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Abstract

An open and closed loop subspace system identification algorithm DSR e is compared to competitive
open loop algorithms, DSR, and N4SID. Additionally, DSR e is compared vs the optimal Prediction Error
Method (PEM). Monte Carlo simulations with discrete random state space models are used for testing
the subspace identification algorithms in the numerical simulation section.
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1. Introduction

The research about building linear dynamic models
from observed input and output data in the early ’90s
resulted in the N4SID algorithm in the work by Over-
schee and de Moor (1994); Di Ruscio (1996). N4SID
was also implemented as a numerical function in the
System Identification Toolbox for MATLAB (MAT-
LAB (2020)). At the same time and in earlier years
Di Ruscio (1994, 1995) worked with the same problem
and published the DSR algorithm in Di Ruscio (1996).
An overview of some other related works are given in
Wang and Qin (2002) and Qin et al. (2005) where the
DSR method is referred.

It was soon observed that these methods did not
work completely for systems with feedback in the out-
put data. Due to noise and feedback, there could be a
bias in the estimates e.g. from the DSR/N4SID algo-
rithms. For about ten years there was great research on
solving the problem, i.e. solving the problem of sub-
space system identification of input and output data
from closed loop systems. In the early 2000 s the prob-
lem was solved with the DSR e algorithm. The DSR e
method was presented in Di Ruscio (2008); Di Ruscio
(2009b). Note that, the DSR e algorithm was pub-
lished earlier in internal notes as documented in the
Ph.D. thesis by Nilsen (2005). DSR e is a simple sub-
space system identification method for closed as well

as for open loop systems. This is a two-stage method
where the innovation process is identified consistently
in the 1st step, e.g. by filtering the output data into a
signal and an innovations noise part. An overview of
closed loop subspace identification is given by van der
Veen et al. (2013). The CL MOESP algorithm is in our
view not a pure subspace system identification method
because the deterministic part of the state space model
and the Kalman filter gain are obtained by a predic-
tion error method. Hence, the CL MOESP algorithm
is not considered further.

As mentioned above it was well known that the
DSR e algorithm also worked for open loop systems,
but, recent works show that in most situations the
DSR e method performs better on open loop systems
than the DSR algorithm, and even better on open loop
systems than the N4SID algorithm. The aim of this
paper is to document the performance of the DSR e,
DSR, and N4SID algorithms on open loop systems.

The contributions in this paper may be itemized as
follows:

• Monte Carlo simulations using random state space
models are used for comparing the subspace
system identification algorithms DSR e, DSR,
N4SID, and the optimal Prediction Error Meth-
ods (PEM) (Ljung (1999)).

• The algorithms DSR e, DSR, and the optimal
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PEM have been applied on a JAS 39 Gripen fighter
aircraft case inspired by the paper of Ljung (2013).

All numerical calculations and plotting facilities are
provided by using the MATLAB software (MATLAB
(2020)).

In Section 2.1 the system definitions are given. In
Section 3 the subspace identification methods are pre-
sented. In Section 4 the numerical examples are given.
In Section 5 the concluding and discussion remarks are
given.

2. Theory

2.1. System Definition

We will restrict ourselves to linearized or linear state
space dynamic models of the form

xk+1 = Axk +Buk + Cek, (1)

yk = Dxk + Euk + Fek, (2)

with x0 as the initial predicted state and where a series
of N input and output data vectors uk and yk ∀ k =
0, 1, . . . , N − 1 are known, and where there is possible
feedback in the input data. In case of output feedback
the feed through matrix is zero, i.e. E = 0. Also
for open loop systems the feed through matrix may be
zero. We will include a structure parameter g = 0 in
case of feedback data or for open loop systems in which
E = 0, and g = 1 for open loop systems when E is to
be estimated. Furthermore, for the innovations model
(1) and (2) ek is white with unit covariance matrix, i.e.
E(eke

T
k ) = I .

Note that, corresponding to the model (1) and (2)
on innovations form we may, if the system is not pure
deterministic, define the more common Kalman filter
on innovations form by defining the innovations as εk =
Fek and then K = CF−1 is the Kalman filter gain.
Hence, the Kalman filter on innovations form is defined
as

xk+1 = Axk +Buk +Kεk, (3)

yk = Dxk + Euk + εk, (4)

where the innovations process εk have covariance ma-
trix E(εkε

T
k ) = FFT .

The quintuple system matrices (A,B,C,D,E, F )
and the Kalman filter gain K are of appropriate di-
mensions. The problem addressed in this paper is to
determine these matrices from the known data. Both
closed and open loop systems are addressed.

3. The DSR e algorithm

In Di Ruscio (2008) a very simple, efficient subspace
system identification algorithm that works for both
open as well as for closed loop data was presented.
This algorithm was developed earlier and presented in
an internal report (2004) and used in Nilsen (2005). In
this section, an improved and extended presentation of
the algorithm is presented.

The following matrix equation is of fundamental im-
portance in connection with subspace system identifi-
cation algorithms, i.e.

YJ|L = OLXJ +Hd
LUJ|L+g−1 +Hs

LEJ|L, (5)

where the matrices in Eq. (5) are defined in Appendix
A and B. One problem in case of closed loop subspace
identification is that the future inputs, UJ|L+g−1 in the
matrix Eq. (5) are correlated with the future innova-
tions, in matrix EJ|L. However, a way of overcoming
this is to put L = 1 in Eq. (5) and for closed loop
systems it makes sense to put g = 0, i.e. no direct
feed through matrix and E = 0 in the output Eq. (4).
Hence we have

YJ|1 =

yd
J|1︷ ︸︸ ︷

DXJ +

εJ|1︷ ︸︸ ︷
FEJ|1 . (6)

In the DSR e algorithm the signal content, ydJ|1 =

DXJ , in Eq. (6), of the future data, YJ|1 =[
yJ yJ+1 . . . yN−1

]
∈ Rm×(N−J), is estimated

by projecting the “past” onto the “future”, and in case
of closed loop data when the direct feed through term
is zero (E = 0), i.e. estimated by the following projec-
tion

ydJ|1 = DXJ = YJ|1/

[
U0|J
Y0|J

]
, (7)

where the projection operator “/” is defined in Eq.
(39), and where we have used that for large J or as
J →∞ we have that

XJ/

[
U0|J
Y0|J

]
= XJ , (8)

which may be proved from Eq. (43) by using Eq. (40).
The past data matrices, U0|J and Y0|J , are uncorre-

lated with the future innovations sequence, EJ|1. In
the same stage the innovations sequence εJ|1 = FEJ|1
in Eq. (6) is then consistently estimated as

εJ|1 = FEJ|1 = YJ|1 − YJ|1/
[
U0|J
Y0|J

]
. (9)

Note that, both the signal part, ydJ|1, and the innova-
tion part, εJ|1, are used in the dsr e algorithm.
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For open loop systems we may have a direct feed
through term in the output equation, i.e., E 6= 0 and
with an output Eq. (2), yk = Dxk + Euk + Fek we
obtain

YJ|1 =

yd
J|1︷ ︸︸ ︷

DXJ + EUJ|1 +

εJ|1︷ ︸︸ ︷
FEJ|1, (10)

and the signal parts may in this case be computed as,

ydJ|1 = DXJ + EUJ|1 = YJ|1/

 UJ|1
U0|J
Y0|J

 , (11)

where we have used Eq. (40). Furthermore, the inno-
vations are determined by

εJ|1 = FEJ|1 = YJ|1 − YJ|1/

 UJ|1
U0|J
Y0|J

 . (12)

The algorithm is a two step algorithm where in the
1st step the output data are filtered or split into a
signal part, ydJ|1, and a noise (innovations) part, εJ|1 =
FEJ|1, i.e., as

yJ|1 = ydJ|1 + εJ|1. (13)

This step of splitting or filtering the future outputs,
yJ|1, into a signal part, ydJ|1 = DXJ when E = 0 or

ydJ|1 = DXJ + EUJ|1 when E 6= 0, and an innovations
part εJ|1 = FEJ|1, is of particular importance in the
algorithm.

We propose the following numerical efficient choices
for solving this 1st filtering step in the algorithm:

• Using a QR (LQ) decomposition. Interestingly,
the square root of the innovations covariance ma-
trix, F , is also obtained in this 1st QR step, as in
Di Ruscio (1996). Using the definitions or the QR
decomposition gives approximately the same re-
sults in our simulation examples. One should here
note that when the QR decomposition is used also
the Q factors as well as the R factors are used. We
have from the QR decomposition[

U0|J+g

Y0|J+1

]
=

[
R11 0
R21 R22

] [
Q1

Q2

]
, (14)

where g = 0 for closed loop systems and systems
with no direct feed through term in the output
Eq., i.e., when E = 0. For open loop systems and
when we want to estimate the direct feed through
matrix E we put g = 1. From, the decomposition
(14) we have

ydJ|1 = R21Q1, (15)

εJ|1 = R22Q2, (16)

and we notice that also the Q sub matrices are
used. Notice also that we may take F = R22 or
compute a new QR decomposition of εJ|1 in order
to estimate F .

• Another interesting solution to this step is to use
a truncated Conjugate Gradient (CG) algorithm,
Hestenes and Stiefel (1952), to compute the pro-
jection. The CG algorithm is shown to be equiva-
lent to the Partial Least Squares algorithm in Di
Ruscio (2000) for univariate (single output) sys-
tems. This will include a small bias but the vari-
ance may be small. This choice may be considered
for noisy systems in which PEM and the DSR e
method have unsatisfactory variances or for prob-
lems where one has to choose a “large” past hori-
zon parameter J . However, one has to consider a
multivariate version, e.g. the one proposed in Di
Ruscio (2000).

This step of splitting the future outputs, yJ|1, into a

signal part, ydJ|1, and an innovations part, εJ|1, is con-
sistent and believed to be close to optimal, see Section
4.

The 2nd step in the dsr e algorithm is a determin-
istic subspace system identification step if the system
order has to be found, or an optimal deterministic Or-
dinary Least Squares (OLS) step if the system order
is known, for finding the Kalman filter model. Using
PEM for solving the 2nd deterministic identification
problem may also be an option.

Hence, the future innovations εJ|1 = FEJ|1 (noise
part), as well as the given input and output data are
given and we simply have to solve a deterministic iden-
tification problem. Note also that if the system order,
n, is known this also is equivalent to a deterministic
OLS or ARX problem for finding the model. This
method is effectively implemented through the use of
QR (LQ) factorization, see the D-SR Toolbox for Mat-
lab function dsr e.p.

At this stage the innovations sequence, εJ|1, and the

noise free part, ydJ|1, of the output yJ|1 are known from
the 1st step in the DSR e algorithm. Hence we have to
solve the following deterministic identification problem

xk+1 = Axk +
[
B K

] [ uk
εk

]
, (17)

ydk = Dxk, (18)

where not only the input and output data, uk, and,
ydk, i.o., are known, but also the innovations, εk, are
known. Hence, the data

uk
εk
ydk

 ∀ k = J, J + 1, . . . , N − 1 (19)

121



Modeling, Identification and Control

are known, and the model matrices (A,B,K,D) may
be computed in an optimal OLS problem.

The 2nd step in the DSR e method is best discussed
as a deterministic identification problem where we will
define new input and output data satisfying a deter-
ministic system defined as follows

yk := ydk

uk :=

[
uk
εk

]  ∀ k = 1, 2, . . . , N (20)

where N := N − J is the number of samples in the
time series to be used in the deterministic identification
problem. Hence we have here defined new outputs, yk,
from all corresponding samples in the noise free part
ydJ|1 ∈ Rm×K where the number of columns is K =

N−J . Similarly, new input data uk ∈ Rr+m, is defined
from the sequence uJ|1 =

[
uJ uJ+1 · · · uN−1

]
of the original input data, and from the the computed
innovations in εJ|1 =

[
εJ εJ+1 · · · εN−1

]
.

In the examples of Section 4 we illustrate the statis-
tical properties of the method on open loop data, and
we show that DSR e is as optimal as PEM.

We believe that the 1st step in the DSR e algorithm
is close to optimal. Since we have some possibilities
for implementing the 2nd step in the algorithm, i.e.,
the deterministic identification problem, at least in the
multiple output case. We discuss some possibilities for
the 2nd step separately in the following subsection.
This 2nd deterministic identification step is believed
to be of interest in itself.

3.1. Deterministic subspace identification
problem

Step 2 in the dsr e.p implementation in the D-SR
Toolbox for MATLAB is basically as presented in this
subsection.

Consider an integer parameter L such that the sys-
tem order, n, is bounded by 1 ≤ n ≤ Lm. As an
example for a system with m = 2 outputs and n = 3
states it is sufficient with L = 2.

From the known deterministic input and output data
uk
yk

}
∀ k = 0, 1, . . . , N define the data matrix equa-

tion

Y1|L = ÃLY0|L + B̃LU0|L+g, (21)

where the matrices are given by

ÃL = OLA(OT
LOL)−1OT

L , (22)

B̃L =
[
OLB Hd

L

]
− ÃL

[
Hd

L 0Lm×r
]
.(23)

The same data as used in Eq. (21), i.e. Y0|L+1 =[
Y0|L
YL|1

]
and U0|L+g are used to form the matrix Eq.

Y0|L+1 = OL+1X0|J +Hd
L+1U0|L+g. (24)

There are some possibilities to proceed but we suggest
estimating the extended observability matrix from Eq.
(24) and the B, E matrices as an optimal OLS problem
from Eq. (21), using the corresponding R sub matrices
from the following LQ (transpose of QR) factorization,
i.e., [

U0|L+g

Y0|L+1

]
=

[
R11 0
R21 R22

] [
Q1

Q2

]
. (25)

Due to the orthogonal properties of the QR factoriza-
tion we have

R22 = OL+1X0|JQ
T
2 , (26)

and the system order, n, the extended observability
matrix OL+1, and thereafter A and D, may be esti-
mated from an SVD of R22, and using the shift invari-
ance technique. An alternative to this is to form the
matrix Eq.

R̄22 = ÃLR22, (27)

and estimate the system order as the n largest non-zero
singular values of the Lm singular values of the matrix
R22. Here R̄22 is obtained as R22 with the 1st m block
row deleted and R22 as R22 with the last m block row
deleted. Using only the n largest singular values we
have from the SVD that R22 = U1S1V

T
1 and we may

choose OL = U1 and find A from Eq. (27), i.e., as

A = UT
1 R̄22V1S

−1
1 . (28)

Note that there are common block rows in R22 and
R̄22. This may be utilized and we may use

A = UT
1

[
Ū1

R22(Lm+ 1 : (L+ 1)m, :)V1S
−1
1

]
, (29)

which is used in the DSR algorithms. This means that
we, for the sake of effectiveness, only use the truncated
SVD of R22 and the last block row in R22 in order to
compute an estimate of the A matrix. The D matrix
is taken as the 1st m block row in OL = U1. This way
of computing the A and D matrices is a result of Di
Ruscio (1994).

Finally, the parameters in the B and E matrices are
estimated as an optimal OLS step, using the structure
of matrix B̃L and the equation

R̄21 = ÃLR21 + B̃LR11, (30)
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where R̄21 is obtained as R21 with the 1st m block
row deleted and R21 as R21 with the last m block
row deleted. Since ÃL now is known the problem
B̃LR11 = R̄21 − ÃLR21 may be solved for the parame-
ters in B (and E for open loop systems) as an optimal
OLS problem in the unknown (n+m)r parameters in
B and E, Di Ruscio (2003). We also mention in this
connection that it is possible to include constraints in
this OLS step, e.g. solve structural problems, e.g. with
K = 0 as in output error models.

Note that, by using the realization algorithm in Ho
and Kalman (1966), Hankel matrices H1|L = OLCJ

and H2|L = OLACJ are constructed from impulse re-
sponse matrices hi = CAi−1B ∀ i = 1, . . . , L + J ,
where L + J is the number of impulse response ma-
trices. Using the SVD realization algorithm in Zeiger
and McEwen (1974) gives the model matrices A, B and
D and the system order, n. See Di Ruscio (2009b) for
details.

The MATLAB D-SR Toolbox is available upon re-
quest.

4. Numerical Results

In the following examples we will compare the algo-
rithms n4sid, pem, dsr e and dsr on Monte Carlo
simulations using random state space models, viz. we
generate Discrete Random State Space (DRSS) mod-
els using the MATLAB function drss. In the incoming
examples, we will generate DRSS models by using the
following MATLAB code.

m=randi(4);

r=randi([m,m+1]); n=randi([m+1,m+2]);

dsys=drss(n,m,r); dsys.d=0;

Note that, the system is stable, i.e., the eigenvalues
of A, generated from the MATLAB function drss, are
inside the unit circle

For each DRSS model we will perform M = 100
noise realizations. For each noise realization we will
simulate the DRSS model with a pseudo random binary
sequence as input signal of length, N = 100, using
following MATLAB code.

for k=1:nu

U(:,k)=prbs1(N,randi([4,9]),randi([16,25]));

end

The signal, uk, is constant on random intervals, T,
specified by the band, Tmin ≤ T ≤ Tmax. The MAT-
LAB m-file function prbs1.m is available on request.

For comparing the results we will use the size of the
covariance matrix of the error between the estimated

and true parameter, i.e.

Palg =
N

M − 1
(θ̂i − θ0)(θ̂i − θ0)T , (31)

as

Valg = trace(Palg), (32)

where subscript alg means the algorithms, dsr, n4sid
and dsr e or pem. The true parameter vector (i.e.
in MATLAB notation), θ0 = [Ac(:);Bc(:);Dc(:)], and

the estimate parameter vector, θ̂i = [Âc(:); B̂c(:); D̂c(:
)]i, for each i in 1 ≤ i ≤ M . The subscript c means
observable canonical form.

Note that, the criterion defined in Eqs. (31) and (32)
were copied from Eqs. (69) and (70) in the paper of
Di Ruscio (2009a), i.o.

To compare the algorithms over a set of DRSS mod-
els we define the following scaling criterion,

Valg =
Valg∑
alg Valg

. (33)

In the incoming examples, the future and the past
horizon input parameters, L and J , i.o., used in the dsr
and dsr e algorithms, are chosen such that the mean
squared error (i.e. between the simulated output from
the algorithm and the identification data) is minimized,
where the system order, n, is assumed known. Also,
the feed through matrix is set E = 0 (i.e. we have set
g = 0). Note that, originally the n4sid algorithm only
had, L = J , however in the MATLAB implementation
of n4sid there exists an option to set the past horizon
parameter, J . See the opt Lj.m MATLAB function
as follows.

function [opt_L,opt_J,n]=...

opt_LJ(Y,U,Lmax,g,Jmax,alt,n)

[N,ny]=size(Y);

[~,nu]=size(U);

minV=inf;

for L=ceil(n/ny):Lmax

for J=L:Jmax

if (N - J - L < (J + L + g)*nu...

+ (J + L + 1)*ny)

return

disp(’Need more data.’);

end

if strcmp(alt,’dsr’)

[A,B,D,E,~,~,x0]=...

dsr(Y,U,L,g,J,1,n);

elseif strcmp(alt,’dsr_e’)
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[A,B,D,E,~,~,x0]=....

dsr_e(Y,U,L,g,J,n);

elseif strcmp(alt,’n4sid’)

[dsys,x0] =...

n4sid(iddata(Y,U,1),n,...

’Feedthrough’,g,’N4Horizon’,...

[L+1, J+1, J+1]);

A=dsys.A;B=dsys.B;D=dsys.C;

E=dsys.D;

else

return

end

Ym=dsrsim(A,B,D,E,U,x0);

V = norm((Y-Ym)’*(Y-Ym)/N);

if V < minV

opt_L=L;

opt_J=J;

minV=V;

end

end

end

Example 4.1 (Open loop MIMO)

In this example, we will compare dsr, n4sid and
dsr e, on 100 DRSS models.

The process noise vk and measurements noise, wk

are white with covariance matrices E(vkv
T
k ) = 0.032 In

and E(wkw
T
k ) = 0.032 Im, i.o.

It is seen in Table 1 (rows 2:4, column 2) that the
dsr e algorithm has an edge over both n4sid and dsr,
in terms of the mean of the criterion V (defined in Eq.
(33)), viz. dsr e is seen to be, mean(Vdsr−Vdsr e) =
0.3002 − 0.2081 = 0.0921 ≈ 9%, better than dsr and,
mean(Vn4sid − Vdsr e) = 0.4917 − 0.201 = 0.2836 ≈
28%, better than n4sid. This also illustrated in Figure
1.

Table 1: Example 4.1. The table shows the mean of
the criterion V (defined in Eq. (33)) for
dsr e, dsr and n4sid based on random dis-
crete space model Monte Carlo simulations.

Algorithm mean(Valg)

dsr e 0.2081
dsr 0.3002
n4sid 0.4917

Example 4.2 (Open loop MIMO PEM)
In this example, we will compare dsr e and pem on
100 DRSS models.

The process noise vk and measurements noise, wk

are white with covariance matrices E(vkv
T
k ) = 0.052 In

and E(wkw
T
k ) = 0.032 Im, i.o.

The MATLAB function pem is called as follows.

dsr_e dsr n4sid
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 1: Example 4.1. The figure shows the mean
of the criterion V (defined in Eq. (33)) for
dsr e, dsr and n4sid based on random dis-
crete space model Monte Carlo simulations.
dsr e gives the best performance, i.e. lowest
V.

opt=n4sidOptions(’Focus’,’simulation’);

idd=iddata(Y,U,1);

n4sys=n4sid(idd,n,opt,’Feedthrough’,0);

pemsys = pem(idd,n4sys);

Surprisingly, at least in this example, it is seen in
Table 2 (rows 2:3, column 2) that the dsr e algorithm
has an edge over pem in terms of the mean of the
criterion V (defined in Eq. (33)). See also Figure
2, viz. dsr e is seen to be, mean(Vpem − Vdsr e) =
0.7482− 0.2518 = 0.4964 ≈ 50%, better than pem.

Table 2: Example 4.2. The table shows the mean of the
criterion V (defined in Eq. (33)) for dsr e and
pem based on random discrete state space
model Monte Carlo simulations.

Algorithm mean(Valg)

dsr e 0.2518
pem 0.7482

Example 4.3 (Swedish Fighter Gripen)
In this example, we will consider the JAS 39 Gripen
fighter aircraft (developed jointly by Saab Military Air-
craft and British Aerospace). This example is inspired
by the paper of Ljung (2013). The raw dataset of length
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dsr_e pem
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2: Example 4.2. The figure shows the mean
of the criterion V (defined in Eq. (33)) for
dsr e and pem based on random discrete
space model Monte Carlo simulations. dsr e
gives the best performance, i.e. lowest V.

equal to 815 samples which corresponds to 180 samples
(i.e. 3 s sampled at 60 Hz) of test flight data is illus-
trated in Figure 4. Note that, these data are the result
of reverse engineering of Figure 2 in Ljung (2013)1

(the scaling is not preserved). Note that, the 1st 184
samples of the raw dataset are removed. The dataset
is detrended using the 1st sample, i.e. the 1st sample
is subtracted from the dataset. 631 samples are used
for validation data and the 1st 300 samples of these
are used for identification data. Note that, Figure 5 il-
lustrates the identification and validation dataset. The
authors suspect that the data from Figure 2 in Ljung
(2013) has been filtered.

We will consider the following case:

yk ∈ R :=
{

Pitch Rate,

uk ∈ R3 :=


u1 : Leading Edge Flap,

u2 : Canard Angle,

u3 : Elevator Angle

Testing of different input-output pairings has been
done, whereas using all three inputs, was found to pro-
duce the most accurate models. The model order was

1The reverse engineering is done using a picture to data
(pic2dat) tool, i.e. a tool for converting a picture depicting
a plot from jpg, png, etc to a dataset. Request 2nd author.

also tested, whereas choosing, n = 1, was seen as suf-
ficient.

u y

Figure 3: Example 4.3. The figure shows an open loop
system of the JAS 39 Gripen fighter aircraft.
The figure illustrates the inputs and output
case. The figure shows an edited version of
Tuomo Salonen / SIM Finnish Aviation Mu-
seum (2017).

The state space models identified using dsr e, pem
and dsr was seen similar (wrt. the criterion in Eq.
(32)), viz. pem (i.e. the SSM as in Eqs. (3) and
(4) with matrices as in Eq. (34)) was seen in Table 3
(rows 2:4, column 2) to be, Vdsr

Vpem
= 447.2/389 = 1.15,

times better than dsr and, Vdsr e

Vpem
= 440.9/389 = 1.13,

times better than dsr e, on the validation set. The
eigenvalues for the pem, dsr and dsr e models, shown
in Table 4, are close to integrator.

pem︷ ︸︸ ︷
A = 0.9988

B =

 0.00000233
0.00001032
−0.00002484


D = 2412

E = 0

K = 0.0003762

(34)

In the paper of Ljung (2013), a 5-step ahead predic-
tor was used (illustrated in Figure 3 in Ljung (2013)).
This corresponds to, M = ceil(815/180) 5 = 25 step.
In Figure 7 a 25-step ahead prediction of the output yk
from the dsr, dsr e and pem models are illustrated.

Table 3: Example 4.3. The table shows the mean
square error, i.e. the criterion Eq. (32) corre-
sponding to the validation data shown in Fig-
ure 7.

Valg Validation set

Vdsr 447.2
Vdsr e 440.9
Vpem 389.0
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Figure 4: Example 4.3. JAS Gripen test flight raw
data. 817 samples correspond to Gripen test
flight over 3 s with a sample interval of 1/60
s. These data are the result of reverse engi-
neering of figure 2 in Ljung (2013).

Table 4: Example 4.3. The table shows the eigenvalues
of the models identified using the algorithms
dsr, dsr e and pem.

alg eigenvalue

dsr 0.9989
dsr e 0.9988
pem 0.9988
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Figure 5: Example 4.3. The figure shows the identifi-
cation and validation data.
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Figure 6: Example 4.3. The figure shows the compar-

ison of the simulated output, ydk, from the
algorithms dsr, dsr e and pem, with the
actual output, yk (validation). The corre-
sponding criterion, i.e. the mean square er-
ror, are given in Table 3.
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Figure 7: Example 4.3. The figure shows an M-step
ahead prediction of the output yk from the
dsr, dsr e and pem models with M = 25.
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5. Concluding Remarks

The discussion and concluding remarks are itemized as
follows:

• The results from Monte Carlo simulations with
100 DRSS models, each with 100 noise realizations
have been documented in the numerical examples
in Sec. 4.

In Example 4.1, the dsr e algorithm is seen to
have an edge over both the dsr and n4sid algo-
rithms on open loop data generated from DRSS
models by at least 9%.

Surprisingly, the dsr e algorithm is seen in Exam-
ple 4.2 to outperform pem by 50%. Note that, for
enhancing performance, more emphasis could have
been put on choosing the options used in the pem
algorithm. It may also be explained by a trade-off
between bias and variance (Di Ruscio (2009a)).

• pem was seen slightly better than dsr e and dsr
in a Example 4.3, i.e. on flight data from a Swedish
JAS Gripen Fighter Case (see Ljung (2013)). The
pem algorithm was seen at least 1.13 times bet-
ter than dsr e and dsr, in terms of performance
criterion Valg in Eq. (32).
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A. Notations and definitions

Hankel matrices are frequently used in realization the-
ory and subspace system identification. The special
structure of a Hankel matrix as well as some matching
notations, which are frequently used throughout the
paper, are defined in the following.

Definition A.1 (Hankel matrix) Given a vector
sequence

sk ∈ Rnr ∀ k = 0, 1, 2, . . . , (35)

where nr is the number of rows in sk.
Define integer numbers j, i and nc and define the

matrix Sj|i ∈ Rinr×nc as follows

Sj|i
def
=


sj sj+1 sj+2 · · · sj+nc−1
sj+1 sj+2 sj+3 · · · sj+nc

...
...

...
. . .

...
sj+i−1 sj+i sj+i+1 · · · sj+i+nc−2

 ,

which is defined as a Hankel matrix because of the spe-
cial structure. A Hankel matrix is symmetric and the
elements are constant across the anti-diagonals. The
integer numbers j, i and nc have the following inter-
pretations:

• j start index or initial time in the sequence used to
form Sj|i, i.e., sj, is the upper left vector element
in the Hankel matrix.

• i is the number of nr-block rows in Sj|i.

• nc is the number of columns in the Hankel matrix
Sj|i.

One should note that this definition of a Hankel ma-
trix Sj|i is slightly different from the notation used in
Overschee and de Moor (1996) (pp. 34-35) where the
subscripts denote the 1st and last element of the 1st
column in the block Hankel matrix, i.e. using the nota-
tion in Overschee and de Moor (1996) a Hankel matrix
U0|i is defined by putting u0 in the upper left corner
and ui in the lower left corner and hence U0|i would
have i+ 1 rows.

Examples of such vector processes, sk, to be used in
the above Hankel-matrix definition, are the measured
process outputs, yk ∈ Rm, and possibly known inputs,
uk ∈ Rr.

Definition A.2 (Basic matrix definitions)
The extended observability matrix, Oi, for the pair
(D,A) is defined as

Oi
def
=


D
DA
...
DAi−1

 ∈ Rim×n, (36)

where the subscript i denotes the number of block rows.
The reversed extended controllability matrix, Cd

i , for
the pair (A,B) is defined as

Cd
i

def
=
[
Ai−1B Ai−2B · · · B

]
∈ Rn×ir, (37)

where the subscript i denotes the number of block
columns. A reversed extended controllability matrix,
Cs

i , for the pair (A,C) is defined similar to (37), i.e.,

Cs
i

def
=
[
Ai−1C Ai−2C · · · C

]
∈ Rn×im, (38)

i.e., with B substituted with C in (37). The lower
block triangular Toeplitz matrix, Hd

i ∈ Rim×(i+g−1)r ,
for the quadruple matrices (D,A,B,E).

Hd
i

def
=


E 0m×r 0m×r · · · 0m×r
DB E 0m×r · · · 0m×r
DAB DB E · · · 0m×r
...

...
...

. . .
...

DAi−2B DAi−3B DAi−4B · · · E


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where the subscript i denotes the number of block rows
and i+g−1 is the number of block columns, and where
0m×r denotes the m × r matrix with zeroes. A lower
block triangular Toeplitz matrix Hs

i ∈ Rim×im for the
quadruple (D,A,C, F ) is defined as

Hs
i

def
=


F 0m×m 0m×m · · · 0m×m
DC F 0m×m · · · 0m×m
DAC DC F · · · 0m×m
...

...
...

. . .
...

DAi−2C DAi−3C DAi−4C · · · F


Given two matrices A ∈ Ri×k and B ∈ Rj×k, the

orthogonal projection of the row space of A onto the
row space of B is defined as

A/B = ABT (BBT )†B. (39)

The following property is used

A/

[
A
B

]
= A. (40)

Proof of Eq. (40) can be found in e.g., Di Ruscio (1997).

B. Background theory

Consider the “past-future” data matrix, Eq. (4) in the
paper Di Ruscio (1997). This same equation is also
presented in Eq. (27) in the Di Ruscio (1997) paper.
We have

YJ|L =
[
Hd

L OLC̃
d
J OLC̃

s
J

]  UJ|L+g−1
U0|J
Y0|J


+ OL(A−KD)JX0 +Hs

LEJ|L, (41)

where C̃s
J = Cs

J(A−KD,K) is the reversed extended
controllability matrix of the pair (A − KD,K), and
C̃d

J = Cd
J(A −KD,B −KE) is the reversed extended

controllability matrix of the pair (A−KD,B −KE),
and where Cd

J and Cs
J are defined in Eqs. (37) and (38),

i.o..
One should here note that the term

lim
J→∞

OL(A−KD)JX0 = 0 (42)

Also note Eq. (43) in Di Ruscio (2003) with proof,
i.e.,

XJ =
[
C̃d

J C̃s
J

] [ U0|J
Y0|J

]
+ (A−KD)JX0, (43)

which relates the ”past” data matrices, U0|J and Y0|J
to the ”future” states

XJ =
[
xJ xJ+1 · · · xN−(J+L)

]
. (44)

Note that, Eq. (41) is obtained by putting (43) into
Eq. (5).
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