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Abstract

Parametric model uncertainties could have a high impact on the predictive capabilities of a model. When
process measurements become available, these uncertainties may be reduced using parameter estimation
techniques. Estimation techniques founded on the Bayesian framework in particular are powerful: they
produce a probability density function (PDF) of the estimated parameter rather than a single point
estimate.

In this paper, we consider a gas lifted oil field model whose predictions are highly sensitive to un-
certainty in its parameters. We apply Markov Chain Monte Carlo (MCMC) methods, which follow the
Bayesian paradigm, to estimate these parameters, and thereby reduce the uncertainty in the model pre-
dictions; two different algorithms, Hamiltonian Monte Carlo (HMC) and No-U-Turn Sampler (NUTS),
are used. The probabilistic programming language (PPL), Turing in Julia is used for implementation.
Monte Carlo simulations and/or data retrodiction is performed prior to and post parameter estimation,
to evaluate the uncertainty in model predictions; the outcomes are compared to determine the efficacy
of parameter estimation. Results show that the computed posterior distributions yield model predictions
that are in close agreement with the observations, and that model uncertainty is effectively reduced.

Keywords: Parameter estimation, Markov Chain Monte Carlo, Model uncertainty, Hamiltonian Monte
Carlo, No-U-Turn Sampler

1 Introduction

Affordable and clean energy for all is one of United Na-
tions’ 17 goals for sustainable development1. This goal
implies phasing out fossil fuel sources, and instead use
solar and wind sources, etc. A growing global popula-
tion with expectations of increased standard of living
dictates that a diversity of energy sources must be used,
and that fossil fuels will be phased out gradually. On-
going wars and constraints on available energy have
reinforced the need for use of an energy mixture, and
may also lead to a speed-up in the transition towards
distributed and sustainable energy sources.

Meanwhile, it is important to produce fossil fuel as

1https://sdgs.un.org/goals

cleanly as possible, while developing new ideas and
technology that is vital for both current and future
energy sources. Petroleum production is important for
Norways national economy, with petroleum production
income of approximately one third of her gross domes-
tic product in 2021. This gives Norway a special in-
citement for developing technology to meet future re-
strictions on energy production.

In an on-going project DigiWell2, the focus is on
model uncertainty of oil production from reservoir to
separator, and how improved sensor technology, op-
timization, and control can reduce the climate foot-
print as well as uncertainty in energy consumption and
profit.

2See Acknowledgements
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A fundamental part of control system design is de-
termining the sensor-actuator configuration, i.e., the
control architecture (Goodwin et al., 2001). To have
complete control over a system, we need sensors to
monitor every state, and actuators to directly alter ev-
ery state; physical and economic restrictions make this
infeasible. Thus, successful control requires strategic
placement of only a few sensors and actuators. Several
studies have attempted to solve the optimal control
architecture problem (Dhingra et al., 2014; Manohar
et al., 2021; Muske and Georgakis, 2003; Sakha and
Shaker, 2017; Zare et al., 2020). To our knowledge,
none of these addresses how to handle uncertain sys-
tems whose dynamics vary over time, such as an oil
field. Ignoring system uncertainties would affect the
reliability of the found optimal design; it might fall
short of the performance requirements. Once in place,
if this indeed turns out to be the case, the architec-
ture will need to be modified to improve performance.
Such design flaws may be unacceptable, especially in
oil and gas production where modification costs may
be excessively high. Therefore, it is crucial to mini-
mize uncertainties whenever possible and factor in any
remaining uncertainty in control architecture design.

When process data is available, parameter estima-
tion techniques may be used to reduce parametric
model uncertainties. Estimation techniques founded
on the Bayesian framework, in particular, are power-
ful: instead of point estimates, they produce posterior
probability density functions (PDFs) of the parame-
ters. With regard to control architecture design, pos-
terior PDFs are especially advantageous: they enable
description of remaining uncertainties associated with
the updated model, which can subsequently be incor-
porated into the design process.

In Bayesian inference, the likelihood of the observed
data is combined with prior PDFs of parameters to ob-
tain posterior PDFs of the parameters. The exact solu-
tion of higher dimensional inference problems requires
extensive computations that are often intractable. In
such cases, the posterior PDFs are commonly approxi-
mated using numerical techniques, with Markov Chain
Monte Carlo (MCMC) being the most common tech-
nique. The basic idea in MCMC sampling is to sim-
ulate draws from the posterior distributions and use
these to compute various posterior statistics such as
means, variances, and quantiles.

Bayesian inference is often implemented using prob-
abilistic programming languages (PPLs) such as the
widely popular Stan (Carpenter et al., 2017), the
Python-based PyMC (Salvatier et al., 2016), and the
relatively new Turing (Ge et al., 2018) written in Ju-
lia (Bezanson et al., 2017). These frameworks aim
to make the typically laborious inference procedures

as automated and efficient as possible, enabling users
to concentrate on the model and associated questions
rather than the underlying MCMC algorithm mechan-
ics. As such, they serve as the backbone of modern
Bayesian analysis.

Simple classical MCMC approaches, like random-
walk Metropolis (Metropolis et al., 1953) and Gibbs
sampling (Geman and Geman, 1984), use inefficient
random walks to explore the parameter space. As a re-
sult, it may take too long for these methods to converge
to high-dimensional posterior PDFs. Modern PPLs all
feature a family of MCMC algorithms called Hamilto-
nian Monte Carlo (HMC) (Duane et al., 1987) that is
widely applied in the field of Bayesian inference. This
class of samplers promise better efficiency and faster in-
ference than the simple approaches, which makes them
suitable for estimating complex high-dimensional pos-
terior PDFs. The HMC algorithm does away with
this random walk behavior. Instead, it uses first-
order gradient information from the likelihood to in-
form its every step; this enables HMC to estimate high-
dimensional posterior PDFs considerably faster than
the simple methods.

The original HMC algorithm requires expert, hands-
on tuning to be efficient. Hoffman and Gelman (2014)
proposed the No-U-Turn Sampler (NUTS) to overcome
this hurdle. NUTS is an extension of the original HMC
sampler and automatically tunes two key parameters
— the so-called leapfrog step size and the integration
time (also called trajectory length) — which otherwise
have to be tuned by hand through many costly prelim-
inary runs.

Despite the potential of HMC and its availability via
modern PPLs, adoption has been slow in the oil and
gas industry — likely because the original HMC algo-
rithm requires time-consuming, expert hands-on tun-
ing to be efficient, and because the tuning-free NUTS is
relatively new. Most studies are restricted to the use of
custom implementations of basic, quick-to-implement
MCMC techniques, such as the random-walk Metropo-
lis method (Ban et al., 2022; Ruiz Maraggi et al., 2022;
Pan et al., 2021; Lødøen and Tjelmeland, 2007). There
are only a handful of studies that apply HMC algo-
rithms for parameter estimation, e.g., Taghavi and
Ghaderi (2022) use HMC via Stan for a dimension-
less model of a rate controlled production valve; Sandl
et al. (2021) use HMC via Stan for logistic regression
models that predict the occurrence of gas migration
in oil wells; and Moen et al. (2022) use DynamicHMC
(Papp, 2021) — an implementation of a variant of the
NUTS algorithm proposed by Betancourt (2017) — via
Turing for a model that estimates the inflow profiles in
oil wells.

In this work, we look at a gas-lifted oil field model,
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similar to the one used by Ban et al. (2022). The pri-
mary aim is to use HMC techniques to reduce prior
model uncertainty by use of data, into a posterior un-
certainty given by posterior PDFs. We illustrate how
Turing can be used for parameter estimation, with-
out requiring expert knowledge of the underlying HMC
mechanisms.

The paper is organized as follows. In Section 2, the
system under study is detailed, together with model
structure and information about uncertainty; in Sec-
tion 3, experiments are discussed together with MCMC
tool options; in Section 4, results on parameter esti-
mation and model uncertainty are given; in Section 5,
some conclusions are drawn.

2 Gas Lifted Oil Field

A model of a gas lifted oil field with five oil wells, which
has been appropriately validated against data from
a real oil field, is proposed by Sharma et al. (2011).
An adaptation of the said model, presented in (Jaya-
manne, 2021), is used for the purposes of this paper; a
schematic is given in Fig. 1.

Figure 1: Schematic of the oil field adapted
from Sharma et al. (2011).

Two oil wells sharing the same source of lift-gas make
up the system. The fluid produced by both wells — a
combination of lift gas, water, and oil — is delivered
to a separator, which separates the fluid into its com-
ponents; the lift-gas is recycled.

2.1 Model Form

The system is modelled by a set of Differential-
Algebraic Equations (DAE). Essentially, the model
consists of mass balances for the states, and algebraic
equations for valve characteristics, pressures, average
densities, etc. There are three states for each of the
two wells i: mass of lift-gas in the annulus mi

ga; mass of

lift-gas in the tubing above the injection point mi
gt; and

mass of oil in the tubing above the injection point mi
ot.

See Jayamanne (2021) for the complete description of
the mathematical model, and Sharma et al. (2011) for
details about the development of the model.

There are two control inputs to the process: the mass
flow rates of gas through the gas-lift choke valves wi

ga.
There are six measured variables in this study, the pres-
sure downstream of the gas-lift choke valves P i

a, the
mass flow rate of the mixture of gas and oil through
the production choke valve wi

gop, and the pressure up-

stream of the production choke valve P i
wh, one for each

well.

The main application of the oil field model is to de-
termine the optimal operating conditions that maxi-
mize the profit obtained from the oil field, which is
dependent on the total amount of oil extracted from
the field. Thus, this is the model output that is of
highest interest.

2.2 Sources of Uncertainty

The primary sources of uncertainty that affect a system
may be determined by performing a basic sensitivity
analysis, e.g., using a tool such as the GlobalSensitivity
package (Dixit and Rackauckas, 2022) in Julia.

Here, we omit the details of identifying the main
sources of uncertainty in the oil field model, but it is
possible to reduce them to three parameter sets: the
initial states of the system mi

ga(t = 0), mi
gt(t = 0),

and mi
ot(t = 0); the productivity index PIi—which ex-

presses a wells capacity to produce fluid flow; and the
reservoir pressure Pr. In addition, we consider the mea-
surement variances Var(Pa), Var(wgop), and Var(Pwh)
to be unknown.

All of these uncertain parameters are assumed to be
time-invariant. Everything else is assumed to be known
with absolute certainty.

2.3 Nominal Model

For the purposes of this study, we use the nominal
model defined by Jayamanne (2021) as a substitute for
the real plant. Process sensors are simulated by adding
white Gaussian noise to the outputs from this nominal
model.

19



Modeling, Identification and Control

The actual values of the uncertain parameters that
are to be estimated, are given in the second column of
Table 2.

3 Methods and Tools

In this section, we provide a description of the core
concepts underlying MCMC and its associated termi-
nology. In addition, we briefly explain how a parameter
estimation problem is formulated in Turing and define
the functions, keyword arguments, and macros neces-
sary for performing inference using HMC and NUTS.

We remark that one of the primary motivations for
using a PPL in this study is to implement MCMC
with minimal domain knowledge. Therefore, only the
most essential information required for implementation
is presented here.

3.1 MCMC

MCMC combines two concepts: Markov Chains and
Monte Carlo simulations.

A Markov Chain is a mathematical process involv-
ing random transitions from one state to another in
a chain. One of its defining characteristics is that the
next state Xn+1 depends solely on the current state Xn

— not on those that came before it: Xn−1, ..., X0. This
is referred to as the Markov property. In mathematical
terms, we have

P (Xn+1 = xn+1|Xn = xn, · · · , X0 = x0)

= P (Xn+1 = xn+1|Xn = xn) ; n ∈ Z+
0 .

A Markov Chain also has what is known as a stationary
distribution p(x). After a time of jumping from one
state to another, called the burn-in period, the chain
will converge to its stationary distribution no matter
what state it started in. When it does, it will stay at
this distribution for all subsequent samples. A simple
illustration of a Markov Chain is provided in Figure 2.

Figure 2: Markov Chain.

In MCMC, we engineer a Markov Chain whose sta-
tionary distribution is the posterior PDF that we want
to sample from. This means that after a period of burn-
in, the Markov Chain is going to simulate draws from
the posterior PDF. When it does, we use the Monte

Carlo method to approximate the posterior PDF. Es-
sentially, we record many samples from the converged
Markov Chain and take their distribution to be equiv-
alent to the posterior PDF.

The general steps of an MCMC algorithm are as fol-
lows.

1. Initialization:

• Choose the total number of iterations N .

• Create an N -vector x for storing the state
(parameters).

• Set the iteration count to i = 1.

• Draw an initial state (parameters) xi ran-
domly from the assumed prior distribution
and set x (i) = xi.

2. Propose a next state x̂i+1 based on the current
state xi — different MCMC algorithms do this
differently (Metropolis-Hastings, HMC, etc.).

3. Assess whether the proposed state x̂i+1 should be
accepted (i.e., explain the data better than the
current state xi).

a) Calculate the acceptance probability pa based
on the likelihoods of the current state xi and
the proposed state x̂i+1. This calculation in-
volves, among other things, simulating the
system outputs using the current and pro-
posed states.

b) Draw a random number pu from the uniform
distribution U[0,1).

c) Decide on the proposed state:
if pa ≥ pu
• accept the proposed state, i.e.,
x (i+ 1) = x̂i+1

• set pc = pa

else

• reject the proposed state, i.e., x (i+ 1) =
xi

• maintain pc as before

end

4. Increment i by 1 and if i < N , set xi = x (i+ 1),
and go to step 2.

Here, it is important to choose N sufficiently large so
that the state converges to its stationary distribution.
The initial burn-in iterates are then removed from col-
lection x, leaving a smaller chain of Npo iterates xpo
in the stationary, posterior distribution. From the law
of large numbers: the more iterations Npo that are in
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the stationary distribution chain, the more accurate
the approximate posterior distribution is.

For some samplers, Turing automatically removes
the burn-ins, e.g., NUTS (but not for HMC).

It is always possible that the MCMC algorithm con-
verges to an incorrect chain of iterates. Because of this,
it is usually necessary to compute multiple chains and
check whether the chains converge to the same distri-
bution. Typically, 3 or more chains are needed for such
an assessment.

3.2 Turing

To perform parameter estimation using Turing, the sta-
tistical model that should be used for generating sam-
ples must be specified using the @model macro. The
general syntax of a Turing model is as follows.

@model function prediction_model(yd)
# Specify prior distribution

θ ∼ Pr(θ)

# Simulate process output

y = dynamic_model(θ)

# Output: dynamic model + noise

for i in 1: length(yd)

yd[i] ∼ N (y[i], σ2
y)

end

end

Once we have defined the statistical model, MCMC
sampling can be performed using the sample function,
which has the form

sample(prediction_model, sampler, parallel, N, nchains).

This generates nchains number of independent chains,
each contaning N samples, using the statistical model

and specified MCMC sampler. The sampling is per-
formed in parallel using multiple cores if a parallel al-
gorithm is specified.

Turing offers several different MCMC samplers.
Among them are two classes of HMC: AdvancedHMC
(Xu et al., 2020) and DynamicHMC (Papp, 2021).
In this work, we use implementations from Ad-
vancedHMC: the HMC sampler (which is different from
the HMC class) and NUTS. Section 3.2.1 and Sec-
tion 3.2.2 below detail their use.

3.2.1 Hamiltonian Monte Carlo (HMC)

The HMC sampler function from AdvancedHMC has
the form

HMC(ε, L),

where
ε is the leapfrog step size, and

L is the number of leapfrog steps.

The appropriate values for ε and L, which determine
trajectory length εL, are typically selected by monitor-
ing the acceptance rate; Brooks et al. (2011) found that
the optimal balance between the two parameters occurs
when the acceptance rate is around 65%. In addition
to the acceptance rate, it is also helpful to examine the
trace plots of MCMC chains: slow-moving chains often
indicate a too-short trajectory length εL.

While they may be tuned simultaneously, selecting
ε first — while keeping L fixed — and then fine-tuning
L is preferable. A small ε will result in a high accep-
tance rate. But to ensure that the trajectory length
εL is sufficiently long to move to a distant point in the
parameter space, a small ε would have to be coupled
with a large L; this is computationally more expensive.
Ideally, we would want the largest possible value of ε

that yields a reasonable acceptance rate.
Our choices of parameters are discussed in Sec-

tion 4.4.

3.2.2 No-U-Turn Sampler (NUTS)

The NUTS sampler function from AdvancedHMC has
the form

NUTS(n_adapts, δ),

where
n_adapts is the number of adaptation samples,
δ is the target acceptance rate for dual averaging.

A common practice is to adjust any tunable MCMC
parameters during the burn-in phase and to lock them
in place thereafter. With this practice, n_adapts is the
same as the burn-in period. (Note: Turing discards
the adaptation samples of NUTS by default. I.e., the
resulting chains provided by Turing do not include the
adaptation samples.)

Hoffman and Gelman (2014) found that NUTS’s op-
timal performance occurs around δ = 0.6, but depends
little on δ within the range δ ∈ [0.45, 0.65].

Our choices of parameters are discussed in Sec-
tion 4.4.

4 Results and Discussion

4.1 Parameter Priors

Extreme values of uncertainty ranges are less likely
to occur than intermediate values. Hence, we use
Gaussian distributions with specified means and stan-
dard deviations as priors. The mean values are cho-
sen based on best physical knowledge of the system
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Table 1: Prior uncertainty description.

Uncertain model parameters

Statistics
m1

ga

[kg]
m2

ga

[kg]
m1

gt

[kg]
m2

gt

[kg]
m1

ot

[kg]
m2

ot

[kg]
PI1

[kg/hr/bar]
PI2

[kg/hr/bar]
Pr

[bar]

µ 19,000 20,000 1,050 1,350 23,000 21,000 26,000 15,000 151
σ 1,900 2,000 105 135 2,300 2,100 6,500 3,750 7.55
min 15,200 16,000 840 1,080 18,400 16,800 13,000 7,500 135.9
max 22,800 24,000 1,260 1,620 27,600 25,200 39,000 22,500 166.1

— here, somewhat arbitrarily because the actual val-
ues are known. The standard deviations for the initial
states, productivity indices, and reservoir pressure are
taken to be 10%, 25%, and 5% of their chosen mean
values, respectively. We truncate these distributions at
two standard deviations from the mean value on either
end.

It is standard to use the inverse gamma distribution
as prior for measurement noise variances.

Table 1 provides a summary of the prior uncertainty
description of the parameters to be estimated.

For the measurement noise variances, the chosen pri-
ors are Var(P i

a) ∼ Γ−1(1, 15), Var(wi
gop) ∼ Γ−1(1, 1),

Var(P i
wh) ∼ Γ−1(1, 0.05).

4.2 Synthetic Data Generation

Generation of data for parameter estimation is done
using the following step input signal.

wi
ga(t) = a− bHt1 + cHt2

where Ht is the Heaviside function, and

a =
20 000× 0.83

60× 60
kg/s

b =
2 000× 0.83

60× 60
kg/s

c =
1 000× 0.83

60× 60
kg/s

t1 = 2 000 min

t2 = 4 000 min

We simulate the nominal oil field model using the
step input for 100 hours. The outputs are sampled
every half-hour, yielding a total of 201 data points. We
then introduce white Gaussian noise to the gathered
samples, see column two of Table 2. Figure 7 shows the
generated data as well as the nominal model outputs
— to which the Gaussian noise was added.

4.3 Prior Model Uncertainty Analysis

It is useful to generate potential scenarios using ran-
dom samples from the prior distributions and compare

them with the actual case; the spread of the results
would indicate whether the initial parameter space
leads to a realistic representation of the uncertainty
in model predictions. Here, we solve the model for
10 000 prior samples selected at random, over a period
of 100 hours using the step input signals described in
Section 4.2.

In Fig. 3, the oil production rate from the 10,000 en-
semble members is plotted in grey, and the actual oil
production rate—based on actual parameters—is plot-
ted in blue; the upper plot shows the total production
of the field, while the two lower plots show the indi-
vidual production of the two wells. Clearly, the uncer-
tainties in the initial parameter space lead to a large
degree of uncertainty in the model outputs, but they
also capture the magnitude of the actual output.
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Figure 3: Prior model outputs.

It is also useful to apply statistical methods to anal-
yse the prior predictions of accumulated field produc-
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tion at the end of 100 hours–omitting the first 20 hours
during which the system has not yet reached steady
state. Figure 4 shows the histogram of the field pro-
duction along with some statistics; the red vertical
line shows the actual accumulated field production of
4.44 × 107 kg, while the blue line shows the mean of
the prior set.

3.50×107 4.00×107 4.50×107 5.00×107 5.50×107

Accumulated oil production of the field [kg]
0

50

100

150

Fr
eq

ue
nc

y

= 4.48×107

= 4.52×106

min = 3.47×107

max = 5.75×107

Figure 4: Prior model uncertainty. Red line is the ac-
tual production.

4.4 Parameter Estimation

We set up the parameter estimation problem in Tur-
ing using the default automatic differentiation backend,
ForwardDiff (Revels et al., 2016). The DifferentialEqua-
tions package (Rackauckas and Nie, 2017) is used for
implementing the oil field model.

We run HMC with L = 10 leapfrog steps and a step
size of ε = 0.004 — the best tuning found through
several preliminary runs — and NUTS with a target
acceptance rate of δ = 0.6 — the default value rec-
ommended by Hoffman and Gelman (2014). In both
cases, we use the MCMCThreads algorithm to sample
multiple chains in parallel; 3 chains for NUTS, and
10 chains for HMC — additional chains are required
for HMC since some of them fail to converge within
the specified number of iterations (note: only the first
3 chains that reach convergence are presented here).
The HMC chains are run for 5000 iterations, where we
chose to discard the first 1000 as burn-in. The NUTS
chains are run for 750 iterations, with the first 250 au-
tomatically discarded as burn-in.

For HMC, the call to the sample function is thus

sample(prediction_model, HMC(0.004, 10), MCMCThreads(),

5000, 10).

For NUTS, the call to the sample function is thus

sample(prediction_model, NUTS(250, 0.60), MCMCThreads()

, 750, 3).

Sampling is performed on a 2.40 GHz laptop work-
station with 32 GB memory.

Figure 5a shows the trace plots (evolution of iter-
ations) and posterior PDFs produced by HMC, and
Fig. 5b shows the same produced by NUTS. The plots
show that the chains are similar, which suggests suc-
cessful convergence to target posterior distributions. A
visual overview of how well the algorithms estimated
the parameters is provided in Fig. 6a for HMC and
Fig. 6b for NUTS; they illustrate how the calculated
posterior PDFs compare to the actual parameter val-
ues and the prior PDFs. Table 2 gives the posterior
statistics.

The spread of each posterior is observed to be much
smaller than that of the corresponding prior. More-
over, all posterior modes either coincide with or are in
close proximity to the actual parameter values. These
findings suggest that we are able to retrieve the actual
parameter values with substantially less uncertainty
than in the prior, using either strategy.

While it is quite certain that our tuning of HMC
presented here can be optimized, we believe it is still
worthwhile to compare the performance of HMC and
NUTS. The comparison would answer the question of
how a naively tuned HMC sampler stacks up against
NUTS. Figure 5 – 6b, and Table 2 indicate that the per-
formance of the two samplers is comparable in terms
of posterior mean values and standard deviations. It is
then interesting to see how they compare in terms of
efficiency. The Effective Sample Size per unit time (ES-
S/t) is a standard method for assessing and comparing
the efficiency of different MCMC algorithms; ESS/t is
automatically reported when running the sample func-
tion. This efficiency metric roughly corresponds to the
number of independent samples generated per unit of
time. ESS/t values for HMC and NUTS are given in
Table 2; although the figures for measurement vari-
ances are similar, the disparity in efficiency becomes
evident when comparing the values for the other esti-
mated parameters: NUTS is far more efficient than the
naively tuned HMC sampler.

4.5 Data Retrodiction

It is useful to perform retrodiction, i.e., simulate the
model for random parameter values drawn from the
posterior PDFs: the results, when compared with the
original data or the actual model solution, would pro-
vide an indication of how good the model fits is.

Here, we retrodict the measured variables for 10,000
random samples from the posterior PDFs. In Fig. 7,
the results are compared with the original noisy mea-
surement data — which was used for parameter estima-
tion — as well as the actual model solution — which
was used to create the synthetic measurement data.
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Figure 5: Trace plots and posterior PDFs. NOTE: The burn-in samples are not shown.
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Figure 6: Prior PDFs (grey) vs. posterior PDFs (green) vs. actual values (red).
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Table 2: Comparison of NUTS and HMC, posterior statistics.

Actual µ σ ESS/t

Parameter Value NUTS HMC NUTS HMC NUTS HMC

Var(Pa) 5 4.9043 4.9100 0.1801 0.1742 0.0505 0.0648
Var(wgop) 0.5 0.5066 0.5070 0.0182 0.0180 0.0650 0.0520
Var(Pwh) 0.005 0.0500 0.0500 0.0017 0.0018 0.0739 0.0626
m1

ga(t = 0) 20,636 20,617 20,617 85 87 0.0404 0.0253
m2

ga(t = 0) 19,331 19,312 19,308 83 86 0.0780 0.0393
m1

gt(t = 0) 1,205 1,238 1,234 12.4 10.9 0.0183 0.0007
m2

gt(t = 0) 1,174 1,181 1,184 17.1 16.3 0.0233 0.0010
m1

ot(t = 0) 21,824 21,153 21,244 260 229 0.0183 0.0007
m2

ot(t = 0) 19,325 19,154 19,072 378 364 0.0233 0.0010

PI1 25,100 26,517 26,761 1600 1373 0.0229 0.0009

PI2 16,300 16,947 17,059 716 615 0.0231 0.0010
Pr 150 149.41 149.30 6.6 5.7 0.0228 0.0010

The figure reveals that, despite introducing a substan-
tial amount of noise into the data, the computed poste-
rior PDFs reproduce the actual model solutions quite
well.
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Figure 7: Data retrodiction of measured outputs (grey)
compared to the original noisy data (green)
and the nominal model solution that was
used to generate the data (blue).

4.6 Posterior Model Uncertainty Analysis

Figure 3 indicates the predictive uncertainty when
drawing parameters from the prior distribution. We
now retrodict the model output for 10,000 random sam-
ples from the posterior distribution. Figure 8 shows
predictive abilities when drawing from the posterior

distributions, which should be compared with Fig. 3.
We also calculate the accumulated field production at
the end of 100 hours for each posterior ensemble mem-
ber; Fig. 9 shows the resulting histogram. Compared
to the prior outputs in Fig. 3 and 4, Fig. 8 and 9 show
that the posterior outputs are markedly less dispersed
about the actual output.
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Figure 8: Data retrodiction of oil production (grey) vs.
actual production (blue).
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5 Conclusions

In this paper we considered the problem of reducing
the uncertainty of a gas lifted oil-field model using syn-
thetic process data and assumed priors. The data con-
sists of time series of 2 inputs and 6 noisy outputs.
The model has 6 states with poorly known initial val-
ues, and 3 unknown model parameters. In the Bayesian
inference problem, we thus considered 12 unknown pa-
rameters: the 6 initial states, the 3 model parameters,
and the 3 measurement variances, and postulated some
prior distributions for these 12 parameters.

Ban et al. (2022) studied the same problem of
uncertainty reduction with a somewhat different
model. They implemented the random-walk Metropo-
lis MCMC algorithm from scratch to accomplish pa-
rameter estimation. In this study, we opted for a more
sophisticated family of Markov Chain Monte Carlo
samplers via the probabilistic programming language
Turing.

The original HMC sampler and its ”tuning-free”
variant, NUTS, were used to estimate the values of
the 12 parameters. Results demonstrated that both
samplers are capable of computing posterior distribu-
tions for the parameters that are significantly narrower
than the assumed prior distributions. The generated
posterior distributions were then utilized to show that
the predictive capabilities of the model (retrodiction)
had been improved considerably compared to using the
prior distributions. This implies that both MCMC
samplers result in accurate estimates of the uncertain
parameters.

When using real data instead of synthetic data,
poorer predictive capabilities can be expected based
on the posterior distributions. However, the demon-
strated strategy will still give a best possible estimate
of the model uncertainty.

The work presented here may be viewed as a first

step toward integrating system uncertainty into a com-
prehensive framework for optimum control architecture
design.
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