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Abstract

In this paper, various modern model based optimal control methods (as well as one model-free or data-
driven) are applied to the dynamical positioning problem of vessels, i.e. we seek to control the surge, sway
and yaw motion, using the thrusters and propellers, subject to environmental disturbances, i.e. wind and
current. The low-frequency part of Balchen’s nonlinear vessel model is selected for these tests.
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1. Introduction

The dynamic positioning of marine vessels is an im-
portant issue especially in the oil and gas industry for
safety and economic demands. A great amount of re-
search had been done to develop efficient dynamic po-
sitioning systems but one of the challenges was about
finding an accurate mathematical model to be used in
developing model based control systems.

A DP system based on modern model control the-
ory was first proposed and implemented in the work
of Balchen et al. (1980). See also the works of Saelid
et al. (1983); Sørensen et al. (1996).

We are using the low frequent part of the nonlinear
Balchen et al. (1980) model in order to test different
optimal control methods for Dynamic Positioning (DP)
of marine vessels. A DP system, generally, includes a
position and heading measurement system, a controller
algorithm, and a propulsion system. In this paper, we
focus on the controller algorithms of the DP system. A
DP system may be defined as a computer system which
automatically controls the position as well as the head-
ing, of a vessel, by using its propellers and thrusters.

With optimal control, methods we are including Model
Predictive Control (MPC) methods and a total of five
MPC and optimal control methods are tested.

In this paper, standard MPC, MPC with integral
action Di Ruscio (2013), and optimal control with in-
tegral action Di Ruscio (2012) are implemented and
tested to control the position and rotation/heading of
a selected vessel. See Figure 1 for illustration.

The contributions in this paper may be itemized as
follows:

• MPC Di Ruscio (2013), Linear Quadratic (LQ)
Di Ruscio (2012), Model based, and model free
control methods (Dalen et al. (2015)) are applied
to the nonlinear Balchen model in Balchen et al.
(1980).

All numerical calculations and plotting facilities are
provided by using the MATLAB software (MATLAB
(2020)).

The rest of this paper is organized as in the follow-
ing. In Section 2 the nonlinear model is presented. In
Section 3 the optimal control theory is given. In Sec-
tion 4 the numerical examples are given. In Section 5

doi:10.4173/mic.2022.3.3 c© 2022 Norwegian Society of Automatic Control

http://dx.doi.org/10.4173/mic.2022.3.3


Modeling, Identification and Control

Figure 1: The figure is illustrating the Dynamic Po-
sitioning control system with linear MPC,
linear model and identified model. By
’linearization’-block it is assumed that a
model is available describing the vessel dy-
namics.

Figure 2: The figure is illustrating the 3 degrees of free-
dom of a vessel. For DP systems we are in-
terested in controlling 3 degrees of freedom,
surge, sway and yaw. The figure illustrates
motion and rotation variables for a Vessel.

Figure 3: The figure is illustrating the NED and Body
coordinate systems.

the concluding and discussion remarks are given.

2. Nonlinear Vessel Model

In the following, a nonlinear continuous state space
model describing a marine vessel is described, viz. this
is the low frequent part of the model presented in
Balchen et al. (1980).

Consider,

ẋ = f(x, u), (1)

y = g(x), (2)

where

y ∈ R3 :=


y1: Position Surge, [m]

y2: Position Sway, [m]

y3: Heading Yaw, [rad]

(3)

u ∈ R3 :=


u1: Control Surge, [N]

u2: Control Sway, [N]

u3: Control Yaw, [Nm]

(4)

x ∈ R6 :=



x1: Position Surge, [m]

x2: Position Sway, [m]

x3: Position Yaw, [rad]

x4: Velocity Surge, [m/s]

x5: Velocity Sway, [m/s]

x6: Velocity Yaw, [rad/s]

(5)
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ẋ1 = x4, (6)

ẋ2 = x5, (7)

ẋ3 = x6, (8)

ẋ4 = − d1

m1
|x4 − νcsu |(x4 − νcsu)

+
1

m1
(Fwsu + u1), (9)

ẋ5 = − d2

m2
|x5 − νcsw |(x5 − νcsw)

+
1

m2
(Fwsw

+ u2), (10)

ẋ6 = − d3

m3
|x6|x6 −

d4

m3
|x5 − νcsw |(x5 − νcsw)

+
1

m3
(Nw + u3 +Nc), (11)

where m1, m2 and m3 are the inertial coefficients which
are assumed to be constants. d1, d2, d3 and d4 are the
drag and moment coefficients.

See Figures 2 and 3 for the body coordinate and
illustration of the states described in Eq. (5).

2.1. Forces and Moments

Environmental forces and moments have to be trans-
formed from the NED to Body coordinate system to
calculate vessel position and velocity.

We have that,

Vc = RTV NED
c , (12)

where

Vc ∈ R3 :=


νcsu : water current velocity Surge [m/s]

νcsw : water current velocity Sway [m/s]

Nc: water current moment Yaw [Nm],

,

(13)

V NED
c : water current velocity components in the

NED coordinate system, and

R =

cos(x3) − sin(x3) 0
sin(x3) cos(x3) 0

0 0 1

 , (14)

is the transformation matrix.
Wind forces in surge and sway and wind effect in

yaw are proportional to wind density ρ, wind relative
speed Vr, wind angle of attack γ and windage are, viz.

Fw =
1

2
ρV 2

r

 Cx cos(γ)AF

Cy sin(γ)AL

CN sin(2γ)ALL

 , (15)

where

Fw ∈ R3 :=


Fwsu

: wind force Surge [N]

Fwsw
: wind force Sway [N]

Nw: wind moment Yaw [Nm],

(16)

and

uw = Vw cos(β − x3), (17)

vw = Vw sin(β − x3), (18)

urw = x4 − uw, (19)

vrw = x5 − vw, (20)

Vr =
√
u2
rw + v2

rw, (21)

where β is the measured wind direction, Vw is the mea-
sured wind speed, Cx, Cy, CN are the wind coefficients
(assumed constant), AL, AF windage area for beam
wind and headwind i.o. and L is the vessel overall
length.

3. Optimal Control Methods

3.1. System Definition

We will restrict ourselves to linearized or linear state
space dynamic models of the form

xk+1 = Axk +Buk + v, (22)

yk = Dxk + w, (23)

where xk ∈ Rn is the state vector, uk ∈ Rr is the
control input vector, yk ∈ Rm is the output (measure-
ment) vector, A, B and D are system matrices of ap-
propriate dimensions, and x0 is the initial state. The
disturbances v and w may both be unknown, i.e., v
may be an unknown constant or slowly varying pro-
cess disturbance, and w may be an unknown constant
or slowly varying measurements noise vector. v and w
may represent trends or drifts.

Most of the optimal control methods evolve around
minimizing the following LQ cost function, perfor-
mance index,

Jk = (yk+1|L − rk+1|L)TQ(yk+1|L − rk+1|L) +

∆uTk|LP∆uk|L, (24)

where Q ∈ RLmLm is a block diagonal matrix with
Qi ∀ i = 1, ..., L on the block diagonal. P ∈ RLrLr
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is defined similar with Pi ∀ i = 1, ..., L on the block
diagonal. The notation used to define the vectors in
Eq. (4) is defined in Appendix A in Di Ruscio (2013).

In this paper, we consider the input rate of change
and amplitude constraints. These constraints may be
formulated as a linear inequality

A∆uk|L ≤ bk, (25)

where the expressions for A and bk may be found in
Section 3.2 in Di Ruscio (2013). Where bk is an un-
known vector of future control increments, subject to
the process constraints,

∆u∗k|L = arg min
A∆uk|L≤bk

JL. (26)

In this paper, we use the following Kalman filter/S-
tate observer, Di Ruscio (2012),

x̄k+1 = Ax̄k +Buk +K(yk −Dx̄k), (27)

where x̄0 is the initial estimate.
The optimal control methods used in this paper are

briefly described and defined in the following. For
detailed descriptions look up the corresponding refer-
ences.

• Nonlinear MPC (mpc). See Morari et al. (1988).

• Nonliner MPC reduced variant (mpc red). See
Morari et al. (1988).

• MPC with integral action (mpc int) is defined in
the paper of Di Ruscio (2013).

• LQ with integral action (lq int) is defined as
the method presented in the paper of Di Ruscio
(2012).

• Model free LQ control (mflqc) is presented in the
work of Dalen et al. (2015).

The underlying goal of this paper is to test and com-
pare the previous enumerated list, i.e. these five DP
system control algorithms.

4. Numerical Examples

In the incoming example, we will compare the DP
system mpc, mpc red, mpc int, lq int and mflqc
controller algorithms on the nonlinear Balchen marine
vessel model described in Section 2. The nonlinear
Balchen model m-file function is available in the Ap-
pendix A.

We adopt the performance indices from Åström
and Hägglund (1995); Seborg et al. (1989); Skogestad
(2003). In order to measure performance in a feedback

system (See Figure 1), the Integrated Absolute Error
(IAE) is defined as,

IAE =

∫ ∞
0

| e(t) | dt, (28)

where, r, is the reference/setpoint and, e = r − y, is
the error.

To evaluate the amount of input usage we include
the following Total input Value (TV) measure,

TV =

∫ ∞
0

|∆uk | dt, (29)

where, ∆uk = uk − uk−1, is the control rate of change.
For surge-sway reference/setpoint responses, we in-

troduce a combined IAE, i.e.∑
IAE = IAEsurge + IAEsway, (30)

∑
TV = TVsurge + TVsway. (31)

The Figures 4, 5 and 6 show the reference/setpoint
step response for the five DP system mpc, mpc red,
mpc int, lq int and mflqc controller algorithms, viz.
surge is set from 0 to 3 m, sway position is set from 0
to 5 m, and yaw rotation/heading set from 0 to 3 m at
time equal 200 samples for the algorithms. In Figure 7
the corresponding position is shown in NED frame.

In the surge-sway position, the mpc int algorithm is
seen to have an edge over the other algorithms, viz. in
Table 3 (rows 2:6, column 2), the mpc int algorithm

is seen to be,
∑

IAEmpc∑
IAEmpc int

= 4.8174,
∑

IAEmpc red∑
IAEmpc int

=

6.3583,
∑

IAElq int∑
IAEmpc int

= 2.9072, and
∑

IAEmflqr∑
IAEmpc int

=

2.5743, times better than mpc, mpc red, lq int and
mflqc, i.o., in terms of the performance index, com-
bined

∑
IAE (Eq. (30)).

Furthermore, in the yaw rotation/heading, the
mpc int algorithm is seen to have an edge over the
other algorithms, viz. in Table 3 (rows 2:6, column

2), the mpc int algorithm is seen to be,
IAEmpc

IAEmpc int
=

12.4352,
IAEmpc red

IAEmpc int
= 14.4856,

IAElq int

IAEmpc int
= 7.8270,

and
IAEmflqr

IAEmpc int
= 7.9020, times better than mpc,

mpc red, lq int and mflqc, i.o., in terms of the per-
formance index, IAE (Eq. (28)).

In the surge-sway position, the mpc algorithm
is seen to have outperformance over the other al-
gorithms, viz. in Table 2 (rows 2:6, column 3),

the mpc algorithm is seen to be,
∑

TVmpc red∑
TVmpc

=

3.1822,
∑

TVmpc int∑
TVmpc

= 2.5141,
∑

TVlq int∑
TVmpc

= 1.7268,

and
∑

TVmflqr∑
TVmpc

= 2.4860, times better than mpc red,
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mpc int, lq int and mflqc, i.o., in terms of the input
usage,

∑
TV (Eq. (31)).

Furthermore, in the yaw rotation/heading, the
mpc red algorithm is seen to have an edge over the
other algorithms, viz. in Table 2 (rows 2:6, column

3), the mpc red algorithm is seen to be,
TVmpc

TVmpc red
=

1.0967,
TVmpc int

TVmpc red
= 149.8967,

TVlq int

TVmpc red
= 8.7734, and

TVmflqr

TVmpc red
= 7.7186, times better than mpc, mpc int,

lq int and mflqc, i.o., in terms of the performance
index, TV (Eq. (29)).
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Figure 4: The figure shows the reference/setpoint step
in surge position for the five different DP sys-
tems controller algorithms.

Table 1: The table shows the combined (surge-sway)
mean Integral Absolute Error indices

∑
IAE

(Eq. (30)) and mean Total input Value (Eq.
(31)) for mpc, mpc red, mpc int, lq int
and mflqr algorithms corresponding to refer-
ence/setpoint response in surge and sway.

Algorithm
∑

IAE
∑

TV
mpc 86.12 2752.81
mpc red 113.67 8760.05
mpc int 17.88 6920.71
lq int 51.97 4753.42
mflqr 46.02 6843.41
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Figure 5: The figure shows the reference/setpoint step
in sway position for the five different DP sys-
tems controller algorithms.

Table 2: The table shows the Integral Absolute Error
indices IAE (Eq. (28)) and Total input Value
(Eq. (29)) for mpc, mpc red, mpc int,
lq int and mflqr algorithms corresponding to
reference/setpoint response in yaw rotation/-
heading.

Algorithm IAE TV
mpc 119.69 3369.26
mpc red 139.42 3072.14
mpc int 9.62 460503.95
lq int 75.34 26953.16
mflqr 76.06 23712.71

Table 3: The table shows the mean execution time for
mpc, mpc red, mpc int, lq int and mflqr
algorithms for each time step. Mean @ Stan-
dard Deviation.

Algorithm Execution Time
mpc 0.1655 @ 0.0195
mpc red 0.0559 @ 0.0180
mpc int 0.0337 @ 0.0112
lq int 2.99e-06 @ 2.51e-05
mflqr 3.47e-06 @ 2.78e-05
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Figure 6: The figure shows the reference/setpoint step
in yaw rotation/heading for the five different
DP systems controller algorithms.

Figure 7: NED and Body coordinate systems.

5. Concluding and Discussion
Remarks

Five different DP system controller algorithms were
tested and compared on a nonlinear Balchen vessel
model. Concluding Remarks on the results from the
numerical example in Section 4.

• The DP system mpc int controller algorithm is
shown to have an edge over the other DP system
controller algorithms in terms of reference/set-
point step response, viz. in surge-sway position
and yaw rotation/heading, the mpc int algorithm

is seen to be atleast,
∑

IAEmflqr∑
IAEmpc int

= 2.5743, and,
IAElq int

IAEmpc int
= 7.8270, times better, i.o., than the

other algorithms.

• The DP system mpc controller algorithm is shown
to have an edge over the other DP system con-
troller algorithms in terms of input usage, viz.
in surge-sway position the mpc algorithm is seen

to be atleast,
∑

TVlq int∑
TVmpc

= 1.7268, times better

than the other algorithms. In yaw rotation/-
heading, the mpc red algorithm is seen atleast

TVmpc

TVmpc red
= 1.0967, times better than the other

algorithms.

• The mpc and mpc red algorithms are seen rel-
atively slow at reference/setpoint tracking. One
may argue that by changing weights could solve
this, however making it faster could probably en-
hance the undesirable ”spikes” seen in Figure 4 for
mpc and mpc red.

• The execution time of mflqr and lq int is seen
similar and atleast 9712 times faster than the other
three algorithms. See Table 3.

• In terms of yaw rotation/heading, the DP system
mpc int controller has a large control input, al-
most 1e5 kNm, (see subplot row 2, column 1 in
Figure 6) and TV, (see row 4, column 3 in Table
2). This large control input compared to the other
methods probably explains the outperformance of
mpc int. These values may seem unrealistic in a
practical case. This large control input u3 may be
reduced by adjusting the corresponding weight in
the mpc int algorithm.

A. Nonlinear model

Balchen nonlinear (Balchen et al. (1980)) vessel m-file
implementation
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function f = balchen_vess(x,u,F_w,F_c)

m1 = 4 * 10^6;

m2 = 4 * 10^7;

m3 = 4.7 * 10^10;

d1 = 5*10^-5;

d2 = 21*10^-5;

d3 = 1.1*10^-10;

d4 = 201*10^-15;

f=zeros(6,1);

f(1) = x(4);

f(2) = x(5);

f(3) = x(6);

f(4) = - d1/m1*abs(x(4) - F_c(1))*(x(4) ...

- F_c(1)) + 1/m1*(F_w(1) + F_t(1));

f(5) = - d2/m2*abs(x(5) - F_c(2))*(x(5) ...

- F_c(2)) + 1/m2*(F_w(2) + F_t(2));

f(6) = - d3/m3*abs(x(6))*x(6)...

- d4/m3*abs(x(5) - F_c(2))*(x(5) - F_c(2))...

+ 1/m3*(F_w(3) + F_t(3) + F_c(3));

end
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Åström, K. and Hägglund, T. PID Controllers: The-
ory, Design, and Tuning. Instrument Society of
America, 1995.

Balchen, J. G., Jenssen, N. A., Mathisen, E., and
Slid, S. A Dynamic Positioning System Based on
Kalman Filtering and Optimal Control. Model-
ing, Identification and Control, 1980. 1(3):135–163.
doi:10.4173/mic.1980.3.1.

Dalen, C., Di Ruscio, D., and Nilsen, R. Model-
free optimal anti-slug control of a well-pipeline-
riser in the K-Spice/LedaFlow simulator. Model-
ing, Identification and Control, 2015. 36(3):179–188.
doi:10.4173/mic.2015.3.5.

Di Ruscio, D. Discrete LQ optimal control with integral
action: A simple controller on incremental form for
MIMO systems. Modeling, Identification and Con-
trol, 2012. 33(2):35–44. doi:10.4173/mic.2012.2.1.

Di Ruscio, D. Model Predictive Control with Inte-
gral Action: A simple MPC algorithm. Model-
ing, Identification and Control, 2013. 34(3):119–129.
doi:10.4173/mic.2013.3.2.

MATLAB. version 9.9.0.1718557 (R2020b). The
MathWorks Inc., Natick, Massachusetts, USA, 2020.
Control System Toolbox, Version 10.9. System Iden-
tification Toolbox, Version 9.13.

Morari, M., Garcia, C. E., and Prett, D. M.
Model predictive control: Theory and prac-
tice. IFAC Proceedings Volumes, 1988. 21(4):1–
12. doi:https://doi.org/10.1016/B978-0-08-035735-
5.50006-1. IFAC Workshop on Model Based Process
Control, Atlanta, GA, USA, 13-14 June.

Saelid, S., JENSSEN, N., and BALCHEN, J. Design
and analysis of a dynamic positioning system based
on kalman filtering and optimal control. Automatic
Control, IEEE Transactions on, 1983. 28:331 – 339.
doi:10.1109/TAC.1983.1103225.

Seborg, D., Edgar, T. F., and Mellichamp, D. A. Pro-
cess Dynamics and Ciontrol. John Wiley and Sons,
1989.

Skogestad, S. Simple analytic rules for model reduc-
tion and PID controller tuning. Journal of Process
Control, 2003. 13(4):291–309. doi:10.1016/S0959-
1524(02)00062-8.

Sørensen, A. J., Sagatun, S. I., and Fossen, T. I. Design
of a dynamic positioning system using model-based
control. Modeling, Identification and Control, 1996.
17(2):135–151. doi:10.4173/mic.1996.2.6.

117

http://dx.doi.org/10.4173/mic.1980.3.1
http://dx.doi.org/10.4173/mic.2015.3.5
http://dx.doi.org/10.4173/mic.2012.2.1
http://dx.doi.org/10.4173/mic.2013.3.2
http://dx.doi.org/https://doi.org/10.1016/B978-0-08-035735-5.50006-1
http://dx.doi.org/https://doi.org/10.1016/B978-0-08-035735-5.50006-1
http://dx.doi.org/10.1109/TAC.1983.1103225
http://dx.doi.org/10.1016/S0959-1524(02)00062-8
http://dx.doi.org/10.1016/S0959-1524(02)00062-8
http://dx.doi.org/10.4173/mic.1996.2.6
http://creativecommons.org/licenses/by/3.0

	Introduction
	Nonlinear Vessel Model
	Forces and Moments

	Optimal Control Methods
	System Definition

	Numerical Examples
	Concluding and Discussion Remarks
	Nonlinear model

