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Abstract

This paper presents a machine learning approach for eliminating reflections in line laser scanning of
aluminium workpieces to be welded. The elimination of reflections is important to obtain accurate laser
scanning of workpiece geometry for highly reflective materials like aluminium. The proposed solution is
to use a convolutional neural network (CNN) which is trained to eliminate the reflections. The training
of the network is done by simulating the laser line of the scanner in ray-tracing software using aluminium
surfaces with appropriate reflection properties. This CNN then recovers the reflected laser line by removing
the reflections. The CNN is used with two different camera configurations. In the first configuration one
camera and one laser scanner are used. In the second configuration two cameras are used in a stereo
arrangement in combination with the line laser. In this case, the planar homography of the laser plane
is used to detect possible points on the laser line in a preprocessing step. The high performance of the
solution is demonstrated for simulated data.
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1 Introduction

In robotic welding it may be required to measure the
3D shape of the workpieces, which can be done with
laser line scanners. These 3D measurements can be
used to plan the weld path. This technique is challeng-
ing to use for robotic welding of aluminium, since alu-
minium parts that are prepared for welding are highly
reflective. Laser scanners will then give strong reflec-
tions of the laser line, and it is difficult to determine
the geometry of the workpieces.

Laser line scanners are commonly used in a struc-
tured light setup for robotic welding, where a line is
used as the projected pattern. A comprehensive re-
view is found in (Blais, 2004). A camera with a known
geometric relationship to the laser is used to triangu-
late the measurements of the projection of the line on
a two-dimensional cross-section. The scanner is swept
along the workpiece to get the full 3D point cloud of

the surface.

When the laser line is projected at reflective met-
als like aluminium, second-order reflections can cause
false measurements. These false measurements can be
densely clustered and deviate significantly from the
actual surface, and reconstruction to 3D can lead to
a false geometry which may cause obvious problems
when it comes to quality control, seam tracking, and
weld path planning (Köhler et al., 2012).

One solution for measuring reflective materials is to
apply removable powder to the workpiece before the
measurement (Frank Chen and Mumin, 2000), but this
approach slows measurement speed and may give re-
duced accuracy.

In (Trucco et al., 1994) a stationary laser line is pro-
jected at reflective objects moving on a conveyor belt,
with two cameras mounted at opposite sides of the con-
veyor belt. The false measurements caused by specu-
lar reflections are removed by a geometric constraint,
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where true measurements must be consistent for both
cameras. A solution with direct calibration and ad-
ditional consistency methods using two cameras was
proposed in (Trucco et al., 1998). A direct illumination
constraint ensures that a ray of light can not intersect a
surface twice. All ambiguous points are removed when
more than one point is observed under this constraint.
An observable surface constraint enforces that the sur-
face normals must face towards both of the cameras to
be observable. An unobscured-once-viewed constraint
states that if a valid point is only seen by one camera,
there must be a valid point seen by the other camera
that obscures the first point. These constraints were
used to filter spurious measurements, but also removed
some true points, which gave a ragged appearance of
the scan.

Clark et al. (1997) used polarization for disambigua-
tion of the true laser line from erroneous reflections.
The projected laser line is linearly polarized and the
polarization state of the observed reflections is used
to differentiate the true measurements from the false.
Their initial experiments showed great promise at re-
moving spurious reflections from an aluminium work-
piece.

Li et al. (2019) used a system with two cameras and
a line laser, and used a laser plane constraint. The
laser stripes were extracted from the images using a
structured-light stripes extraction algorithm before the
3D points were calculated with optical triangulation.
Erroneous points that did not satisfy the laser plane
constraint were removed, which reduced the percentage
of erroneous points from 12.61 to 3.05.

In this paper, we present a machine learning ap-
proach to the filtering of reflections in laser scanning
systems. A simulation pipeline for generating laser
scans with spurious reflections on reflective metal parts
is presented. A convolutional neural network (CNN) is
trained to remove false measurements caused by erro-
neous reflections. The simulation pipeline and appli-
cation of the CNN are used with two different camera
configurations. The first configuration uses one cam-
era and a line laser. The second configuration uses two
cameras in a stereo setup with a line laser. For the
stereo camera setup a preprocessing step is proposed,
to efficiently combine the views of each of the cam-
eras. The preprocessing step is inspired by the work
of Trucco et al. (1994) and Li et al. (2019), while the
constraint is learned by the CNN in 2D image space
rather than explicitly enforced in 3D coordinates.

The paper is organized as follows. Section 2 presents
scanner geometry, reflection models, and the U-net ar-
chitecture. Section 3 presents the method used for
dataset generation and simulation-based training. Sec-
tion 4 states how the experiments were conducted. Sec-

tion 5 presents the results of a simulation study for the
CNN system.

2 Preliminaries

2.1 Laser scanner geometry

A standard laser scanner consists of a camera and a
laser that has a fixed geometrical relationship as shown
in Figure 1. The laser projects a line that deforms in
the view of the camera as it hits an object. The de-
formed profile of the points allows a direct calculation
of the range, which can further be expressed as 3D
Cartesian coordinates (Blais, 2004).

Consider a laser scanner set-up with a camera and a
line laser. The camera frame is denoted by c and the
laser frame is denoted by s. The displacement from
the laser frame to the camera frame is given by the
rotation matrix (Lynch and Park, 2017)

Rcl = [r1, r2, r3] (1)

from c to l and the translation vector tcl from c to l in
the coordinates of frame c as shown in Figure 1. The
scanner projects a laser plane that coincides with the
yz plane of the laser frame s.

The geometry can be described in terms of Plücker
coordinates (Pottmann and Wallner, 2001). Con-
sider the Euclidean point x = [x1, x2, x3]T in the 3D
scene, where the coordinates are given in c, and let
x̃ = (x, 1) be the corresponding homogeneous rep-
resentation. Consider a plane with Plücker coordi-
nates ũ = (u, u4), where u is the unit normal vec-
tor of the plane. Then x̃ is on the plane ũ whenever
ũ · x̃ = u ·x+ u4 = 0, and it follows that u4 = −u ·x,
where x is an arbitrary point on the plane.

The unit normal vector to the laser plane is r1, and,
since tcs is a point on the laser plane, it follows that the
Plücker coordinates of the laser plane with reference to
frame c are given by

ũ = (r1,−tcs · r1) (2)

Consider a 3D point x in the laser plane ũ that is
imaged to the 2D point s in the normalized image plane
(Hartley and Zisserman, 2003). Then s = x/x3 and
u4 = −x · u, which gives

s · u =
x · u
x3

= −u4
x3

(3)

It follows that the 3D point can be calculated from

x = x3s = − u4
s · u

s =
tcs · r1
s · r1

s (4)
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Figure 1: Laser scanner geometry. The camera frame
is shown to the left and the laser frame to the
right. The normalized image plane is drawn
in front of the camera.

2.2 Laser scanner with two cameras

When a laser scanner is used with two cameras, then a
3D point on the laser plane will have to satisfy a planar
homography induced by the plane (Hartley and Zisser-
man, 2003), and this can be used in the preprocessing
of the images. In this section, this planar homogra-
phy is presented. Consider two cameras in a stereo
arrangement in combination with a laser scanner. Let
the displacement from camera frame 2 to camera frame
1 be given by the rotation matrix R from camera frame
2 to camera frame 1, and the translation t from 2 to 1
in the coordinates of camera frame 2. Consider a point
in the scene which is on the laser plane. Let the point
have position x1 in camera frame 1, and, accordingly,
position

x2 = Rx1 + t (5)

in camera frame 2. The distance from the origin of
camera frame 1 to the laser plane (u, u4) is d = u ·x1,
where it is assumed that u points away from camera
frame 1. It follows that (u · x1)/d = 1, and insertion
in (5) gives the relation

x2 =

(
R +

1

d
tuT

)
x1 (6)

for points on the laser plane, where H = R + 1
dtu

T is
referred to as the planar homography induced by the
laser plane.

The pixel coordinates p1 and p2 of the point in the
scene are given by λ1p1 = K1x1 and λ2p2 = K2x2

where λ1 and λ2 are depth coordinates, and K1 and
K2 are the camera parameter matrices. The planar

homography in terms of the pixel coordinates is then

p2 = K2

(
R +

1

d
tuT

)
K−1

1 p1 (7)

2.3 Reflection models

When a laser scanner is used on reflective surfaces of
aluminium parts, there will be significant reflections.
This section presents a characterization of such reflec-
tions. The laser light will give diffuse, spread, and
specular reflections. Figure 2 shows how these reflec-
tions scatter in a 2D view, and how these reflections
will appear for a sphere (Pharr et al., 2016). A per-
fectly diffuse surface will scatter light equally in all di-
rections regardless of the incident direction of the light.
A spread surface reflects light in a set of reflected di-
rections, which results in the spread surface showing
blurry reflections of other objects. A specular surface
will reflect light in a single outgoing direction, which
makes the material appear like a mirror.

Most real surfaces exhibit reflection that is a mix-
ture of these types. Most objects we encounter daily
are close to diffuse, such as fabric, plastic, and wood.
Metals will primarily exhibit a reflection that is be-
tween spread and specular depending on the material
and roughness of the surface.

2.4 Simulation of reflections using virtual
scenes

A virtual scene can be generated with physics-based
rendering techniques (Pharr et al., 2016), where a sim-
ulated image is generated. This can be used to generate
simulated scenes for a laser scanner used on aluminium
parts, where the reflections of the laser line are in-
cluded. This will be used in this paper to train a CNN
to distinguish between the true laser line, called the
ground truth, and the reflected laser light. In physics-
based rendering, the intensity values of the pixels are
calculated by tracing the path of light, and by calcu-
lating how the light reflects from surfaces in the scene.
The most computationally efficient approach is to trace
the path of light backwards from the camera. This ap-
proach ensures that each path of light contributes to
calculating the pixel values of the final image. The
backward path tracing method encounters a problem
when there is strong indirect light, known as caustics
(Pharr et al., 2016). Caustics appear when the light
from a light source is reflected from a specular surface
and then by a diffuse surface before it arrives at the
camera. The reflection of the light from the specular
surface is referred to as an indirect light source. The
method of backward path tracking relies on knowing
the origin of the light sources in the scene. This will
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not work for caustics, since the origins of indirect light
sources are not known in advance before the rays have
been traced. A possible solution is to trace the path of
light from the light source through its reflections until
it eventually hits the camera. The forward path tracing
method is computationally expensive, since most light
rays do not hit the camera. Bidirectional path trac-
ing combines the advantage of both methods by trac-
ing paths both from the camera and the light sources,
which enables rendering scenes where caustic reflec-
tions are of importance.

Diffuse

Spread

Specular

Figure 2: Basic reflection models. Diffuse reflections
emit light equally in all directions, spread
reflections emit in a set of directions, while
specular reflections emit light in a single di-
rection.

2.5 U-Net

In (Ronneberger et al., 2015), a fully convolutional
neural network (CNN) for image segmentation is pre-
sented. U-Net was originally used for biomedical image
segmentation, and has received considerable attention
also for other use cases. The U-Net has a network ar-
chitecture with a contracting path to capture the con-
text of the input image, followed by an expanding path
with skip-connections to retain spatial information as
shown in Figure 3.

The contracting path follows a typical architecture
for CNNs, with a repeated pattern of two convolutions,
where each convolution is followed by a rectified linear
unit and a max pool operator for downsampling. After
each downsampling step, the number of feature chan-
nels is doubled. At the deepest layers of the U-Net

network, each spatial position will have a large recep-
tive field and many feature channels to process complex
patterns of the input image.

At each step of the expanding path, the feature maps
are upscaled and a convolution that halves the number
of feature channels is applied. The feature maps are
then concatenated with the feature maps with corre-
sponding number of feature maps in the contracting
path, which makes up the skip-connections in the net-
work. Two convolutions with rectified linear units are
then applied to the concatenated feature maps before
the process is repeated at the next step in the expand-
ing path. The skip connections in the expanding path
enable the network to maintain the finer-grained spa-
tial information as the feature maps are upscaled.

3 Method

The method proposed in this paper is to train a CNN
to eliminate reflections in laser scanning of aluminium
parts by training the CNN on simulated scenes. The
advantage of this approach is that a large number
of aluminium parts with different geometry and re-
flective properties can be generated in this simulated
setup, which gives extensive training data of the CNN.
Moreover, the projection of the true laser line on
the aluminium parts will be available as the ground
truth, which makes it possible to do supervised train-
ing (Goodfellow et al., 2016). The simulated training
data for the convolutional neural network was gener-
ated in the open-source 3D computer graphics software
Blender (Roosendaal, 2021).

3.1 Bidirectional path tracer

Simulating the laser produces strong indirect light,
which further produces reflections of the scanned part.
To get an accurate simulation where caustic reflections
are apparent, a bidirectional path tracer as discussed
in Section 2.4 was needed. The built-in path tracer
in Blender, Cycles, is purely a backward path tracer.
The LuxCore renderer was installed as a plug-in, which
supported bidirectional path tracing. This solution is
used in (Grans and Tingelstad, 2021) where a detailed
discussion is included. A comparison of the rendering
of the laser line with Cycles and Luxcore is shown in
Figure 4, which shows that caustics cause considerable
reflections.

3.2 Mesh generation

To automate the process of creating meshes, Cad-
Query (Urbaczyk et al., 2021) was used. CadQuery
is a python module for building parametric 3D CAD
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Figure 3: U-Net architecture (Ronneberger et al., 2015). The blue boxes show the feature maps with the number
of channels denoted on top. The width and height of the feature maps used in the original paper are
shown to the left of each blue box, however this depends on the input image size.
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LuxcoreCycles

Figure 4: Cycles and Luxcore comparison. The Lux-
core rendering is able to simulate more real-
istic reflections.

models. To generate semi-random parts with geometry
that resemble industrial parts such as aluminium ex-
trusions, a set of 2D modules were defined as shown in
Figure 5. Each module consists of random-length line
segments which make up a predefined shape. A cor-
ner mesh consisting of five randomly sampled vertical
modules, one corner module and five horizontal mod-
ules was generated to make up a 2D cross-section. The
2D cross-sections were then extruded at a fixed length
to make up a mesh.

Vertical modules

Horizontal modules

Corner modules

l

l

l

l

l1

2

3

5

4

Randomize module parametersRandom sampling
Assemble modules Extrude

Figure 5: Mesh generation pipeline. A set of predefined
modules are randomly sampled and the indi-
vidual line lengths of the modules are ran-
domized. One corner module, five vertical
and five horizontal modules are assembled
and extruded to a mesh.

3.3 Material generation

Two methods for assigning materials to the meshes
were used. The first method assigned materials with
physically based rendering (PBR) textures, which con-
sists of images defining color, roughness, normals, and
metalness as shown in Figure 6. The second method for
material generation mixed Luxcore materials to make
materials with different reflective properties. A com-
bination of the predefined metal material and matte
material were used with a mix factor m. The metal
material’s surface properties are defined by the rough-
ness in two perpendicular directions u and v.

Color Metalness Surface normals Roughness

PBR material

Figure 6: PBR materials require a set of images that
defines properties such as color, metalness,
surface normals, and microfacet roughness.

u-roughness
v-roughness

Metal material

Matte material

+

1-m

m

Mixed material

Figure 7: Mixed material generation. A Luxcore metal
material is defined by the roughness in the
perpendicular directions u and v. The metal
material is mixed with a matte material with
a mix factor m.

3.4 Laser scanner systems

A laser scanner system with one camera and a laser as
shown in Figure 8 was implemented in Blender with
the Luxcore plugin. The optical centers of the camera
and laser are positioned at a length b apart with an
angle θ towards each other.

A second laser scanner system with two cameras in a
stereo arrangement and a laser was implemented with
one camera on each side of the laser plane as shown
in9. The optical centers of the cameras were positioned
with a distance b from the laser, and angled towards
the laser at an angle θ.
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Figure 8: Standard laser scanner
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Figure 9: Stereo laser scanner

3.5 Planar homography preprocessing

Consider the stereo laser scanner described in Sec-
tion 3.4. To enable the U-Net model to process the
information from both views, the filtered laser scan im-
ages from each camera were combined using a planar
homography. The planar homography for pixel coordi-
nates, as given in (Hartley and Zisserman, 2003), from
the right to the left camera is

H = KL(R− tuT /d)K−1
R . (8)

where KL and KR are the camera matrices of the left
and right cameras respectively. R is the rotation ma-
trix and t is the translation vector, both from the left
to the right camera. u is the unit normal vector of the
laser plane given in the frame of the left camera and d is
the distance from the optical center of the left camera
to the closest point on the laser plane. Given that the
geometrical relationship between the cameras and laser
is fixed during the scanning, the planar homography is
fixed and can be computed prior to the scanning. The
preprocessing pipeline is shown in Figure 10 for the
scanning of a reflective part. The method requires a
way to filter the laser line from the background as the
initial step. The right view is projected with the pla-
nar homography as calculated in (8). The filtered left
view and projected view are combined to a single im-
age, by assigning the left view to the red channel and
the projected view to the green channel of an RGB im-
age, which makes yellow pixels where the two images
overlap.

The idea behind using two cameras and the given

pipeline is to use the constraint that the true points
must lie on the laser plane at any given time, similar
to the constraints used in (Trucco et al., 1994) and (Li
et al., 2019). The pixels that are not overlapping in the
final preprocessed image in Figure 10 are not consistent
with both views, because they do not correspond to
the same 3D points. The measurements which are not
overlapping are either occluded from one of the views
or are not located on the laser plane and are therefore
false measurements. Previous papers calculate the 3D
points of all measurements before erroneous points are
removed. The planar homography enables evaluating
the laser plain constraint, line intensity, and shape si-
multaneously from both views in 2D image space, for
example by a convolutional neural network, before they
are evaluated to be true or false measurements.

3.6 Evaluation metrics

Three metrics were selected to evaluate the ability of
U-Net to filter out the reflections and correctly predict
the true laser lines. The first metric was the Srensen-
Dice coefficient, which was used as a metric for se-
mantic image segmentation problems in (Zou et al.,
2004). The Srensen-Dice coefficient measures the sim-
ilarity between two sets and is given by

DSC =
2TP

FN + FP + 2TP
(9)

where TP is the number of true positives, FN is the
number of false negatives and FP is the number of
false positives. True positives are pixels where U-Net
correctly predicted the laser line, false positives are in-
correct positive pixel predictions and false negatives
are incorrect negative pixel predictions.

The second metric measures the ability of the gener-
ated output segmentation to find the subpixel center of
the line. To generate an estimate of the subpixel cen-
ter of the line, the center of gravity (CoG) algorithm
described in (Fisher and Naidu, 1996) was used. Only
measurements that were within a predefined threshold
pixels of the actual line were included in the calcula-
tion, so that very large outlier errors would not skew
the results. The CoG was calculated for each row where
the U-Net model had made a prediction in the output
segmentation of the laser line. The mean subpixel ac-
curacy was calculated by averaging the error for each
of the rows in each predicted segmentation image.

Finally, the third metric is referred to as the out-
lier fraction. Since large outliers were discarded in the
subpixel accuracy metric, this third metric is calcu-
lated from the number of outliers for the rows of each
segmentation. The same threshold of pixels was used
as in second metric. The metric is calculated as a frac-
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Figure 10: The planar homography preprocessing requires a filtered view of the laser from two cameras. One
of the filtered views is then projected using a planar homography, such that when the two views are
combined, the true laser line will overlap while many spurious reflections will not.

Specular Blurry PBR

Figure 11: Types of reflection in test sets. The three
test sets consist of sharp specular reflec-
tions, blurry reflections, and a variety of re-
flections produced by PBR materials.

tion, such that the number of outliers of all the rows is
divided by the total amount of rows.

4 Experiments

4.1 Dataset generation

Datasets were generated to train, validate and evalu-
ate the performance of the U-Net models. 4300 unique
corner meshes were generated according to the method
described in Section 3.2. The meshes were loaded
into Blender and assigned a material. The material
assigned was either a PBR texture picked randomly
among 40 metal textures downloaded from (Demes,
2021), or assigned based on the mixed material de-
scribed in Section 3.3. The training and validation set
used a mixture of all types of materials, while the test

sets were split into three based on the type of mate-
rial. The three test sets consisted of sharp specular re-
flections, blurry reflections and a variety of reflections
generated by PBR materials. An example from each of
the test sets is shown in Figure 11. Table 1 summarizes
the dataset lengths, and which types of material and
parameters were used to generate each dataset. The
range for mix factor m, u and v -roughness for the ma-
terial described in Figure 7 was randomized in log10.
The last column in the table states how many percent
of each dataset consisted of PBR materials, and how
much that was generated from mixed materials. Both
scanner configurations in Figure 8 and Figure 9, were
set up with baseline b = 0.2 m and θ = π/20. The
datasets were generated by rendering images with res-
olution 1024 by 1024 pixels with Luxcore renderer, for
the two laser scanner systems in Section 3.4. For each
scan, an associated ground truth scan was generated
by disabling reflections of second-order and higher.

4.2 U-Net model and training

The U-Net model was implemented in Pytorch with
architecture as shown in Figure 3. A modification
of the original implementation in (Ronneberger et al.,
2015) was that instead of the original valid convolu-
tions, padding was introduced to have same convo-
lutions, which ensured that the output segmentation
had the same resolution as the input image. A cross-
entropy loss function was used, and it was found that
weighting in the loss function was important for sta-
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Table 1: Dataset lengths, materials and parameters

Dataset Dataset length Mix factor m u,v -roughness % PBR materials

min. max. min. max.

Training set 3600 0.001 0.003 0.001 0.2 50%
Validation set 400 0.001 0.003 0.001 0.2 50%
Test specular 100 0.0015 0.002 0.001 0.008 0%
Test blurry 100 0.0015 0.002 0.05 0.2 0%
Test PBR 100 - - - - 100%

ble training of the model. This weighting was imple-
mented by weighting incorrect predictions of the laser
line nine times higher than incorrect predictions of the
background class in the loss function. The U-Net mod-
els were trained with a batch size of 2, and all the
batches of the training dataset were used in one epoch.
Training was run for 10 epochs on the training dataset.
The resulting computational time was approximately 8
hours with an RTX 3090 GPU.

4.3 Evalutation

The trained model was used to predict the true laser
line segmentation on each of the three test sets, where
each of the three test sets has different reflection prop-
erties as described in Section 4.1. For each of the test
sets, the evaluation metrics described in Section 3.6
were used. The threshold for the mean subpixel accu-
racy and outlier fraction was chosen to be 5 pixels.

5 Results and discussion

For the evaluation metrics presented in Section 3.6, the
numeric results for the single and stereo camera sys-
tems are shown in Table 2 for each of the test datasets.
Both methods resulted in a Srensen-Dice coefficient of
about 0.98 for the three test sets. The mean subpixel
error was also roughly the same at about 0.13 pixels er-
ror for the three test sets for both methods. The stereo
camera method performed better on the outlier frac-
tion with the specular test set, while the single camera
method performed better on the blurry test set. The
outlier fraction for the PBR test set was similar for
both methods.

Inspecting individual image predictions compared
with the ground truth revealed several sources of er-
ror. One type of error which was apparent in all the
segmentation predictions was imperfect edge detection
of the scan line as shown in Figure 13. All prediction
images had between 1-2 % error in the Srensen-Dice
coefficient, even if it was a seemingly perfect predic-
tion otherwise. Another source of error was incorrect

predictions of sharp specular reflections made by the
U-Net with the standard laser scanner. Sharp specu-
lar reflections may appear similar to the true scan line,
such that the U-Net model had trouble differentiating
between these. The stereo laser scanner was better at
differentiating sharp reflections since the preprocessed
image often showed that they did not overlap from both
views. A comparison of both scanners highlighting this
issue is shown in Figure 15. The third source of error
that appears in both systems, were strong blurry reflec-
tions that overlapped the true scan line. An example
is shown in Figure 14, where the true scan line is not
distinctly visible due to strong reflections.

6 Conclusion and future work

A machine learning approach has been presented for
filtering reflections in laser line scanning of aluminium
corner workpieces. A U-Net model was used to fil-
ter the spurious reflections, and to create a segmenta-
tion of the true line. A pipeline for simulating laser
scan measurements on reflective aluminium parts is
presented. Randomized corner meshes were generated,
given a metal material, and simulated with the laser
scanners in Blender. The simulated images were used
for training and testing the U-Net model. The CNN
was trained with two different camera configurations
for the scanner. The first configuration uses a single
camera, while the second uses two cameras in a stereo
configuration. A preprocessing method was proposed
for the stereo laser scanner. Both systems were com-
pared against 3 test sets with distinct types of reflec-
tions. Both methods achieved a Srensen-Dice coeffi-
cient of over 0.97 across all test sets. For future work,
the presented approach will be tested on experimental
setups. Using the trained network from simulated data,
transfer learning can be used to adapt the network to
real data. If a dice score of 0.97 can be achieved on
real data, it is deemed to be sufficient for being able to
weld aluminium workpieces.
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Table 2: Numeric results

Dataset Srensen-Dice coeff. Mean subpixel error Outlier fraction

Single
camera

Stereo
camera

Single
camera

Stereo
camera

Single
camera

Stereo
camera

Test specular 0.982 0.986 0.140 0.115 0.202% 0.026%
Test blurry 0.977 0.976 0.134 0.141 0.046% 0.331%
Test PBR 0.979 0.983 0.129 0.123 0.045% 0.038%
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(a) Single camera laser scanner results.
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(b) Stereo laser scanner results

Figure 12: U-Net segmentation inputs, predictions, and ground truth. Each of the methods shows three pairs of
input and predictions compared with ground truth. For each input-prediction pair, the input image
is shown to the left, while the prediction compared with the ground truth is shown to the right. For
the prediction-ground truth images, correct predictions are shown in yellow, while false positives are
shown in red and false negatives in green.
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Figure 13: Imperfect edge detection. The U-Net pre-
diction of the laser line is often incorrect at
the edges of the laser line.
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Figure 14: Strong blurry reflections may overlap the
true scan line, such that it is not visible
among the strong reflections.
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Figure 15: Specular reflection ambiguity. Sharp specu-
lar reflections may have a similar appear-
ance as the true laser line. In certain
cases, the single camera scanner incorrectly
chooses the false reflection, while the stereo
camera scanner chooses the true line since
they are overlapping from both cameras.
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