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Abstract

Oil well models are frequently used in the oil production process. Estimation of unknown parameters
of these models has long been a question of great interest in the oil industry field. Data collected from
an oil well system can be useful for identifying and characterizing the parameters in the corresponding
model. In this article, we present a solution to estimate the parameters and uncertainty of a gas lifting oil
well model by designing Bayesian inference and using the Metropolis-Hastings algorithm. To present and
evaluate the estimation, the performance of the chains and the distributions of the parameters were shown,
followed by posterior predictive distributions and sensitivity analysis. Compared with the conventional
maximum likelihood estimation methods that tried to identify one optimum value for each parameter,
more information of the parameters is obtained by using the proposed model. The insights gained from
this study can benefit the optimization and advanced control for the oil well operation.
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1 Introduction

Gas lifting is one of the dominant methods for oil ex-
traction, especially for light oil. A simplified diagram
for a gas lifting well is shown in Fig. 1. A subsur-
face reservoir is filled with hydrocarbons, and the well
into the reservoir helps extract hydrocarbons from the
reservoir. In a gas lifted process, a compressor injects
gas to a distribution manifold connecting to the outer
pipe of the tubing, or annulus. The gas from the an-
nulus passes to tubing, mixing with the oil and wa-
ter coming from the reservoir to produce a low-density
fluid that flows out of the well.

The pressure difference between the reservoir and
bottom hole is critical for oil production. The den-
sity reduction of the multi-phase fluid in the tubing

helps to increase the pressure difference. This is the
main reason that gas is injected through the tubing.
The injected gas also reduces the flow resistance Brown
(1977), which also benefits pushing the oil from the
reservoir towards the gathering manifold. The density
of the fluid in the tubing plays an important role in
the gas lifting model. After producing the fluid from
the well, it flows to the separator where the gas, oil and
water are separated. The final stage of the flow process
is recirculating the separated gas to the compressor for
the next production cycle.

Modelling is essential for describing the oil produc-
tion process and benefits the oil production operations.
With analysis of physical properties, mathematical rep-
resentation is developed as the model of the system.
An accurate model has a pivotal role in optimization

doi:10.4173/10.4173/mic.2022.2.1 c© 2022 Norwegian Society of Automatic Control

http://dx.doi.org/10.4173/10.4173/mic.2022.2.1


Modeling, Identification and Control

and advanced control, especially model-based control
strategies such as Model Predictive Control. Parame-
ter estimation has long been a question of great interest
in the modelling fields. Apart from parameters of mod-
els, initial states and inputs are also common targets to
be identified in the modelling step, which also demand
similar methods. Therefore, the meaning of parameter
estimation has been broadened to refer to evaluation
of unknown constants, which embodies a multitude of
inputs and initial states in systems. It is well estab-
lished in a variety of studies, that those parameters,
initial states and inputs are constants all the time or
in a certain period of time.

Statistical methods are commonly used for esti-
mating model parameters. Among these methods,
Bayesian estimation Lindley (1961); Jeffreys (1935) has
recently been applied to estimate parameters of models
in different engineering applications, such as internal
combustion engines Khaliullin et al. (2019), flow me-
ters Gyamfi et al. (2018), power grids Hu et al. (2021)
and so on. One of the main advantages of Bayesian
estimation is that it offers an explicit way to include
engineering knowledge of the parameters in the estima-
tion process, and provides effective ways of addressing
uncertainty. However, for complex models such like
many oil well models, Bayes estimation requires inten-
sive computations Cumming and Goldstein (2010).

Early research publications paid particular attention
to simplifying the original Bayes analysis to decrease
the computational cost. Bayes linear approach is one of
the methods, where the estimation (mean) and its be-
liefs (variance) are linearly updated using the outputs
from the simulator without producing the posterior dis-
tribution Craig et al. (1996). The update process is also
called linear fitting. The acceptance of outputs is vi-
tal for the estimation. However, the criteria of outputs
acceptance is difficult to design and requires empirical
knowledge.

Based on the previous work, Craig et al. improved
and identified a region of input values Craig et al.
(1997). This input collection provided adequate be-
lief and information of the uncertainty, compared with
the traditional maximum likelihood estimation method
which only tried to find one single value of an estima-
tion. Resulting from the limitation of computation de-
velopment, this method needs to compromise the time
of iterations. Joint prior was chosen and only prior
means, variances and covariances between all quanti-
ties of interest were used for beliefs update. Although
this method provides a solution to balance computa-
tional cost and benefit of accurate calculation, the de-
sign of joint prior and the selection of inputs are com-
plex. Lack of prior exploration also might lead to in-
sufficient input collection.

Another research study Busby et al. (2007) designed
emulators to evaluate the uncertainty of a reservoir.
Combining fractional factorial designs and sequential
designs, random processes with mean and variance of
posterior were used to describe emulators, so that the
number of simulations was required as small as possi-
ble. Numerical results from two-dimensional and high-
dimensional input were presented. Because of a small
number of simulations, this study might not be able to
explore the whole input region. The results might be
the local optimization, resulting from less exploration
and comparison.

Based on multiscale computer experiments, an oil
reservoir model evaluation was simplified using Bayes
linear uncertainty analysis Cumming and Goldstein
(2010). Similar to the Bayes linear approach, the prob-
ability in the conventional Bayes analysis is substituted
by expectation in the Bayes linear uncertainty analy-
sis. To begin the process, the evaluations of the coarse
simulator were performed on different wells. Once the
emulation of the coarse simulator is completed, coarse
and accurate emulators were combined to update the
prior. Meanwhile, the values of the best model input
were addressed by the history matching process. Fol-
lowing the history matching, the study reduced the set
of possible values of the model input and added time
points for forecasting. The final stage of approxima-
tion provided a means of applying Bayesian analysis to
a complex model, but it cannot identify and character-
ize accurate uncertainty for the individual parameter.

Nowadays the increase in computational speed and
the development of more efficient algorithms make
Bayesian technique accessible to solve large scale, com-
plex problems, but it is still not well known by many
engineers practitioners. There is a relatively small
number of publications applying Bayesian statistical
methods to the oil industry for improving the uncer-
tainty analysis of well systems. One study by Maraggi
et al. Maraggi et al. (2020) chose a Bayesian approach
to estimate two parameters of tight oil reservoirs,
which was simplified as a single dimensionless equa-
tion. Following an adaptative Markov Chain Monte
Carlo (MCMC) algorithm, posterior predictive checks
were adopted to examine the inferences. Uncertainty
of the estimated ultimate recovery was addressed in
the study. The convergence of the chains, acceptance
ratio, posterior distributions, correlation between pos-
terior parameters, the reliability plot and posterior pre-
dictive checks were presented to evaluate the approach.

Another recent study Costa et al. (2021) applied a
similar method to an electric submersible pump sys-
tem. With the inputs as prior, Bayesian inference and
the MCMC methods were adopted for parameter es-
timation. After estimating five parameters, validation
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and cross-validation were deployed using two sets of
data to examine the model. Dynamic and steady-state
uncertainty of the model were obtained by probability
density function using uncertainty assessment JCGM
(2008). Autocorrelation was used to evaluate the sam-
ples and sensitivity analysis was employed for captur-
ing the region of convergence of the likelihood function.
It would be better if the work provided the plots of mul-
tiple chains to proof the reliable parameter estimation.

Parameters in the real-life system are in certain
ranges Narasimhan and Jordache (1999). Classic meth-
ods such as maximum likelihood and least squares, aim
to find the best or ”optimal” estimation of the parame-
ters that describe the data, but they are difficult for as-
sessing and quantifying the parameter uncertainty. An
approximating distribution of parameters might bene-
fit us with more insight into a system, such as quantifi-
cation of the uncertainty of the estimated parameters.

In this work, we estimated the parameters of a gas
lifting oil well dynamic model, considering that the
main source of errors is Gaussian white noise on the
measurements. The process noise is not included in
this work. The purpose of this study is to obtain in-
formation from a first-principle model and data to pro-
vide estimated parameters and the related uncertainty.
Bayes’ Rule Lambert (2018) was used for inference and
MCMC Kruschke (2014) was employed to approximate
the posterior parameter distributions. The work can
be the foundation of the case where oil fields contain
multiple wells and it provides an important solution
to advance the understanding of the uncertainty in a
complex system.

The paper has been organised in the following way.
The first section gives a brief overview of the recent
history of Bayesian parameter estimation, especially
its application in the oil industry. It will then go on
to present more details of the gas lifting oil well model
which is used in this work. The third section is con-
cerned with the methodology adopted for this study.
Section four briefly explain the process of the experi-
ments. The remaining part of the paper analyses the
results of the experiments and discuss the possible rea-
sons for the issues in the experiments and the limita-
tions of the current study.

2 Gas Lifting Oil Well Model

The gas lifting oil well model used in this work is based
on a previous work Sharma et al. (2011). Including
more details of an oil well model and states variation
helps describe the dynamics of the gas lifting oil well.
However, unnecessary details increase computational
costs. Here we set out to improve the model consider-
ing the trade-off between simplicity and accuracy. Our

experiments focus on the short-term dynamics of a gas
lifting oil well. We assume the reservoir pressure and
compressibility factor are constant in our model, own-
ing to the small variation in the data range and sim-
plicity of the model, . Compared with gravity, the
influence of friction is small, so we ignore the pressure
drop due to friction in this model. Some states are
calculated and some of them are measured.
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Figure 1: The components of a gas lifting oil well: the
red arrows show the gas flow and black ar-
rows present the liquid phase flow, which can
contain oil and water. The mass and flow
rate are depicted beside the corresponding
components where these states occur in the
gas lifted oil well.

A schematic diagram of a gas lifting oil well is shown
in Fig. 1. In this process, valves are utilized to control
the flow rates. The gas lift choke valve is located be-
tween the gas distribution manifold and annulus is used
to control the amount of lift gas injected into the well.
The production choke valve, which can be used to con-
trol the production, is the only valve which multi-phase
fluid flows through and it connects gathering manifold
and tubing. In the injection point, a gas injection valve
is placed between the annulus and the tubing to con-
nect the two parts. Since the gas lifting oil well here
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is continuous in this study, the gas injection valve is
fully opened and the lift gas is continuously injected
from the annulus into the tubing. At the downstream
of the production choke valve, a multiphase flow me-
ter is installed to measure the flow rate of oil, gas and
water. After separating the components by the sepa-
rator, part of the gas is used as the lifting gas. Here
we focus on the mass balance of the oil well and the
gas distribution manifold.
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Compressor
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water

,
,

Figure 2: The flow chart of an oil field: the blue blocks
are the components of an oil well. The red
arrows show the gas flow and black arrows
present the liquid phase flows, which can con-
tain oil and water. The mass and flow rate
are depicted beside the corresponding com-
ponents where these states occur in the gas
lifted oil well.

As the preceding explanation, reduction of bottom
hole pressure due to gas injection typically increases
oil production rate because gas injection lightens the
fluid in tubing. However, injecting excessive gas in-
creases the bottom hole pressure, which leads to a de-
crease in the oil production rate. This happened be-
cause excessive gas injection rate results in slippage,
where the gas phase moves faster than the liquid, leav-
ing the liquid phase behind. In this case, less amount
of liquid will flow through the tubing. As the gas injec-
tion rate increases, the oil production rate rises to the
maximum and decrease afterward. Model-based con-
trol contributes to the optimization of gas injection rate
and then helps yield the maximum oil production rate
but the control algorithm relies on the accurate model
description. The first principle model is not enough to
precisely describe a gas lifting oil well system. Data
collected from the system is particularly useful in esti-
mating parameters in the model.

The input of the model is the valve opening of the
gas lift choke valve, u. The production choke valve
is assumed fully opened during the whole experiment.
As one of the parameters to be estimated, the water
cut, WC, is the volume of water produced compared
to the volume of total liquids produced from an oil

well. Other parameters in the model to be estimated
are gas to oil ratio, GOR, and the productivity index,

PI [kg/hrbar ]. GOR is the mass ratio of produced gas to
produced liquid (oil and water). PI is a mathematical
means of expressing the ability of a reservoir to de-
liver fluids to the wellbore. All these parameters are
dimensionless.

There are seven measurements: wga, wgp, wop, wwp,
Pwf , Pwh, Pa in this model, which are output 1 to 7.
Flow meters measure the flow rate of the gas in differ-
ent places, including wga and wgp. Also, the flow rate
of the liquid, including wop and wwp. Flow measure-
ments are impacted by bubbles and are not reliable as
the data such as temperature and pressure. Pressure
transmitters are used to measure the bottom hole pres-
sure or well flow pressure (Pwf ), in the tubing upstream
the production choke valve (Pwh), and in the annulus
downstream the lift gas choke valve (Pa). We assume
the pressure of the gas in the gas distribution pipeline
(Pc) is a constant of 200 [bar]. In the production pro-
cess, temperature sensors detect the temperature in the
gas distribution pipeline, the annulus and the tubing.
Because of the small difference between these temper-
atures, we assumed the temperature is constant every-
where and all these temperatures are assumed to be
equal to T [K]. The corresponding notation table is
shown in Appendix 1.

Considering the principle of the gas lifted oil well, its
model is designed based on the mass balance of three
states: the mass of gas in the annulus mga, in the tub-
ing above injection point mgt and the mass of liquid in
the tubing above injection mlt, which is mainly present
as Eq. (1):

ṁga = wga − wginj , (1)

ṁgt = wginj + wgr − wgp,
ṁlt = wlr − wlp.

, where wga is the flow rate of the gas through the gas
lift choke valve which is injected into the annulus. The
flow rates of the lift gas from the annulus and reser-
voir to the tubing are wginj and wgr respectively. The
flow rate of produced gas through the production choke
valve is presented as wgp. wlr and wlp are the liquid
phase flow from the reservoir into the well and through
the production choke valve, respectively. These flows
are marked in the corresponding position in the flow
chart Fig. 2. Auxiliary equations are shown in Ap-
pendix 2.

3 Methodology

Fig. 3 describes the process where parameters are esti-
mated using Bayes’ rule and MCMC algorithm. To be-
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gin this process, Bayesian inference needs to be carried
out as the first step. Once the proposed parameters
are generated according to the distribution of prior, the
posterior can be calculated based on the inference. Af-
ter comparing the current posterior with the previous
one, MCMC decides to accept or reject the parame-
ters. On the long run, the distribution of the accepted
samples converges to the true posterior distribution.
The final stage of the study is checking the posterior
predictive distribution to predict the real output.
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Figure 3: Outline of the estimation process: according
to Bayes’ rule, posterior is calculated using
the proposed parameters as prior, the output
of model and input. The blue box contains
the MCMC algorithm, which consists of two
steps: proposal and acceptance/rejections of
the samples from the parameter space.

3.1 Bayes’ Rule

In this gas lifting oil well model, there is one input and
seven measurements. Here are the notations that are
used in Bayes’ Rule.

θ: the model parameters, which is presented as a
1×3 array: [PI, GRO, WC].

ui: there are n inputs in the system. We used i to
count them. The input vector can be presented as a
1×n array.

ym(i,j): measurements of the outputs. In this sys-
tem, there are 7 outputs: wga, wgp, wop, wwp, Pwf ,
Pwh, Pa, which are denoted by j = 1, 2, 3...7. Each
of these outputs contains n samples. Therefore, the
measurements can be presented as a 7× n matrix.

ye(i,j): the estimated outputs, namely the outputs of
the model given the input and the parameters. Sim-
ilarly to the measured output, each estimated output
contains the number of n samples. The estimated out-
put is a 7× n matrix. The model that we used for the
estimation process does not contain noise.

3.1.1 Prior

The GOR and WC parameters represent ratios, so they
are between 0 and 1. The order of magnitude of the
parameter PI is also known. Therefore, the following
prior distributions for these parameters were chosen:

P (θ | ui, ye(i,j)) ={
B PI ∈ [104, 105], GRO ∈ [0, 1],WC ∈ [0, 1]

0 otherwise
(2)

3.1.2 Likelihood

We assume the measurement contains white noise
which is normally distributed with mean 0 and it can
be present as Eq. (3).

ym(i,j) = ye(i,j) + εi,j , (3)

εi,j ∼ N(0, σi,j),

ym(i,j) ∼ N(ye(i,j), σi,j).

The errors for each sample ym(i,−) are independent
and the standard variation of the errors for the samples
of a given output is considered to be the same, namely

σi,j = σj i = 1, 2, 3, ...n (4)

In the case where the standard deviation is known
(for example from the specifications of the sensors),
the likelihood is the product of the probability of the
samples of each output:

P (ym | θ, ui, ye) =

7∏
j=1

(
1

σj
√

2π
)nexp(−1

2

n∑
i=1

(
ym(i,j) − ye(i,j)

σj
)2) (5)

When the standard deviation σj is unknown, the
likelihood should be averaged over all possible values
of the model parameters. This process is known as
marginalization and the marginal likelihood is given
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by:

P (ym(i,j) | θ, ui, yej) =

∫
P (σj , ym(i,j) | θ, ui, yej) dσj

=

∫
P (ym(i,j) | σj , θ, ui, yej)P (σj | θ, ui, yej) dσj

=

∫
P (ym(i,j) | σj , yej(θ, ui))P (σj | yej(θ, uj)) dσj

(6)

The noise is not impacted by the model, so
P (σj | yej(θ, ui)) = P (σj) ∝ 1

σj
, where 1

σj
is the Jef-

freys prior for the standard deviation when σ > 0.

P (ym(i,j) | θ, ui, yej) =∫
N(ym(i,1) − yej(ui, θ), σj)P (σj) dσj (7)

, namely the likelihood for the j output is calculated
as:

P (ymj | θ, ui, yej) ∝∫
1

σj
exp(− 1

2σ2
j

n∑
i=1

(ym(i,1) − yej(ui, θ))2) dσj (8)

3.1.3 Posterior

According to the Bayes’ Rule, the posterior is calcu-
lated by prior and likelihood:

P (θ | ym, ui, ye) ∝ P (ym | θ, ui, ye) P (θ | ui, ye) (9)

The logarithms of likelihood is used here to avoid
underflow during the computation. It is difficult to
graph the likelihood because it is often a tiny number.
With the logarithms of likelihood, the large products
become sums and it is easier to plot.

When the standard deviation is known, the log of
the posterior is

lnP (ym | θ, ui, ye)

= n

7∑
j=1

ln(
1

σj
√

2π
)−1

2

7∑
j=1

n∑
i=1

(
ym(i,j) − ye(i,j)(ui, θ)

σj
)2

(10)

In terms of the cases where the standard deviation
is unknown, since the likelihood and prior are followed
to Gaussian distribution and uniform distribution indi-
vidually, the posterior is obeyed to student-t distribu-
tion Sivia and Skilling (2006). Considering the various
inputs and multiply outputs, the distribution of the
posterior is

P (θ | ym, ui, ye) ∝
7∏
j=1

n∏
i=1

(1 + (
ym(i,j) − yej(u, θ)

Sj
)2)−

n
2 (11)

, where Sj is the standard deviation of correspond-
ing measured output. With the measurement during
steady state, the standard deviation can be calculated
as Eq.(12).

S2
j =

1

n

n∑
i=1

(ym(i,j) − ym(i,j))
2 (12)

The log of posterior can be calculated as:

lnP (θ | ym, ui, ye) ∝

−
7∑
j=1

(
n

2

n∑
i=1

ln (1 + (
ym(i,j) − yej(u, θ))

Sj
)2) (13)

3.2 Markov Chain Monte Carlo

The distribution of the posterior provides vital infor-
mation for helping tackle the optimal parameters. In
this study, the posterior is a three-dimensional space
which is related to the joint distribution of combina-
tions of PI, GRO, WC. Considering the complexity of
the posterior, the distribution can not be adequately
represented by a simple distribution, such as Binomial
Distribution, Normal distribution, Cauchy distribution
and so on.

Algorithm 1: MetropolisHastings algo-
rithm

Initialisation of θ0; Ni; q
Calculate
lnP (ytm|θt, ui, yej) = lnP (y0|θ0, ui, yej)

for iteration = 1,2,...,Ni do
Generate samples
θ∗n ∼ Beta(q ∗ θ̃tn, q ∗ (1− θ̃tn));

finn Generate a random constant
a ∼ U(0, 1);

Calculate lnP (y∗m|θ∗n, ui, yej);
if ln a <

ln
P (y∗m|θ

∗
n,ui,yej)

P (ytm|θtn,ui,yej)
+
∑3
j=1 ln

P (θtn,j |θ
∗
n,j)

P (θ∗n,j |θtn,j)

then
if θ∗n 6= 0 then

θtn = θ∗n;
end
update lnP (ytm|θtn, ui, yej);

end
Save θtn;

end

Random walk Metropolis-Hastings algorithm
Metropolis et al. (1953); Hastings (1970) is a well-
known MCMC method for indirect sampling from
a distribution. The MCMC algorithm used in this
work is shown in Algorithm 1. Considering the prior
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is in a certain range, the samples were randomly
drew from these ranges as initialization. During the
iteration, we utilized proposed beta distributions
to generate a sequence of random samples. Since
the three parameters are independent, three beta
distributions, Beta(q ∗ θ̃tn, q ∗ (1 − θ̃tn)), were used
and tuned individually. q is tuned to adjust the
distribution. The benefit of the modification is that
all samples satisfy the prior constraints by adjusting
from the beta distribution range θ̃tn ∈ [0, 1] to prior
θtn range. Compared with normal distribution and
gamma distribution, beta distribution generates more
workable samples.

During random walk, Beta distribution is adopted
here as the proposal distribution, which is recentered at
θt−1n during each step. Some of the Beta distributions
used here are skew. The mean value and the mode of
the Beta distribution do not coincide. Therefore, the
random walk does not satisfy the symmetry require-
ment. Owning to the asymmetry of the proposal dis-

tribution, the correction term
∑3
j=1 ln

P (θtn,j |θ
∗
n,j)

P (θ∗n,j |θtn,j)
was

needed to add Holder et al. (2005).

In the algorithm, the criteria of accepting the pro-
posed parameter is that the posterior of the pro-
posed parameter is larger than the posterior of the
previous parameter. To avoid being stuck in a lo-
cal optimum, we drew a random number between
0 and 1 and compared with the division between
previous posterior and the current posterior. In
the case where the standard deviation is known,
the calculation can be simplified. Only the part:∑7
j=1

∑n
i=1(

ym(i,j)−ye(i,j)(ui,θ)

σj
)2 is used for the condi-

tion, as the constant part n
∑7
j=1 ln( 1

σj

√
2π

) are can-

celed out after using quotient of natural logarithm.

After the number of Ni iterations, we get a list of
accepted samples which form a chain. We can check
how the chain explore the parameter space by plotting
these samples. The distribution of these samples can
be used to approximate the distribution of the marginal
posterior distribution of the parameters.

3.3 Posterior Predictive Distribution

Once the parameter estimation is completed, we can
use the oil well model with the estimated parameters
to estimate other outputs of the system. After running
the MCMC algorithm, we get a group of samples from
the accept list, which approximately shows the distri-
bution of parameters θ ∼ P (θ | ym, ye, ui). Following
cut out of the burn-in period of the chain, outputs of
the model yp with estimated parameters and inputs are
simulated, namely we get P (yp | θ, ui, ye, ym). Though
the iterations of the MCMC algorithm are limited, the

distribution of these outputs in each sampling time can
generally present where the output locates. Then we
can calculate the posterior predictive distribution as:

P (yp | ui, ye, ym) =

∫
P (yp, θ | ui, ye, ym) dθ

=

∫
P (yp | θ, ui, ye, ym)P (θ | ym, ye, ui) dθ

=

∫
P (yp | ye(θ, ui), ym)P (θ | ym, ui, ye) dθ (14)

We assumed the noise in the measurement follows
a normal distribution. Therefore, posterior predictive
distribution follows the student-t distribution with (n−
1) degree of freedom.

P (ypj | ui, ym(i,j)) ∝ (1 + (
ypj − yej(u, θ)

Sj
)2)−

n
2 (15)

By calculating a large number of ypj , we get the
posterior predictive distribution. The accuracy and
efficiency of the parameter estimation process can be
evaluated by comparing posterior predictive distribu-
tion and measurements.

4 Experiments

In this project, we used MATLAB as our experimental
platform. The work began by generating data from a
simulator with preset parameters, and then Gaussian
noise was added to the outputs. The preset parame-
ters are WC = 0.18, P I = 2.4×104, GOR = 0.15. The
preset parameters were only unveiled after the experi-
ments for evaluating the estimation. The information
of noise is not accessible during the experiments. It
will then go on to estimate the parameters and the
uncertainty of the model.

The first step in the MCMC algorithm was to gener-
ate samples. Here we use beta distribution to propose
samples from the parameter space, as shown in Section
3.2. The value of GOR and WC can be used for shape
parameters directly, since they are between 0 and 1.
PI is between 104 to 105, so PI needs to be transferred
to [0, 1] before being used as the shape parameter. To
find proper q in beta distribution. A series of exper-
iments were run with q = 1, 10, 100, 1000, 10000, 300
was selected after comparing the results, so that pro-
posed samples can reach relatively far area and can also
converge to an optimised value.

Because the proposed parameters are impacted by
current samples and the shape parameter in beta dis-
tribution should be positive, a zero value would lead
to a nonsense beta distribution in the next iteration.
Therefore a conditional statement is developed, which
helps keep the shape parameter as the current value.
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With proposed parameters and inputs, the estimated
outputs are simulated by the model. Then, the corre-
sponding posterior can be calculated. Once the calcu-
lation is completed, the MCMC algorithm moves to the
decision stage by comparing the posterior correspond-
ing to proposed parameters and current parameters.

For each MCMC iteration, differential equations in
the oil well model need to be solved. Therefore, it
takes a long time to run a couple of chains with a
large number of iterations, for example, a chain with
1000 iterations for the outputs which contain 3600 sam-
ples takes more than 20 minutes with the processor
Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz 2.59
GHz. To increase the computation efficiency, the num-
ber of measurement data and iterations of the chains
need to be chosen exquisitely.

To balance the quality and quantity of the samples,
we choose more samples when the inputs change and
fewer samples during the steady-state to gain more
information from the data. In this work, we run 10
chains and each chain contains 2000 iterations to iden-
tify the parameters using data with 20 samples. The
number of data samples is not large and the produc-
tion of normal distribution and t-distribution is similar.
Therefore, the results for the case with known varia-
tion and unknown variation are approximately simi-
lar. The MCMC algorithm can estimate parameters in
both cases and chains converge at a similar speed. We
will present one of the results in the next section. All
codes and resources in this study have been uploaded
to Github1.

5 Result

In this section, we will present and analyse the results
of experiments in various ways. Reject rate and auto-
correlation offer an effective way of checking the effi-
ciency of the chains. To gain insights into every pa-
rameter in the estimation process, we drew figures of
individual parameter distribution and Markov Chains.
The interaction between every two parameters is shown
in scatter plots and contour plots. Posterior predictive
distribution plots provide the results of the accuracy
of the estimation. The impacts of parameters are com-
pared by sensitivity analysis.

5.1 Autocorrelation

Autocorrelation offers further in-depth information on
the efficiency of the chains, which benefits us to se-
lect the step length of MCMC. Furthermore, the esti-
mations of parameters are impacted by the correlation

1https://github.com/Zhe-Jessica/Parameter-estimation-
MCMC
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Figure 4: Autocorrelation of chains for three parame-
ters without burn-in period. This plot shows
the autocorrelation across a spectrum of can-
didate lags. The autocorrelation are plotted
as bars at every integer lag. The blue lines
show the upper and lower confidence bounds.

between the samples. We expect independent sampling
in our experiments or at least sampling with low au-
tocorrelation. However, according to the Metropolis-
Hastings algorithm, every proposed value is based on
the previous value. It is impossible to make every step
independent from others, while proper step length con-
tributes to an effective sample size.

The autocorrelation plot displays the dependence
structure of the chain. Fig. 4 illustrates the chain au-
tocorrelation after cutting off the first 1000 samples
where the chain has not converged. The correlogram
shows the correlations decreases as the lag increases.

5.2 Parameter Distribution and Chains

In order to test the influence of the random initial value
of the chain and check the explored range of the es-
timated parameter distribution, we present the plots
of the chains and the distribution for each parameter,
shown in Fig.5.

The first row provides information on the converging
speed of the chains. The burn-in period of these chains
is less than 1000 for both GOR and PI, while the chain
of WC took a longer time to converge to a certain
range. The end of the chains overlap each other and
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Figure 5: The first column of plots show trace plots
with various initial values. The vertical axis
is the parameter value, and the horizontal
axis is the step in the chain, namely the it-
erations. The second column in the figures
illustrate the distribution of each individual
parameter, using samples of all chains.

fairly smoothly meander around the optimal estimated
value.

The second column illustrates histograms of the pa-
rameter from the accepted lists of all chains. According
to these plots, all chains converge to around the preset
values after exploring the whole prior range. All the
chains for the same parameters converge to a similar
region and mix well, which indicates the convergence
is achieved.

5.3 Reject Rate

When running MCMC experiments, we recorded the
number of reject decisions during iterations. Following
divided by the number of iterations, the reject rate is
calculated. The reject rate shows how many proposed
samples were rejected when the chain moved. The re-
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Figure 6: Estimation of parameters with 2D plots in
scatter plots and contour plots. The con-
tour plots were drawn in the range with min-
imum and maximum values. The converge
parts were zoomed in to present the contour
clearly.

ject rate in our experiments is around 94.8%.

5.4 2D Parameters Distributions

Three scatter plots are shown in Fig.6 to present the
distribution of each two parameters. These plots con-
firm the conclusion in Fig.5. The contour plots in the
second column demonstrate more details in the con-
verging area.

5.5 Posterior Predictive Distributions

According to Section 3.2, we calculated yp. There are
1000 samples of yp for each sampling time. The quan-
tiles of these samples were chosen and presented with
the measurement and the output of the model with
preset parameters in Fig.7.

Most posterior predictive distributions are around
the real outputs, especially the first dynamic stage. For
output 1 and 7, the posterior predictive distributions
tackled the first dynamic change and parted from the
real output after the second input change. Compared
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Figure 7: Posterior predictive distribution: In each
plot, dash lines are quantiles of the poste-
rior predictive and the purple dash line is
the median. The solid orange lines are the
data that contains noise. To compare with
the real outputs, we also drew the outputs
of the system with preset parameters. The
real outputs do not contain noise, which are
presented as blue solid lines.

with other posterior predictive distributions, the one
for output 4 is wider and the measurement stays within
the quantile range. For output 3, the posterior predic-
tive distributions are slightly above the measurement.

5.6 Sensitivity Analysis

To identify the impact of each parameter on the
outputs, we increased and decreased the parameters
within ranges and checked the outputs. As shown in
Fig. 8, WC does not impact on output 1,2,5,6,7 a lot.
If PI changes tremendously, it will have an effect on all
outputs, apart from output 4 compared with two other

parameters. GOR also contributes to the changes of
outputs, especially output 2 and output 6, compared
with the other parameters.
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Figure 8: Sensitivity analysis of three parameters for
seven outputs using tornado diagram. The
baseline values are set with the preset values
in the above experiments.

6 Discussion

• Proper step length plays a vital role in the
Metropolis-Hastings algorithm Kruschke (2014).
We used beta distribution in MCMC to propose
new parameters. The parameters in beta distri-
bution impact the step length of MCMC. For ex-
ample, the first shape parameter in the beta dis-
tribution is related to the previous accept value.
However, the mode of the beta distribution is not
exactly the same as the first shape parameter.
When q is large, the shape of the beta distribution
is sharp and closer to the previous accept value.
However, the large shape parameter leads to small
walking steps, which causes a longer time for the
chain to explore a wide area. Therefore, tuning
the first shape parameter is a trade-off between
the relevance of the previous step and the walking
speed.
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• According to the result of autocorrelation, the ef-
fective sample size still can be improved by tun-
ing the step length of MCMC. Furthermore, the
model here is a gas lifting oil well model only with
boundaries of parameters. For a specific system,
the empirical engineering knowledge might make a
significant contribution to the prior, which further
benefit the efficiency of the chains.

7 Conclusion

This study set out to estimate three parameters and
their uncertainty of a gas lifting oil well model. With
Bayesian interference and Metropolis-Hastings algo-
rithm, the proposed solution was able to identify the
real values of the parameters and present their distribu-
tions. Based on the estimation, we demonstrated pos-
terior predictive distributions and sensitivity analysis,
which has gone some way towards enhancing our un-
derstanding of the true value of the outputs of the sys-
tem and the impact of the parameters. The model with
estimated parameters can benefit optimization and ad-
vanced control in oil production. The work here can
be considered as the first step of the improvement of
a real-life gas lifting oil well model. A further study
could apply this solution to an oil well system with
real data.
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Appendix 1

Name Notation Unit Classification
valve opening of the gas lift
choke valve

u - input

flow rate of oil production wop kg/hr output
gas flow rate into annulus wga kg/hr output
gas flow rate through the
production choke valve

wgp kg/hr output

water flow rate through pro-
duction choke valve

wwp kg/hr output

pressure of the gas in the
annulus downstream the lift
gas choke valve

Pa bar output

the bottom hole pressure or
well flow pressure

Pwf bar output

pressure in the tubing up-
stream the production choke
valve

Pwh bar output

pressure of gas in the
gas distribution pipeline
upstream the lift gas

Pc bar constant

temperature in the gas lift-
ing oil well system

T K constant

water cut WC - parameter
gas to oil ratio GOR - parameter

productivity index PI kg/hr
bar parameter
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Appendix 2 

Valve characteristic as a function of its opening 

for the lift gas choke valve is shown in Eq (1). 𝑢 

is the input of the model, the valve opening and 

𝐶𝑣 is the valve characteristic as a function of 

valve opening. Both notations are dimensionless. 

𝑢 ∈ [0, 100]. 0 and 100 are for entirely closed 

and opened respectively. 

𝐶𝑣(𝑢)

= {
0                                          𝑢 < 5
0.111𝑢 − 0.556    5 < 𝑢 < 50
0.5𝑢 − 20                        50 < 𝑢

 
(1) 

Density of gas in the gas distribution pipeline: 

𝜌𝑔𝑝 =
𝑚𝑔𝑑

𝐴𝑝𝐿𝑝,𝑡𝑙
 (2) 

Density of gas in the annulus: 

𝜌𝑔𝑎 =
𝑚𝑔𝑎

𝐴𝑎 𝐿𝑎,𝑡𝑙

 (3) 

We assume the mixture in the tubing is 

homogeneous, and the density is constant 

everywhere. 𝑚𝑔𝑡 and 𝑚𝑙𝑡  are the mass of gas and 

liquid respectively above the injection point. The 

density of the mixture of liquid and gas in the 

tubing above the injection point: 

𝜌𝑚 =
𝑚𝑔𝑡 + 𝑚𝑙𝑡

𝐴𝑡 𝐿𝑡.𝑡𝑙

 (4) 

Pressure of gas in the annulus downstream the lift 

gas choke valve is presented in Eq. (6), where 

𝑍𝑃𝑎
 is a compressibility factor. We regard 𝑍𝑃𝑎

 = 

0.6816 as a constant at 170 bar.  

𝑃𝑎 =
𝑍𝑃𝑎

𝑚𝑔𝑎𝑅𝑇

𝑀𝐴𝑎 𝐿𝑎.𝑡𝑙

 (5) 

Pressure of gas in the annulus upstream the gas 

injection valve: 

𝑃𝑎𝑖𝑛𝑗 = 𝑃𝑎 + 𝜌𝑔𝑎𝑔𝐿𝑎.𝑣𝑙 (6) 

Gas expansion factor in the gas lift choke valve: 

𝑌1 = 1 − 𝛼𝑌 (
𝑃𝑐 − 𝑃𝑎

max(𝑃𝑐 , 𝑃𝑐
𝑚𝑖𝑛)

) (7) 

Density of the liquid based on the water cut: 

𝜌𝑙 = 𝜌𝑤𝑊𝐶 + 𝜌𝑜 (1 − 𝑊𝐶) (8) 

The volume of gas present in the tubing above the 

gas injection point: 

𝑉𝐺 = 𝐴𝑡 𝐿𝑡.𝑡𝑙 −
𝑚𝑙𝑡

𝜌𝑙

 (9) 

Pressure in the tubing downstream the gas 

injection valve is depicted in Eq. (10), where 𝑍𝑃𝐺
 

is a compressibility factor. We regard 𝑍𝑃𝐺
= 

0.6741 as a constant at 150 bar. 

𝑃𝑡𝑖𝑛𝑗 =
𝑍

𝑃𝐺
𝑚𝑔𝑡𝑅𝑇

𝑀𝑉𝐺

+
1

2
𝜌𝑚 𝑔𝐿𝑡.𝑣𝑙 (10) 

Pressure in the tubing upstream the production 

choke valve: 

𝑃𝑤ℎ =
𝑍

𝑃𝐺
𝑚𝑔𝑡𝑅𝑇

𝑀𝑉𝐺

−
1

2
𝜌𝑚 𝑔𝐿𝑡.𝑣𝑙 (11) 

The bottom hole pressure or well flow pressure: 

𝑃𝑤𝑓 = 𝑃𝑡𝑖𝑛𝑗 + 𝜌𝑟 𝑔𝐿𝑟.𝑣𝑙 (12) 

Gas expansion factor in the gas injection valve: 

𝑌2 = 1 − 𝛼𝑌 (
𝑃𝑎𝑖𝑛𝑗 − 𝑃𝑡𝑖𝑛𝑗

max(𝑃𝑎𝑖𝑛𝑗 − 𝑃𝑎𝑖𝑛𝑗
𝑚𝑖𝑛)

) (13) 
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Gas expansion factor in the production choke 

valve: 

𝑌3 = 1 − 𝛼𝑌 (
𝑃𝑤ℎ − 𝑃𝑠

max(𝑃𝑤ℎ − 𝑃𝑤ℎ
𝑚𝑖𝑛)

) (14) 

The mass flow rate of the gas through the gas lift 

choke valve is shown in Eq. (15), where 𝑁6 is 

valve constant and used to calculate the flow 

through the valve based on the pressure gradient: 

𝑤𝑔𝑎

= 𝑁6𝐶𝑣1(𝑢1)𝑌1√𝜌𝑔𝑝max(𝑃𝑐 − 𝑃𝑎 , 0) 
(15) 

The mass flow rate of the gas injected into the 

tubing from the annulus: 

𝑤𝑔𝑖𝑛𝑗

= 𝑘𝑌2√𝜌𝑔𝑎max(𝑃𝑎𝑖𝑛𝑗 − 𝑃𝑡𝑖𝑛𝑗 , 0) 
(16) 

The mass flow rate of the liquid from the 

reservoir: 

𝑤𝑙𝑟 = 𝑃𝐼max(𝑃𝑟 − 𝑃𝑤𝑓 , 0) (17) 

The mass flow rate of gas from the reservoir: 

𝑤𝑔𝑟 = 𝐺𝑂𝑅 𝑤𝑙𝑟  (18) 

The mass flow rate of the mixture of gas and 

liquid from the production choke valve: 

𝑤𝑔𝑜𝑝

= �̅�6𝐶𝑣(𝑢2)𝑌3√𝜌𝑚max(𝑃𝑤ℎ − 𝑃𝑠, 0) 
(19) 

Mass flow rate of gas through the production 

choke valve: 

𝑤𝑔𝑝 =
𝑚𝑔𝑡

𝑚𝑔𝑡 + 𝑚𝑙𝑡

𝑤𝑔𝑜𝑝 (20) 

Mass flow rate of liquid through the production 

choke valve: 

𝑤𝑙𝑝 =
𝑚𝑙𝑡

𝑚𝑔𝑡 + 𝑚𝑙𝑡

𝑤𝑔𝑜𝑝 (21) 

Oil compartment mass flow rate from liquid 

product considering water cut: 

𝑤𝑜𝑝 =
𝜌𝑜

𝜌𝑙

(1 − 𝑊𝐶)𝑤𝑙𝑝 (22) 

Water compartment mass flow rate from liquid 

product considering water cut: 

𝑤𝑤𝑝 = 𝑤𝑙𝑝 − 𝑤𝑜𝑝 (23) 
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