boundary regions as depicted in Figure 7 can be rep-
resented as follows:

A ∈ (B1,dmax,k]

B ∈ [B1, B2]

C ∈ [dmin,k, B2)

Regions A, B, and C encompass the probabilities of
occurrence for the maximum, mean, and minimum syn-
thetic scenario ensembles, respectively. For instance,
the calculation of the probability of occurrence for
the maximum synthetic scenario ensemble can be per-
formed as follows:

ωmax =

∑S
j=1 ωj ·N (j)

A∑S
j=1 ωj ·N (j)

(8)

where ωj is the possibility of occurence of the jth origi-
nal scenario ensemble, and N (j) represents the number
of uncertainty points in the jth original scenario ensem-

ble, andN
(j)
A refers to the number of uncertainty points

that belong to region A in the jth original scenario en-
semble. The probabilities of occurrence for the mean
and minimum synthetic scenario ensembles, ωmean and
ωmin, can be calculated in a similar fashion.

3.1 Multistage MPC with simplified
scenario ensembles

By utilizing the simplified method, the number of sce-
nario ensembles in the multistage MPC framework is
significantly reduced to three. This leads to a substan-
tial decrease in the number of optimization variables
by a factor of 3

S and also reduces the number of con-
straints. As a result, the simplified method makes it
easier and faster to solve the optimization problem.

4 System description

The Dalsfoss hydropower plant, located in Telemark,
Norway along the Kragerø watercourse, consists of a
reservoir called Lake Toke and a dam for its power
production. Maintaining control over the water level
in the reservoir is essential for safe and flexible oper-
ation (SkagerakKraft, 2021a,b). However, uncertainty
in the water inflow system presents a challenge in con-
trolling the water level. The water inflow to the reser-
voir is impacted by various factors, such as ice melt,
precipitation, and streams. To address this issue, the
operation of the Dalsfoss hydropower plant is guided by
the forecast which has 50 possible scenario ensembles of
water inflow to the reservoir, each with an equal chance
of occurrence. These scenarios are generated every 24
hours through the use of complex hydrological models
and weather forecast information, providing a 13-day
forecast of water inflow into the reservoir.

4.1 System model

A simplified layout of Lake Toke can be seen in Fig-
ure 8, which separates the lake into two areas: the
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upper region known as Merkebekk, situated on the left
side, and the lower region, known as Dalsfoss, located
near the dam and hydropower plant on the right side.

Figure 8: Simplified layout of lake Toke

The water levels in Merkebekk and Dalsfoss, denoted
by h1 and h2 respectively, act as the states of the sys-
tem. The flow between the two regions, V̇12, is depen-
dent on the difference in water levels. The surface area
of Lake Toke, represented as A(hi), is calculated based
on the water level and its unique curvature structure.
The fraction of the surface area located in Dalsfoss, de-
noted by α, must also be considered. The water inflow,
V̇i, which comes from various sources such as rivers,
precipitation, and ice melting, is described by a coeffi-
cient β that represents the ratio of water flowing into
Dalsfoss. The operational guidelines must include the
consideration of level constraints, such as the minimum
low regulated level value (LRV), xmin

LRV, and the max-
imum high regulated level value (HRV), xmax

HRV. The
flow rates through the floodgate, V̇g, and the turbine,

V̇t, combine to make up the total outflow, V̇o, towards
the downstream.

Figure 9: Structure of floodgate

The dynamic model of Lake Toke features two flood-
gates for regulating the water level within the reser-

voir, as depicted in Figure 9. The opening heights of
these floodgates, represented by hg, serve as control-
lable variables that impact the flow rate of water re-
leased from the reservoir, V̇ g. The model is also used
in previous works (Menchacatorre et al., 2019; Jeong
et al., 2021; Jeong and Sharma, 2022a,b). A summary
of the dynamic model, along with its relevant parame-
ters in Table 1, is provided as:

dh1

dt
=

1

(1− α)A(h1)
((1− β)V̇i − V̇12) (9)

dh2

dt
=

1

αA(h2)
(βV̇i + V̇12 − V̇o) (10)

A(hi) = max(28× 106 · 1.1 · h
1
10
i , 103) (11)

V̇12 = K12 · (h1 − h2)
√

|h1 − h2| (12)

V̇g = Cd · w ·min(hg, h2)
√
2g ·max(h2, 0) (13)

V̇t = a
Ẇe

xD − xq
+ b (14)

In equation (14), the variable xq represents the wa-
ter level at the quay, and it is obtained through the
resolution of the following cubic equation.

0 = c1x
3
q + (c2 − c1xD)x

2
q

+ (c3 − c2xD + c4V̇g)xq

+ Ẇe − c3xD − c4V̇gxD − c5

(15)

The water levels above sea level at Merkebekk, xM,
and Dalsfoss, xD, are calculated as follows:

xM = h1 + xmin
LRV (16)

xD = h2 + xmin
LRV (17)

4.2 Operational constraints

To ensure safe operation, protect the local wildlife, and
prevent damage to nearby properties, the hydropower
plant must comply with a set of established constraints:

1. To ensure the safety of individuals and wildlife
along the watercourse, it’s crucial to avoid abrupt
changes in the downstream flow rate, V̇o. Main-
taining a consistent flow rate is of utmost impor-
tance.

2. To facilitate the free migration of fish and preserve
the watercourse, it’s vital to maintain the down-
stream flow rate, V̇o, at a minimum of 4m3/s.
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Table 1: Parameters for Lake Toke model

Parameter Value Unit Comment
α 0.05 - Fraction of surface area in compartment 2
β 0.02 - Fraction of inflow to compartment 2

K12 800 m
3
2 /s Inter compartment flow coefficient

Cd 0.7 - Discharge coefficient, Dalsfoss gate
w1 11.6 m Width of Dalsfoss gate 1
w2 11.0 m Width of Dalsfoss gate 2

xmin
LRV 55.75 m MSL Minimal low regulated level value

xmax
HRV 60.35 m MSL Maximal high regulated level value
g 9.81 m/s2 Acceleration of gravity
a 124.69 Pa−1 Coefficient in equation (14)
b 3.161 m Coefficient in equation (14)
c1 0.13152 W/m−3 Polynomial coefficient in (15)
c2 -9.5241 W/m2 Polynomial coefficient in (15)
c3 1.7234 · 102 W/m Polynomial coefficient in equation (15)
c4 -7.7045 · 10−3 Pa/m Polynomial coefficient in equation (15)
c5 -8.7359 · 10−1 W Polynomial coefficient in equation (15)

3. The water level at Merkebekk must be maintained
within specified bounds, as indicated by:

xM ∈ [xLRV, xHRV]

These bounds vary based on the season, as out-
lined in Table. 2.

4. The maximum flow rate through the turbine, V̇t,
is capped at 36m3/s.

5. The maximum opening height of the floodgates is
restricted to 5.6m.

Table 2: Seasonal level requirement

Date xLRV[m MSL] xHRV[m MSL]
Jan. 1 - Apr. 30 55.75 60.35
May. 1 - Aug. 30 58.85 59.85
Sept. 1 - Sept. 14 55.75 59.35
Oct. 28 - Nov. 11 55.75 59.85
Nov. 12 - Dec. 31 55.75 60.35

4.3 Optimal control problem

The objective of MPC for the hydropower system is
to maximize the utilization of water resources in the
generation of electricity, and in satisfying the steady
flow and the minimum water flow at downstream. The
cost function of the OCP is defined as:

Jk = ωxM
L2(xM,k+i) + ω∆hg

∆h2
g,k + ωhg

h2
g,k + ωpp

2
k

(18)

The parameters affecting the objective function are
listed in Table 3. The first component of the objective
function, in Equation (18), aims to maximize the water
level at Merkebekk by setting the reference target as
the high regulated value (HRV):

L(xk) = xM,k − xHRV (19)

The second term, ω∆hg∆h2
g,k, serves to minimize

variations in the height of the floodgate opening, thus
reducing wear and tear on the floodgate and main-
taining a stable flow rate downstream. The third
term, ωhg

h2
g,k, aims to minimize the utilization of the

floodgate. The final term in the objective function,
ωpp

2, is a penalty term in the event of a violation of
the water level constraints. This penalty term allows
for a degree of slack from the lower regulated value
(xLRV ) to prioritize the satisfaction of the minimum
flow rate constraint when there is not enough water in
the reservoir for both constraints. The slack variable
is denoted as pk. The level constraint is formed as:
xM ∈ [xLRV −p, xHRV ]. The value of pk is determined
by solving OCP (Jeong et al., 2021).

Table 3: Parameters for objective function

Parameter Value Unit
ωR 10 -
ω∆u 1 -
ωu 1 -
ωp 10000 -

Therefore, the optimal control problem for the mul-

49



Modeling, Identification and Control

tistage MPC is formulated as:

minimize
uj
k,∀(j, k) ∈ I

S∑
i=1

ωi

Np−1∑
k=0

Jk (20a)

subject to xj
k+1 = f(x

p(j)
k , uj

k, V̇
r(j)
i,k , Ẇe,k),

(20b)

xLRV ≤ xj
M,k ≤ xHRV, (20c)

0 ≤ uj
k ≤ 5.6m, (20d)

0 ≤ V̇t ≤ 36m3/s, (20e)

4m3/s ≤ V̇O ≤ inf, (20f)

uj
k = ul

k if x
p(j)
k = x

p(l)
k (20g)

where the system state, xj
k, is defined as [hj

1,k, h
j
2,k],

and the control input, uj
k, is defined as [hj

g1,k, h
j
g2,k].

5 Simulation setup

5.1 General setting

The simulation period is set for a duration of one
month, from April 15th to May 15th. This period in-
cludes a significant change in the required water level.
The prediction horizon is determined as 13 days (312
hours). The simulations are executed utilizing the
IPOPT solver in CasADi (Andersson et al., 2019).

5.2 Uncertainties in the system

The Dalsfoss hydropower plant faces two main sources
of uncertainty: the water inflow and the power produc-
tion plan. To simulate the system more realistically,
historical data on power production and the stored sce-
nario ensembles of the water inflow prediction from the
real hydropower plant are utilized. A perfect predic-
tion is assumed on the power production plan.

5.2.1 Power production plan

The power production plan for the period of April 15th
to May 15th, 2020 is depicted in Figure 10. The data
for this plan is obtained from Skagerak Kraft who is
the operator of the hydropower plant..

5.2.2 Water inflow forecast

The water inflow forecast is obtained by updating it
every 24 hours in the form of 50 scenario ensembles
for the next 13 days (312 hours). The 50 scenario en-
sembles, which were obtained on April 15th, 2020 from
Skagerak Kraft, are graphically represented as an ex-
ample in Figure 11. These ensembles are mathemati-
cally represented in a matrix form as follows:
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Figure 10: Actual power production history from April
15th, 2020 to May 15th, 2020
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Figure 11: Example of the water inflow forecast ob-
tained on April 15th, 2020 from Skagerak.
The cyan color lines are the original 50 sce-
nario ensembles, the red dotted lines repre-
sent the three synthesis scenario ensembles,
and the pink lines are boundaries with s1
and s2 set as 0.5.

V̇i,k = f ·


V̇

(1)
i,k V̇

(2)
i,k · · · V̇

(50)
i,k

V̇
(1)
i,k+1 V̇

(2)
i,k+1 · · · V̇

(50)
i,k+1

...
...

. . .
...

V̇
(1)
i,k+312 V̇

(2)
i,k+312 · · · V̇

(50)
i,k+312

 , (21)

Where the columns in the matrix represent individ-
ual water inflow scenarios. The severity of flooding
conditions is described through the use of a flooding co-
efficient, f , which is set to values of 1 and 2 to represent
the moderate water inflow situation and the flooding
situation, respectively. For an example, with f = 2, the
original real water inflow ensembles are all multiplied
by 2 to represent a flood situation.

In this paper, the scenario ensembles of the water in-
flow prediction are chosen for implementing multistage
MPC with notations as described below:
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� MS contains the original 50 scenario ensembles of
the water inflow forecast without any simplifica-
tion.

� OS has the original three scenario ensembles of
the water inflow forecast. They are ensembles that
have maximum, median, and minimum accumu-
lated amounts of water inflow over the forecast
period among all ensembles. The scenario ensem-
ble numbers i, l, and m are chosen as:∑

V̇
(i)
i,k = max(

∑
V̇

(1)
i,k ,

∑
V̇

(2)
i,k , . . . ,

∑
V̇

(50)
i,k )

∑
V̇

(l)
i,k = median(

∑
V̇

(1)
i,k ,

∑
V̇

(2)
i,k , . . . ,

∑
V̇

(50)
i,k )∑

V̇
(m)
i,k = min(

∑
V̇

(1)
i,k ,

∑
V̇

(2)
i,k , . . . ,

∑
V̇

(50)
i,k )

where∑
V̇

(j)
i,k = V̇

(j)
i,k+1 + V̇

(j)
i,k+2 + · · ·+ V̇

(j)
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� Syn(p) contains three synthetic scenario ensem-
bles with probability distribution information,
which is the proposed method in this paper. To
set boundary, values of s1 and s2 are set as 0.5.

� Syn(e) has three synthetic scenario ensembles
with equal probability. The synthetic scenario en-
sembles are constructed by applying the first step
of the simplification, Equations (4), (5), and (6).
Then, the equal probability is given to the sce-
nario ensembles without using the second step of
the simplification.

6 Result

6.1 Open-loop Robustness anaylsis

Multistage MPCs withMS, Syn(e), and Syn(p) show
good robustness against constraint violations caused
by water inflow uncertainty. This is not the case for
multistage MPC with OS, as demonstrated by simu-
lations that reveal potential constraint violations (de-
picted in Figure 12). The figure illustrates possible
water level trajectories at Merkebekk from the open-
loop robustness analysis, with each line representing a
distinct scenario. The analysis shows that under the
moderate water inflow situation, there are 283 poten-
tial violations, and this number increases to 567 in the
flooding situation. As multistage MPC with OS is not
robust to constraint violations, the simulation results
from this method will not be discussed further in this
paper.
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Figure 12: The potential constraint violations caused
by implementing multistage MPC using
three original scenarios (OS)
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Figure 13: The water level at Merkebekk during the
simulation under the moderate water inflow
situation

6.2 Simulation result

The simulation results of the water level at Merkebekk
under the moderate water inflow situation (f = 1) are
presented in Figure 13. The upper plot of the figure
provides an overview of the water level through the
entire simulation period, while the lower plot provides
a closer examination of the water level during the sharp
fluctuations in the level bounds.

The simulation results of the flooding situation (f =
2) are presented in Figure 14. The topmost plot in
this figure illustrates the variation of the water level at
Merkebekk over the entire simulation duration. The
two lower plots in the figure serve to provide a more
detailed view of the water level changes during selected
periods, effectively being the magnified sections of the
topmost plot.
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Figure 14: The water level at Merkebekk during the
simulation under the flooding situation

The representation of the water level changes in both
Figure 13 and Figure 14 are depicted by several lines,
each of which corresponds to different simulation sce-
narios. The red dotted lines indicate the boundaries of
the level constraints, represented by xLRV and xHRV.
The water level simulated by multistage MPC withMS
is indicated by the yellow line, while the result of the
simulation of multistage MPC with Syn(e) is depicted
by the purple line. The green line represents the wa-
ter level changes simulated by multistage MPC with
Syn(p).

The opening heights of one floodgate gate with differ-
ent multistage MPCs(with MS, Syn(e), and Syn(p))
during the simulation are depicted in Figures 15 and
16. The opening heights of the other floodgate are al-
most identical to the illustrated figures. Figure 15 rep-
resents the opening height of the floodgate under the
moderate water inflow situation. Figure 16 presents
the opening height of the floodgate during the flood-
ing situation. The opening heights of the floodgate,
are indicated by yellow, purple, and green lines, corre-
sponding to the results generated by multistage MPCs
with MS, Syn(e), and Syn(p), respectively.

Under the moderate water inflow situation, the wa-
ter level constraints are rarely activated, as the amount
of water flowing into the reservoir is not large. There-
fore, three multistage MPCs with MS, Syn(e), and
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Figure 15: Floodgate opening height through simula-
tions in moderate water inflow situation
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Figure 16: Floodgate opening height through simula-
tions in flooding water inflow situation

Syn(p) control the system almost identically. Dur-
ing the early stages of the simulation, until around 370
hours, the water levels are controlled by all MPC types
and remain relatively unchanged as shown in the up-
per plot of Figure 13. This period, seen in the left
half of the upper plot in Figures 15 and 16, exhibits
no significant control actions. However, when the level
constraint change, the floodgates start opening, from
around 360 hours, to ensure the water level does not ex-
ceed the constraint. After 395 hours, subtle differences
in the water levels are observed for each multistage
MPC, with the highest water level being demonstrated
by multistage MPC with Syn(p), the middle water
level by multistage MPC with MS, and the lowest wa-
ter level by multistage MPC with Syn(e).

For the flooding situation, the inflow of water into
the reservoir is much larger, resulting in a rapid in-
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crease in the water level. No control action is taken on
the floodgates until 100 hours because the water level
does not reach the maximum water level as depicted
in Figure 16. As soon as the water level reaches the
maximum level, the floodgates are opened to maintain
the water level within the constraints. All of the multi-
stage MPCs effectively manage to maintain the water
level while satisfying all constraints, but there are slight
differences in the water levels among the different mul-
tistage MPCs. In line with the simulation result of the
moderate water inflow situation, multistage MPC with
Syn(p) has the highest water level, multistage MPC
with MS has the middle water level, and multistage
MPC with Syn(e) has the lowest water level in the
flooding scenario.
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Figure 17: The total amount of water thrown out
through floodgates during the simulation
period
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Figure 18: Average computation time for optimization
on each time sample

Figure 17 illustrates the total amount of discharged
water through the floodgates during the simulation pe-
riod. As depicted in the figure, multistage MPC with
Syn(p) exhibits a slightly lower flow rate compared to

multistage MPC with MS. On the other hand, multi-
stage MPC with Syn(e) displays the highest amount
of water discharge through the floodgates over the sim-
ulation period.

The computational speed of each multistage MPC is
presented in Figure 18. Multistage MPC with MS re-
quires the longest computation time, with an average
of approximately 30 seconds per time sample. In con-
trast, multistage MPCs with Syn(p) and Syn(e) have
significantly lower computation time, with an average
of approximately 2.5 seconds per time sample.

7 Conclusion

In conclusion, this paper presents a practical and effi-
cient method for simplifying the scenario ensembles for
multistage MPC applied to the Dalsfoss hydropower
station. By using the proposed method, the size of
the OCP was reduced by 94%, and the computa-
tional speed for solving the OCP was accelerated by
15 times. The simulation results indicate that the
performance of multistage MPC with the simplified
method (Syn(p)) is better or competitive with multi-
stage MPC without using the simplified method (MS),
and show the improvement in the performance from
multistage MPC with (Syn(e)), while satisfying all
the level constraints. The proposed method in this
paper probably cannot be generalized as the simpli-
fication of multistage MPC for all types of processes.
However, for processes where the uncertainty is already
described by scenario ensembles, the proposed method
can be effectively used to make the multistage MPC,
which a dynamic optimizer for robust control, much
more faster and real time implementable.
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