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Abstract

Microevolutionary system identification was introduced in Ergon (2022), with the specific purpose to show
that predictions of genetic adaptations to climate change require that environmental reference values are
properly defined. The theoretical development was then limited to single-input single-output (SISO)
systems, and the simulations used a toy example with spring temperature as input and mean breeding
date as output. Generations were assumed to be non-overlapping. Here, the theory is extended to cover
multiple-input multiple-output (MIMO) systems, while the simulation example uses two environmental
inputs (spring temperature and rainfall) and two adaptive phenotypic outputs (breeding date and breeding
habitat). These extended simulations reveal difficulties involved in predictions of genetic adaptations for
complex systems based on short data, where the reference environment values are not included.
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1 Introduction

Wild populations respond to changing environments by
means of phenotypic plasticity and microevolution (Er-
gon, 2019), and especially climate change responses
have been extensively studied. The aim is then to
disentangle phenotypic changes owing to genetically
based microevolution, caused by natural selection, and
changes due to individual phenotypic plasticity. Mi-
croevolution here refers to genetical changes that oc-
cur over time in a specific population under influence
of the environment. Such changes may be relatively
fast (in evolutionary terms), compared to the changes
caused by macroevolution, which also involves interac-
tion between several and often very different popula-
tions, possibly also the formation of new and distinct
species.

Relying on 11 review articles, including reviews of al-
together 66 field studies, Merilä and Hendry (2014) ar-
rived at the conclusion that evidence for genetic adap-

tation to climate change has been found in some sys-
tems, but that such evidence is relatively scarce. They
also concluded that more studies were needed, and that
these must employ better inferential methods.

Ergon (2022) focused on a problem that appears to
be overlooked in the field studies reviewed in Merilä
and Hendry (2014), and in the experimental quantita-
tive genetics community in general (Shaw and Etter-
son, 2012). It is obvious that for all evolutionary sys-
tems with interval-scaled environmental variables ut,
as for example temperature in �, a suitable zero-point
(reference environment) uref must be chosen, and this
should not be done arbitrarily. As discussed in Ergon
(2022), the proper zero-point is the environment where
the expected geometric mean fitness has a global maxi-
mum, and thus the environment the population is fully
adapted to. Fitness is here a measure of reproductive
success, for example the number of offspring.

Climate response studies are based on input-output
data that primarily are collected in field studies of wild
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populations of animals, plants and other organisms, for
example mating date as function of spring tempera-
ture. From an engineering control point of view, such
data quite naturally point towards use of system iden-
tification methods, and Ergon (2022) therefore intro-
duced microevolutionary system identification as a tool
in the field of experimental quantitative genetics.

As a theoretical study system, Ergon (2022) used the
intercept-slope individual reaction norm model (Fig.2,
Ergon, 2019; Fig.1, Ergon, 2022);

yi,t = ai,t + vi,t + (bi,t + ηi,t) (ut − uref) , (1)

where ut − uref and yi,t are the environmental cue and
the individual phenotypic value, respectively, as func-
tions of time t measured in generations. Here, ai,t and
bi,t are the additive genetic components of the inter-
cept and plasticity slope, respectively, while vi,t and ηi,t
are independent and identically distributed (iid) zero
mean normal non-additive effects. As done in Lande
(2009) and Ergon and Ergon (2017), we may consider
the individual reaction norm intercept ai,t + vi,t, and
the individual plasticity slope bi,t + ηi,t, as two quan-
titative traits in their own right. Microevolution thus
involves changes in the population mean trait values āt
and b̄t from generation to generation. The generations
are here assumed to be non-overlapping.

From Equation (1) follows the mean trait reaction
norm model ȳt = āt + b̄t (ut − uref), and from this
simple equation follows the basic questions discussed
in Ergon (2022). How can uref be estimated, and how
can the evolution of āt and b̄t be predicted, provided
that ut and yi,t are known? And how will the pre-
dictions be affected by errors in the estimated or as-
sumed value ûref? It turns out that in order to an-
swer these questions we also need information on in-
dividual fitness values Wi,t. The discussion in Ergon
(2022) was limited to single-input single-output (SISO)
systems, where parameter estimates, and mean trait
predictions were found by use of a prediction error
method (PEM) (Ljung, 2002). Here, the discussion
is extended to multiple-input multiple-output (MIMO)
systems, which further reveals the difficulties involved
in the disentanglement of plasticity and microevolu-
tionary effects on phenotypic change.

The intercept and plasticity slope traits in Equa-
tion (1) are characterized by the additive genetic co-
variance matrix

GGG = E

[[
ai,t − āt
bi,t − b̄t

] [
ai,t − āt bi,t − b̄t

]]
=

[
Gaa Gab
Gab Gbb

]
(2a)

and the phenotypic covariance matrix

PPP =

[
Gaa + E

[
v2
i,t

]
Gab

Gab Gbb + E
[
η2
i,t

]]
=

[
Gaa + σ2

v Gab
Gab Gbb + σ2

η

]
. (2b)

These matrices will in general be functions of time, but
for simplicity they are here assumed to be constant, as
is often done in theoretical work.

Figure 1: Block diagram of microevolutionary PEM for
SISO system, with dynamical tuning model
based on an intercept-slope reaction norm
model with mean traits āt and b̄t. Here,
ut and ȳt are the known environmental in-
put and the known mean phenotypic value
at time t, respectively. AAAt is the additive
genetic relationship matrix, which here is as-
sumed to be AAAt = III, while yyyt and wwwt are
vectors of individual phenotypic and relative
fitness values, respectively. The ĜGG and P̂PP ma-
trices include the system parameters, whilê̄ainit,

̂̄binit and ûref are the initial mean trait
values and the reference environment, respec-
tively. Assuming data over T generations,
all these model parameters are tuned un-

til
∑T
t=1 ε

2
t =

∑T
t=1

(
ȳt − ̂̄yt)2 is minimized,

with ȳt = ̂̄y1 = 0 and ̂̄a1 = −̂̄b1 (u1 − ûref).

In order to predict the evolution of āt and b̄t over
one or several generations, we must estimate the pa-
rameters in GGG and PPP . We must also find initial values
āinit and b̄init, and the environmental reference value
uref must be either estimated or assumed known. As
proposed in Ergon (2022) all of this can be achieved by
use of a prediction error method (PEM) as shown in
Figure 1. This is an output error model (Ljung, 2002),
where the output ̂̄yt from a tuning model is directly
compared with the true output ȳt. Figure 1 is general
in the sense that there may exist a relationship matrix
AAAt that is not a unity matrix, i.e., that there may be

92



Ergon, “Microevolutionary system identification and climate response predictions”

inbreeding in the population. However, Ergon (2022)
assumed the special case with AAAt = III, which means
that breeding is based on random mating in a large
population. This is assumed also here.

A main problem in the PEM in Figure 1 is to find
how the output ̂̄yt from the tuning model is determined

by the predicted mean traits ̂̄at and ̂̄bt. In Ergon (2022)
this theoretical problem was solved by use of a linear

transformation of the vector
[
ai,t bi,t

]T
onto the vec-

tor
[
ai,t bi,t yi,t

]T
. Here, this solution is extended

from the SISO case to cover also MIMO systems, with
obvious changes in the notation in Figure 1.

The main practical contribution in Ergon (2022) was
to point out the necessity of a properly chosen envi-
ronmental reference value, and to show that errors in
ûref lead to errors in predicted changes in āt and b̄t
over time. The background for the simulations was
the fact that the global mean temperature since 1970
has increased as a noisy ramp function with around
0.017 �/year, and that it up to 1970 was fairly con-
stant (NASA, 2019). The simulations therefore as-
sumed a population that was fully adapted to the tem-
perature before 1970, which was thus used as the tem-
perature reference, but they also assumed that input-
output data was available only for the last 30 years.

In Ergon (2022) the use of a reference environment
that was not within the range of input data used in
the SISO system identification algorithm did not create
a problem. However, the MIMO simulations in the
present article show that correct reference values ûuuref

outside the range of input data, may lead to severe
convergence problems in the PEM method according
to Figure 1. The only practical solution may thus be
to use the first values uuu1 in the multivariate input data
series (or values close to that), and thus accept that this
leads to prediction errors. There is however a certain
possibility for correction of these errors, provided that
the reference environment is approximately known.

2 Theory

2.1 Prediction equations

As shown in Ergon (2022), mean trait predictions based
on the reaction norm model (1) are found from

̂̄at+1 = ̂̄at +
(
Ĝaa + Ĝab (ut − ûref)

)
β̂y,t (3a)

and

̂̄bt+1 = ̂̄bt +
(
Ĝab + Ĝbb (ut − ûref)

)
β̂y,t (3b)

where β̂y,t is the estimated selection gradient (Lande,
2009),

β̂y,t =
1

W̄t

(
P̂aa + 2Ĝab (ut − uref) +

P̂bb (ut − ûref)
2
)−1

cov (Wi,t, yi,t) . (3c)

Note that these equations are valid only when the ge-
netic relationship matrix is a unity matrix (Ch. 26,
Lynch and Walsh, 1998).

For a MIMO system with two input signals and two
output signals, the individual reaction norm model (1)
is replaced by

y1,i,t = a1,i,t + v1,i,t + (b11,i,t + η11,i,t)u
′
1,t

+ (b12,i,t + η12,i,t)u
′
2,t (4a)

y2,i,t = a2,i,t + v2,i,t + (b21,i,t + η21,i,t)u
′
1,t

+ (b22,i,t + η22,i,t)u
′
2,t (4b)

where u′1,t = u1,t−u1,ref and u′2,t = u2,t−u2,ref . Here,
all traits may be correlated, such that for example

Ga1a2 = E [(a1,i,t − ā1,t) (a2,i,t − ā2,t)] | 6= 0.

More compact and general for r input signals and m
output signals we get

yyyi,t = aaai,t + vvvi,t+
uuu′
T
t 0

0 uuu′
T
t

· · · 0
· · · 0

...
...

0 · · ·

. . .
...

0 uuu′
T
t



bbb1,i,t + ηηη1,i,t

bbb2,i,t + ηηη2,i,t

...
bbbm,i,t + ηηηm,i,t

 , (5)

where yyyi,t, aaai,t and vvvi,t are m× 1 vectors, while
uuu′
T
t 0

0 uuu′
T
t

· · · 0
· · · 0

...
...

0 · · ·

. . .
...

0 uuu′
T
t

 = UUU ′
T
t

is an m× rm input signal matrix, and
bbb1,i,t + ηηη1,i,t

bbb2,i,t + ηηη2,i,t

...
bbbm,i,t + ηηηm,i,t


an rm× 1 vector. Here

uuu′
T
t =

[
u1,t − u1,ref · · · ur,t − ur,ref

]
,
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and

bbbj,i,t + ηηηj,i,t =
[
bj1,t + ηj1,t · · · bjr,t + ηjr,t

]T
.

The total covariance matrices for the system (5) are

GGG =

[
GGGaa GGGTab
GGGab GGGbb

]
,

and

PPP =

[
GGGaa +DDDv GGGTab

GGGab GGGbb +DDDη

]
,

whereGGGaa,GGGab andGGGbb arem×m, rm×m and rm×rm
matrices, respectively, while (in MATLAB notation)

DDDv = diag
([
σ2

1,v σ2
2,v · · · σ2

m,v

])
and

DDDη = diag
([
σ2

1,η σ2
2,η · · · σ2

rm,η

])
are m × m and rm × rm diagonal matrices with σ2

i,v

and σ2
i,η values along the main diagonal.

A comparison with Equations (3a,b) now leads to
the generalized prediction equations

̂̄aaat+1 = ̂̄aaat +
(
ĜGGaa + ĜGG

T

abÛUU
′
t

)
×

1

W̄
P̂PP
−1

yy,tcov (Wi,t, yyyi,t) , (6a)

and

̂̄bbbt+1 = ̂̄bbbt +
(
ĜGGab + ĜGGbbÛUU ′t

)
×

1

W̄
P̂PP
−1

yy,tcov (Wi,t, yyyi,t) , (6b)

where

P̂PP yy,t = ĜGGaa + D̂DDv + 2ĜGG
T

abÛUU
′
t + ÛUU ′

T

t

(
ĜGGbb + D̂DDη

)
ÛUU ′t.

Note that we here may set for example Ĝa1a1 to any
value, and estimate the rest of the parameters in rela-
tion to this value.

With given initial values, Equations (6a,b) give ̂̄aaat
and ̂̄bbbt, and thus

̂̄yyyt = ̂̄aaat + ÛUU ′
T

t
̂̄bbbt = ̂̄aaat +

(
UUUTt − ÛUU

T

ref

)̂̄bbbt. (7)

From the tuning model in Figure 1 we thus find pre-
dictions ̂̄yyyt based on ĜGGaa etc., and what remains is to
minimize a criterion function

V =

T∑
t=1

(
ȳyyt − ̂̄yyyt)T ΩΩΩ

(
ȳyyt − ̂̄yyyt) , (8)

where ΩΩΩ is a diagonal weighting function, possibly ΩΩΩ =
IIIm.

2.2 Prediction errors caused by errors in
uuuref

Prediction errors caused by errors in the assumed ref-
erence environment ûuuref can be found as for the SISO
case in Ergon (2022), only somewhat more compli-
cated. With a reference environment ûuuref instead of
uuuref , and thus an input signal matrix ÛUU ref instead of
UUU ref , predictions based on Equation (7) can be written
as

̂̄yyyt = ̂̄aaat − (ÛUUTref −UUU
T

ref

)̂̄bbbt +
(
UUUTt −UUUTref

)̂̄bbbt, (9)

where ̂̄aaat and ̂̄bbbt are found from Equations (6a,b), as-
suming initial values known.

For small parameter values in PPP bb, i.e., when PPP bb →
0 and GGGab → 0, it follows from Equation (4a) that ∆āaat

is independent of uuuref , and that ̂̄bbbt is constant. This
results in̂̄aaat+1 = ̂̄aaat + ĜGGaa

1

W̄

(
ĜGGaa + D̂DDv

)−1

cov (Wi,t, yyyi,t) ,

such that only ĜGGaa (except Ĝa1a1) and σ̂2
v must be

tuned in order to minimize
∑T
t=1

(
ȳt − ̂̄yt)2. In this

case an error in ûuuref has very little effect on the change
in ̂̄aaat per generation.

For larger values of PPP bb, the predicted changes per
generation, ̂̄aaat+1 − ̂̄aaat, will be affected by an error in
ûuuref , and with GGGab = 0 good predictions ̂̄yyyt ≈ ȳyyt for
t = 1 to T can then only be obtained by parameter
tuning such that(

UUUTt −UUUTref

)̂̄bbbt ≈ (UUUTt −UUUTref

)
b̄bbt

over all generations. That is possible because uuuref in
Equation (6b) appears in both ĜGGab + ĜGGbbÛUU t and P̂PP yy.
According to Equation (9) we then find

̂̄aaat ≈ āaat +
(
ÛUU
T

t −UUUTt
)̂̄bbbt,

which as shown in Section 3 may result in large errors in
predicted changes of āaat over time. This corresponds to
the result in the SISO case discussed in Ergon (2022),
except that we in the MIMO case cannot expect good
predictions of the elements in b̄bbt, but only of the prod-
uct UUUTt b̄bbt. Note that if uuuref is (approximately) known,
it is possible to find a corrected estimate

̂̄aaat,corr = ̂̄aaat − (ÛUUTref −UUU
T

ref

)̂̄bbbt.
3 Simulation results

3.1 Description of toy example

In the toy example in Ergon (2022), the environmental
input was a noisy positive trend in spring temperature,
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resulting in a noisy negative trend in mean breeding
(clutch-initiation) date for a certain bird species, ap-
proximately as in Fig. 2 in Bowers et al. (2016). The
individual phenotypic values were discrete, with days
as unit. The individual (mid-parent) fitness values
were integers from 0 to 10, with number of offspring as
unit. Generations were assumed to be non-overlapping,
and the population size was assumed to be constant.

Here, the example is extended to include a second
input variable with a constant mean value, and with
variations from year to year that are somewhat corre-
lated with the variations in spring temperature. This
input may for example be a measure of rainfall. The ex-
ample also includes a second adaptive phenotype, that
might be the breeding habitat, as discussed in Chalfoun
and Schmidt (2012). We thus have a MIMO system,
with two input signals and two output signals, as in
Equations (4a,b).

In the new simulations the two environmental ref-
erence values are assumed to be known from histori-
cal data, i.e., it is assumed that the population was
fully adapted to the stationary stochastic environment
before the onset of anthropogenic and global climate
change around 1970. The essential question is then
how well microevolutionary changes in mean intercepts
and plasticity slopes can be predicted by means of the
PEM method in Figure 1. Two cases will be tested,
one with long input-output data that includes the ref-
erence environments, and one with short data that do
not include the reference environments.

3.2 True model, fitness function, and
environmental input signals

Assume a true system with individual reaction norm
models according to Equations (4a,b), which by use of
the multivariate breeder’s equation (Lande, 1979) gives
the state-space model

ȳ1,t = ā1,t + b̄11,t (u1,t − u1,ref) +

b̄12,t (u2,t − u2,ref) (10a)

ȳ2,t = ā2,t + b̄21,t (u1,t − u1,ref) +

b̄22,t (u2,t − u2,ref) (10b)


ā1,t+1

ā2,t+1

b̄11,t+1

b̄12,t+1

b̄21,t+1

b̄22,t+1

 =


ā1,t

ā2,t

b̄11,t

b̄12,t

b̄21,t

b̄22,t

+

1

W̄t
GGGPPP−1


cov (Wi,t, a1,i,t + v1,i,t)
cov (Wi,t, a2,i,t + v2,i,t)

cov (Wi,t, b11,i,t + η11,i,t)
cov (Wi,t, b12,i,t + η12,i,t)
cov (Wi,t, b21,i,t + η21,i,t)
cov (Wi,t, b22,i,t + η22,i,t)

 . (10c)

Also assume the additive genetic and phenotypic co-
variance matrices

GGG =


0.2 0.1 0 0 0 0
0.1 0.2 0 0 0 0
0 0 0.05 0 0 0
0 0 0 0.05 0 0
0 0 0 0 0.05 0
0 0 0 0 0 0.05

 ,

and

PPP =


0.4 0.1 0 0 0 0
0.1 0.4 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.1

 .

The individual fitness function is assumed to be
rounded values of

Wi,t = 10 exp

(
(y1,i,t − θ1,t)

2
+ (y2,i,t − θ2,t)

2

−2ω2

)
(11)

where θ1,t and θ2,t are the phenotypic values that maxi-
mize fitness, while ω2 = 10. The discrete values of Wi,t

(number of offspring) are thus integers from 0 to 10.
As in Ergon (2022) we assume a stationary or slowly

varying mean value µU1,t of a stochastic environment
(spring temperature), with added iid zero mean nor-
mal random variations u1,n,t with variance σ2

U1,n
, i.e.,

u1,t = µU1,t + u1,n,t. Also assume a constant mean
value µU2,t of a second stochastic environment (rain-
fall), with added iid zero mean normal random vari-
ations u2,n,t with variance σ2

U2,n
, i.e., u2,t = µU2,t +

u2,n,t, and that u1,n,t and u2,n,t are correlated with
covariance σU1,nU2,n

. In a corresponding way assume
that θ1,t = µΘ1,t + θ1,n,t, where θ1n,t is iid zero mean
normal with variance σ2

Θ1,n
, and where u1,n,t and θ1,n,t

are correlated with covariance σΘ1,nU1,n , as described
in more detail in Ergon (2022). Further assume that
θ2,t = µΘ2,t+θ2,n,t, where θ2n,t is iid zero mean normal
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with variance σ2
Θ2,n

, and where u2,n,t and θ2,n,t are cor-
related with covariance σΘ2,nU2,n . Finally assume that
the population is fully adapted to a stationary stochas-
tic environment with µU1

= u1,ref = 10� (as in Fig. 1
in Ergon, 2022), µU2

= 2 (the zero-point for rainfall),
and µΘ1

= µΘ2
= 0. Data were generated for 60 gen-

erations, with typical input data as shown in Figure 2
(as mean values in breeding season).

3.3 Model choice

The choice of tuning model in Figure 1 can be guided
by how well the model output signals ŷyyt follows the true
outputs yyyt. For the true system in Equations (10a–c)
and (11), this is illustrated in Figure 3.

3.4 Parameter estimation and mean trait
prediction results

Parameter estimates were found by use of the MAT-
LAB function fmincon in the PEM method in Figure 1.
The criterion function (8) was

V = 0.5

x∑
t=1

(
ȳ1,t − ̂̄y1,t

)2
+ 0.5

x∑
t=1

(
ȳ2,t − ̂̄y2,t

)2
,

where x was either 60 (Case 1) or 30 (Case 2).
Given the model in Equations (10a–c) and (11),

there are in all 16 parameter values to be estimated
(while ̂̄a1,1 and ̂̄a2,1 follow from Equations (10a,b) witĥ̄y1 and ̂̄y2 set to zero). In the optimizations the initial

values of Ĝa2a2 , Ĝa1a2 , Ĝb1b1 , Ĝb1b2 , Ĝb2b1 , Ĝb2b2 , σ̂2
v1 ,

σ̂2
v2 , σ̂2

η11 , σ̂2
η12 , σ̂2

η21 , σ̂2
η22 , ̂̄b11, ̂̄b12, ̂̄b21 and ̂̄b22 were set

to zero. The true value Ĝa1a1 = 0.2 was used, such
that estimates of other GGG and PPP parameters are found
relative to that value.

Results with use of input-output data from t = 1 to
60 (x = 60) with population size N = 400 are given
in Table 1 (Case 1), but the table also includes re-
sults when only data from t = 31 to 60 (x = 30) were
used (Case 2). Note that Case 2 does not make use
of data from generations before the start of the ramp
functions, where the population is assumed to be fully
adapted to the environment. This is the most realistic
case, because field data rarely go as far back as before
1970. In both cases, the first available input values
were used as environmental reference values, i.e., ei-
ther û1,ref = u1,1 = 10 and û2,ref = u2,1 = 2 (Case
1), or û1,ref = u1,31 and û2,ref = u2,31 (Case 2). Re-
sults are presented as mean values and standard errors,
Mean ± SE, based on 100 repeated simulations with
different realizations of random inputs. Note that a
modified Case 2 with use of the true reference envi-
ronments û1,ref = 10 and û2,ref = 2 for almost every

Figure 2: Typical input signals for simulation example,
with three noisy ramp functions starting at
generation t = 10 (1970). Here, µU1,t is a
ramp function and µU2,t = 2 (dashed ma-
genta lines), while µΘ1,t = −2 (µU1,t − 10)
and µΘ2,t = − (µU1,t − 10) (dashed magenta
lines). Other numerical values are σ2

U1,n
=

0.5, σ2
Θ1,n

= 2 and σΘ1,nU1,n
= −0.25 (as in

Ergon, 2022), and σU1,nU2,n
= 0.25, σ2

U2,n
=

0.25, σ2
Θ2,n

= 0.25 and σΘ2,nU2,n = −0.25.

Figure 3: True outputs (solid lines) and outputs from
tuning model (dots), for two choices of tun-
ing model, and with use of input-output data
from the last 30 generations in Figure 2. The
responses in panels A and B are obtained
with the true reference environments u1,ref =
u1,1 = 10 and u2,ref = u2,1 = 2, which leads
to convergence problems. The responses in
panels C and D are obtained with assumed
reference environments u1,ref = u1,31 and
u2,ref = u2,31, which in most realizations
gives good convergence, but prediction errors
as discussed in Subsection 2.2. These errors
can to some degree be corrected if the true
values of u1,ref and u2,ref are known.
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Table 1: Parameter estimation results with true system responses generated by means of Equations (10a–c)
and (11). Results are for cases with population size N = 400 and perfect observations of y1,i,t, y2,i,t

and Wi,t, and they are based on 100 simulations with different realizations of all random input variables.

All parameter values except Ĝa1a1 = 0.2 were initially set to zero.
Case 1: x = 60, û1,ref = u1,ref = u1,1 = 10 and û2,ref = u2,ref = u2,1 = 2.
Case 2: x = 30, û1,ref = u1,31 and û2,ref = u2,31.
In Case 2, 14% of the simulations were discarded because the final value of the criterion function
was V > 0.025, which approximately is the limit where it is possible to detect poor convergence by
inspection of plots as in Figure 3.

Parameter
etc.

True
value

Results
Case 1

Results
Case 2

Ĝa2a2 0.2 0.2024± 0.0297 0.1954± 0.1328

Ĝa1a2 0,1 0.0997± 0.0034 0.0758± 0.0219

Ĝb1b1 0.05 0.0500± 0.0023 0.0779± 0.0464

Ĝb1b2 0.05 0.0494± 0.0108 0.0158± 0.0317

Ĝb2b1 0.05 0.0502± 0.0123 0.0624± 0.0595

Ĝb2b2 0.05 0.0496± 0.0170 0.0413± 0.0527

σ̂2
v1 0,2 0.2008± 0.0081 0.1752± 0.0549
σ̂2
v2 0,2 0.2045± 0.0509 0.1654± 0.1754

σ̂2
η11 0.05 0.0500± 0.0036 0.0819± 0.0536
σ̂2
η12 0.05 0.0504± 0.0261 0.0459± 0.0596
σ̂2
η21 0.05 0.0492± 0.0169 0.0689± 0.0629
σ̂2
η22 0.05 0.0646± 0.0527 0.0536± 0.0671̂̄b11 - −0.5004± 0.0034 −0.5897± 0.0589̂̄b12 - 0.0004± 0.0037 0.0035± 0.0342̂̄b21 - −0.4996± 0.0029 −0.5247± 0.0154̂̄b22 - −0.0003± 0.0031 −0.0210± 0.0147

realization result in convergence problems (Figure 3,
panels A and B).

Table 2 shows the relative errors in total change of
mean trait predictions over x generations, computed as

∆error
x ât% = 100

(
∆xât −∆xat

)
/∆xat

etc., where ∆xât = â60 − â61−x and ∆xat = a60 −
a61−x. Here, x is either 60 (Case 1) or 30 (Case 2).
As discussed in Subsection 2.2, Table 2 also includes
results for corrected estimates

ât,corr = ât −
(
Û
T

ref −U
T

ref

)
b̂t

under the assumption that u1,ref = 10 and u2,ref = 2
are known. Also here, the results are presented as mean
values and standard errors, Mean± SE, based on the
same repeated simulations as used for Table 1.

As shown in Table 1, use of input-output data from
t = 1 to t = 60 (Case 1) gives fairly good parameter
estimates. The mean trait prediction results in Case

1 are correspondingly good, except for b̂12,t and b̂22,t

Table 2: Mean trait prediction results with true system
responses corresponding to Table 1.

Total relative error
Results
Case 1

Results
Case 2

∆error
x â1,t% 0± 1 34± 22

∆error
x â1,t,corr% 0± 1 5± 12

∆error
x â2,t% 0± 1 12± 9

∆error
x,corrâ2,t,corr% 0± 1 5± 8

∆error
x b̂11,t% 0± 1 −10± 16

∆error
x b̂12,t% −9± 229 −7± 768

∆error
x b̂21,t% 0± 7 −27± 33

∆error
x b̂22,t% −2± 26 305± 249
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(Table 2). It is apparently difficult to separate the
effects of the two environmental inputs, but a reduced
model with Ĝb1b2 = Ĝb2b2 = 0 gave no improvement in
other prediction results.

Use of short input-output data from t = 31 to t = 60
(x = 30), and errors in û1,ref and û2,ref (Case 2), gives

systematic errors in ∆error
x â1,t% and ∆error

x â2,t%, as
discussed in Subsection 2.2. As shown in Table 2, these
errors may be reduced by use of corrections as also dis-
cussed in Subsection 2.2, and the corrected results are

clearly improved. There are large errors in ∆error
x b̂12,t%

and ∆error
x b̂22,t% , but also here a reduced model with

Ĝb1b2 = Ĝb2b2 = 0 gave no improvement in other pre-
diction results.

Figure 4 shows typical plots of predicted mean val-
ues, as compared to true mean values for Case 1 in
Table 1, i.e., with use of long data.

Figure 4: Typical responses for Case 1 in Table 1.
True y1,t and y2,t values are shown by solid

blue lines, while predictions ŷ1,t and ŷ2,t are
shown by blue dots. True mean trait re-
sponses are shown by green lines, while pre-
dictions are shown by magenta dots.

Figure 5 shows typical plots of predicted mean values
(although especially the plots in Panel C varies a lot
from realization to realization), as compared to true
mean values for Case 2 in Table 1.

4 Discussion and conclusions

The microevolutionary system identification method
introduced in Ergon (2022) is here generalized from
SISO to MIMO systems. The prediction error method
(PEM) in Figure 1 (with obvious notational changes
for MIMO systems) is tested by simulations of a toy

Figure 5: Typical responses for Case 2 in Table 1, al-
though especially the plots in Panel C varies
a lot from realization to realization. True y1,t

and y2,t values are shown by solid blue lines,

while final predictions ŷ1,t and ŷ2,t are shown
by blue dots. True mean trait responses are
shown by green lines, while predictions are
shown by magenta dots. Corrected predic-
tions as discussed in Subsection 2.2 are shown
by black dashed lines.

system with two environmental input signals (temper-
ature and rainfall, Figure 2), and two adaptive phe-
notypic output signals (mean breeding date and mean
habitat choice). This system does not necessarily have
realistic structure and parameter values, but the sim-
ulations still show that PEM works well for a complex
system, provided that long input-output data that in-
cludes the environmental reference values are available
(Table 1, Case 1, and Figure 4). With short data that
do not include the reference values, however, severe
convergence problems are encountered, which is hardly
surprising with in all 16 parameter values to be esti-
mated (Figure 3). Such problems may be solved by
use of the first input values in the available time series
(or similar values) as reference values (Table 1, Case
2, and Figure 5, although also in this case 14% of the
realizations showed signs of poor convergence). This
leads to prediction errors, but these errors can to some
degree be corrected, provided that the true reference
values are approximately known (Table 2).

The difficulties encountered with parameter estima-
tion and mean trait predictions based on short data
must be expected also when other methods are used,
for example best linear unbiased predictions (BLUP)
combined with restricted maximum likelihood (REML)
estimation (Ch. 26 and 27, Lynch and Walsh, 1998;
Arnold et al., 2019). Note that PEM has a close kin-
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ship with maximum likelihood methods (Ljung, 2002).
A drawback with PEM as used in the simulations

is that it assumes that there is no inbreeding in the
population, i.e., that the relationship matrix is a unity
matrix. However, as shown in a manuscript under re-
view, it is possible to apply the PEM method also on
BLUP models, where the relationship matrix has non-
diagonal elements different from zero.

Another drawback with the theoretical treatment is
that it assumes non-overlapping generations. There
are, however, straightforward solutions for use of the
multivariate breeder’s equation in cases with overlap-
ping generations (Lande, 1979; Ch. 13, Walsh and
Lynch, 2018). Since the prediction Equations (6a,b)
are derived by use of the breeder’s equation (Ergon,
2022), it should therefore be straightforward to find
solutions for predictions with overlapping generations,
but the details remain to be worked out.
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