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Abstract

Partial observability is a problem in control design where the measured states are insufficient in describ-
ing the systems trajectory. Interesting real-world systems often exhibit nonlinear behavior and noisy,
continuous-valued states that are poorly described by first principles, and which are only partially observ-
able. If partial observability can be overcome, these conditions suggest the use of reinforcement learning
(RL). In this paper we tackle the problem of controlling highly nonlinear underactuated dynamical sys-
tems, without a model, and with insufficient observations to infer the systems internal states. We approach
the problem by creating a time-delay embedding from a subset of the observed state and apply RL on
this embedding rather than the original state manifold. We find that delay embeddings work well with
learning based methods, as such methods do not require a precise description of the systems state. Instead,
RL learns to map any observation to appropriate action (determined by a reward function), even if these
observations do not lie on the original geometric state manifold.

Keywords: Control, Delay embeddings, Reinforcement learning, Partial observability, Underactuated
systems

1 Introduction

In order to efficiently design feedback controllers for
dynamical systems, a key prerequisite is the ability to
measure or infer the systems internal state. When the
measurements are insufficient to describe such states,
we have what is known as a partially observable sys-
tem Åström (1965); Kaelbling et al. (1998). Such sys-
tems are problematic in terms of control design but
not uncommon. Any system with an insufficient num-
ber of sensors or inadequate sensor placements may

render partially observable. One means to control
such a system is by constructing a state estimator/ob-
server Åström (1965); Kaelbling et al. (1998); Khalil
(2002) that derives the hidden system states, if possi-
ble, as to acquire sufficient measurements for the design
of a controller. Two requirements must be fulfilled for
such an approach; (1) that the system is observable, i.e.
the measurements are sufficient to fully reconstruct the
system state and (2) that the system can be modelled
by first principles. If a system model however cannot
be developed, one must approach the problem differ-
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ently. Reinforcement learning (RL) is a great candidate
for this. By applying RL directly on the measurements
(or observations as they are commonly called in RL
literature), these algorithms learn to associate states
with value. Whether these states lie on the original
manifold or a one-to-one embedding need not matter.
Such an approach is not possible using traditional first-
principles control methods.

Even RL however, requires a sufficient observation
vector in order to learn a task. When dealing with
systems with unknown models, it is not trivial to
know how many sensors are required, nor where to
place them in order to provide enough coverage for
a learning-based agent to acquire a good control pol-
icy. The notion of insufficient observations may be as-
sociated with a partially observable Markov decision
process (POMDP), which in RL literature is often de-
scribed in the context of multi-agent games. In the
POMDP case we also do not have full state informa-
tion and apply probability of expectations to derive
our policy. On the other hand, the modeling of a de-
terministic dynamical system relies on the concept of
a phase space, the collection of possible system states.
The system state at time t consists of all information
needed to uniquely determine the future system states
for times ≥ t; e.g., in many cases, positions and veloci-
ties. For a system that can be modeled mathematically,
the phase space is known from the equations of mo-
tion. For experimentally observed dynamical systems,
the phase space and a mathematical description of the
system are often unknown. Whether one whishes to
apply first-principles based control or learning-based
control, observability generally is a requirement. An
example would be to observe the position of a cart but
not the velocity. Simply knowing the position does not
allow us to predict the next state and thereby learn a
control policy.

Connecting the dots between dynamical systems,
Takens Embedding Theorem (introduced in 1.1) and
RL, we were interested in seeing if time-delay embed-
dings (TDEs) could be used to learn control policies
for partially observable feedback (POF) systems. We
present here a method for overcoming partial observ-
ability in unknown systems using Takens Embedding
Theorem to reconstruct the systems manifold. We
experiment with learning on TDEs of nonlinear dy-
namical systems such as the underactuated classical
control problems Cartpole, DoublePendulum and Ac-
robot. The goal of this paper is to assess the appli-
cation of TDEs on POF systems rather than develop-
ing a new RL algorithm, therefor we perform our in-
vestigations using established well tested RL methods.
Through our investigations we find for what control
tasks delay embeddings are appropriate, and for which

they are less successful.

1.1 Delay embeddings

In the study of dynamical systems, a delay embedding
theorem gives the conditions under which a chaotic dy-
namical system can be reconstructed from a sequence
of observations of the systems states. Sauer (2006) I.e.
a delay embedding has the ability to reconstruct the
phase space using only a subspace of the actual sys-
tems states. The reconstruction preserves the proper-
ties of the dynamical system that do not change under
smooth coordinate changes, but does not preserve the
geometric shape of structures in phase space. The time
series of these observation subspaces are thereby used
to build a proxy of the full system manifold.

Takens Embedding Theorem is the 1981 delay em-
bedding theorem of Floris Takens Takens (1981). It
shows that a single time-delayed measured quantity
[y(t), y(t − τ), y(t − 2τ), ..., y(t − nτ)] is sufficient to
embed an n-dimensional manifold. The theorem par-
ticularly provides the conditions under which a smooth
attractor can be reconstructed from time-delay coordi-
nates. An example of such an embedding is shown in
Figure 1 as presented by Sugihara et al. Sugihara et al.
(2012). Here, the Lorenz attractor Lorenz (1976) is re-
constructed from time-delay embeddings of each of the
three system coordinates. Similar to the chaotic Lorenz
system, two of the systems we present in section 2.1.1
also display chaotic behavior when passive.

Figure 1: Reconstruction of 3D Lorenz attrac-
tor Lorenz (1976) as presented in Sugihara
et al. (2012). On top we see the original
manifold, while below we see time-delay
embedding for the x and y coordinates.
These delay embeddings are one-to-one with
the original manifold.
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1.2 A possible connection between
delay-embeddings and neural
recurrency

Partial observability is very normal in our complex and
dynamic world. Yet we, as biological agents, have a
great ability to forecast, manipulate and control such
dynamical systems all around us. Given the highly
recurrent nature of our brains wiring, we hypothesize
that part of the reasoning for this recurrency is to en-
able the ability to create delay-embeddings in which
we can learn on rather than having to rely on full state
feedback from all the systems we encounter. After all,
internal states are rarely observable to us, let alone
the full state. Take for example the systems presented
in this paper; their full state includes velocity states.
Velocity can only be inferred in the presence of time,
and the brain does not receive velocity values directly
when observing a system, only the systems geometric
coordinates. Although this is somewhat speculative,
positive findings in this area make way to support this
hypothesis.

2 Method

The overall setting here is that we are to train an arti-
ficial neural network (ANN) model (the agent) to solve
3 different tasks in 3 different environments. This is
to be accomplished with the agent only being given
POF from the environment. The agent constructs a
TDE using a built-in memory which it will try to learn
the task on rather than on the environments original
4-state manifold.

2.1 Environments and tasks

2.1.1 Environments

We have tested the performance of using a TDE on
3 systems: CartPole, DoublePendulum and Acrobot.
These pendulum systems were chosen due to their ex-
tensive history as benchmark problems in underactu-
ated control Tedrake (2020). While generally regarded
as solved using traditional first principles methods,
these problems are still very challenging for methods
that rely on learning. Particularly, when the task
comes down to stabilization such as in balancing an
upright pendulum.

The CartPole and Acrobot systems are implementa-
tions within the OpenAI Gym Brockman et al. (2016)
framework; a framework specifically tailored for RL
benchmarking. The DoublePendulum environment is a
custom OpenAI Gym compatible environment we have
created. Within these environments we have trained
the RL algorithm on both standard OpenAI Gym tasks

as well as our own custom tasks. The tasks are de-
scribed in section 2.1.2. The environments are de-
scribed here. The terms pole, pendulum and link are
used interchangeably:

The CartPole system (Figure 2), often referred to
as the cart-pendulum system, is comprised of a single
link mounted on a cart by a freely rotating joint. Only
the cart is actuated, thus the link angle can only be
manipulated by moving the cart left or right.

The DoublePendulum system (Figure 3) is com-
prised of two joints and two links, where the one joint
at the end is actuated while the middle joint is not.
The 2-link pendulum is an especially interesting sys-
tem in the context of Takens embedding theorem, as
the system without any actuation is known to behave
chaotically Shinbrot et al. (1992) like the Lorenz at-
tractor described earlier.

The Acrobot system (Figure 3) is very similar to
the DoublePendulum as it is also comprised of two links
and two joints. However, in this system, actuation is
now only applied to the center joint.

2.1.2 Tasks

We attempt to solve 3 different tasks in all three envi-
ronments: swing-up, balance and swing-up + balance.

Task 1: Swing-up: starting with the link(s) in a
hanging down state, we attempt to swing the link(s)
into the upright position. When there are two links,
the goal state is achieved when the total height of
the chained links is close to their maximum upright
height. The episode is terminated upon reaching the
goal height or if the episodes maximum length has been
reached.

Task 2: Balance: starting in a random almost fully
upright state, the goal is to maintain this upright po-
sition by balancing the link(s) for as long as possible.
The task is terminated when reaching a given maxi-
mum episode length or when the total height of the
link(s) falls below a given height close to maximum.

Task 3: Swing-up and balance: if the previous
two tasks are successful, we in this task attempt to
combine the two. Even if the preceding tasks were
successful, this is a significantly more challenging task
as the agent must now swing up the link(s) with just
the right momentum as to not overshoot when reaching
the top. The episode is terminated after a set episode
length.

The environment-task configurations such as the
reward functions and maximum episode lengths are
shown in Table 2.
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Figure 2: CartPole: A single link attached to an unac-
tuated rotary joint on a cart. The left figure
is a screenshot of the pendulum being bal-
anced, while the in the right the pendulum
is hanging downwards and being prepared to
be swung up.

Figure 3: DoublePendulum and Acrobot: 2 link under-
actuated pendulum systems fixed to a freely
rotating point at the end joint and actuated
at either the end joint or the middle joint.
The figure is a screenshot of the system in
its upright state.

2.2 Implementing a time-delay embedding

Each of the three environments we are studying have
four internal states as shown in Table 1. The obser-
vations given to the agent are however, not necessarily
these internal states. Table 1 further shows the obser-
vations given to the agent. Our goal is to solve the pre-
viously described environments-tasks using only POF,
which by itself is not sufficient feedback information
for the agent to solve the task. As such, the agent is
in a situation where it only has access to a subset of
the full original observation space. In order to create
the embedding we need N time-delayed coordinates,
where N is preferably equal to the number of dimen-
sions of the full state manifold. Determining the di-
mensionality of an unknown system can be a challenge
in identification and nonlinear dynamic analysis, and
is outside the scope of this paper. Section 2.3 in Bush
and Pineau (2009) discusses some approaches to this
problem. As we know the dimensionality of our en-
vironments a prioi, we construct a delay embedding
vector of the same dimension.

In the case of the CartPole, we observe only the cart
position and link angle, while in the DoublePendulum
and Acrobot systems, we only observe the angle of the
first link. We require two observations for the CartPole

system, as we found that the cart position cannot be
inferred by a delay embedded angle and vice-versa. For
the two latter systems, this however is possible for the
angles of the second link. There is no particular reason
that we have chosen the angle of the first link rather
than the second as our observation. According to Tak-
ens theorem, any of the time-delayed states should be
able to recreate a one-to-one embedding of the original
manifold. Takens (1981)

The TDE was implemented using an agent mem-
ory buffer. For each simulation step, we would push
the current observed state into the agents memory.
When it was time for the agent to receive the time-
delay embedded observation, we simply retrieved the
last 4-6 (depending on the environment) observations
and passed to the agent. The agent then learns on this
delay embedding rather than the original state man-
ifold. The implementation of the memory buffer in
Python is shown in Listing 1.

1 class Memory:

2 def __init__(self , stateSize , lag=1):

3 self.nstates = stateSize

4 self.size = stateSize*lag

5 self.lag = lag

6 self.memory = np.zeros(self.size)

7 self.out = np.zeros(stateSize)

8

9 def reset(self ,obs):

10 for i in range(self.size):

11 self.memory[i] = obs [2]

12

13 def push(self ,obs):

14 self.memory [1:] = self.memory [:-1]

15 self.memory [0] = obs

16

17 def get(self):

18 for i in range(0,len(self.out)):

19 self.out[i] = self.memory[self.lag*i]

20 return self.out

Listing 1: Python code for the agents memory buffer

2.3 RL algorithm: Stable-Baseline3 PPO

Stable Baselines3 (SB3) is a set of reliable implemen-
tations of reinforcement learning algorithms in Py-
Torch Raffin et al. (2019), created specifically to be
run in OpenAI Gym environments. These RL base-
lines have been externally tested and their performance
verified. SB3 provides several implementations of well
known RL algorithms such as A2C, DDPG, DQN,
HER, PPO, SAC and TD3. On their RL Algorithms
page Stable baselines3 (2017) one can find a compar-
ison of these algorithms for use with OpenAI Gym.
Among these algorithms, A2C, DQN and PPO are
compatible with our environments actions and obser-
vations space configurations (Box and Discrete respec-
tively). We tested the performance of these three meth-
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Environment Original Partial time-delayed
States

CartPole [x, ẋ, θ, θ̇] [xt, θt, θt+1, θt+2]

DoublePendulum [θ1, θ2, θ̇1, θ̇2] [θ1t , θ1t+1
, θ1t+2

, θ1t+3
]

Acrobot [θ1, θ2, θ̇1, θ̇2] [θ1t , θ1t+1
, θ1t+2

, θ1t+3
]

Observations

CartPole [x, ẋ, θ, θ̇] [xt, θt, θt+1, θt+2]

DoublePendulum [cos(θ1), sin(θ1), cos(θ2), sin(θ2), θ̇1, θ̇2] [cos(θ1t), sin(θ1t+1
), cos(θ1t+2

), sin(θ1t+3
), θ1t+4

, θ1t+5
]

Acrobot [cos(θ1), sin(θ1), cos(θ2), sin(θ2), θ̇1, θ̇2] [cos(θ1t), sin(θ1t+1
), cos(θ1t+2

), sin(θ1t+3
), θ1t+4

, θ1t+5
]

Table 1: Original states and observations are as defined in OpenAI Gym. cos(θ) and sin(θ) put bounds on the
state-space which is necessary for RL. The θ1 internal state is pushed to the embedding memory, and
we create an embedding of a similar form as the vector of the original observation.

ods using full observation feedback (FOF) and found
PPO to perform the best.

PPO, which stands for Proximal Policy Optimiza-
tion Schulman et al. (2017), combines ideas from Asyn-
chronous Actor Critic (A2C) Mnih et al. (2016) by
having multiple workers, and Trust Region Policy Op-
timization (TRPO) Schulman et al. (2015) which uses
a trust region to improve the actors network weights.
The main idea is that after an update, the new policy
should not be too far from the old policy Raffin et al.
(2019). PPO was developed by OpenAI and quickly
became their default RL algorithm in 2017 due to its
ease of use and good performance. As such, we were
confident that it would suffice to be used in our exper-
iments.

2.4 ANN model

As mentioned above, PPO borrows implementation
from A2C which is configured in an Actor-Critic setup
with separate action and value networks. The actor
maps observations to actions, while the critic evalu-
ates the value of the observation given the current pol-
icy. In our experiments, both the actor and the critic
have 2 hidden layers of [64,64] neurons as can be seen
in Figure 4. Larger network architectures were also
tested such as [64,128,64] and [64,128,64,32,16] with-
out any significant difference in performance. [64,64] is
the default architecture of SB3’s PPO implementation.
Similarly, tanh activation functions are also part of the
default configuration.

3 Results

Table 2 shows the setup of each experiment-task. The
3 columns to the left show the results of the training.
The Steps column is the number of training steps un-
til the task was solved. The columns FOF and POF
are the full observation feedback and partial observa-

Obs [6]

[64] Tanh Tanh[64] Action [3]

[64] Tanh Tanh[64] Value [1]

Actor

Critic

Figure 4: ANN graph of the Actor-Critic PPO net-
work. This specific example shows the net-
work for the DoublePendulum and Acrobot
environments, with 6 input observations, 3
discrete output actions and 1 value output.

tion feedback experiment results respectively. Green
indicates that the agent solved the task, yellow that
it got close to solve the task and red indicates that
the agent was unable to solve the task. Grey tasks
were not attempted as their simpler subtasks (balance
alone) were not successful by POF. In addition to these
configurations we also attempted training with differ-
ent interval time delays for the POF case. The solver
used is Runga-Kutta RK4 Dormand and Prince (1980).
Figure 3 shows the plots from the training progress of
each experiment-task. Blue lines are using FOF and
orange using POF. We used a delay of 1 simulation
time step for all experiment-tasks, as we found that
shorter delays resulted in better performance. Likely,
this was due to the controller being able to respond to
system changes faster. A simulation step corresponds
to 0.02s for CartPole and 0.2s for the DoublePendu-
lum and Acrobot environments. A description of each
graph is included in the figure. The graphs were plot-
ted using Tensorboard Abadi et al. (2015).

From the results we can see that the RL agent
quickly learns to solve tasks that involve movement
such as swing-up. Stabilizing/balancing the link(s)
upright is more challenging, however not impossible.
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Environment Task Reward per step Done condition Ep. len Steps FOF POF

CartPole swing-up

• beyond x threshold: -3000
• episode end: 0
• cos(θ) > 0.85: 2
• else: -1

• cos(θ) > 0.85
• beyond x threshold

1000 150000

CartPole balance • each step: 1
• θ < 0.21
• beyond x threshold

500 150000

CartPole swing-up balance • same as swing-up • beyond x threshold 1000 750000

DoublePendulum swing-up • each step: -1 • − cos(θ1) − cos(θ1 + θ2) > 1 1000 40000

DoublePendulum balance • each step: 1 • − cos(θ1) − cos(θ1 + θ2) < 1.5 400 300000

DoublePendulum swing-up balance - - - -

Acrobot swing-up

• above given height: 2
• height > 1.8: 1
• height > 1.5: 0
• else: -1

• − cos(θ1) − cos(θ1 + θ2) > 1.9 500 150000

Acrobot balance • each step: 1 • − cos(θ1) − cos(θ1 + θ2) < 1.8 500 750000

Acrobot swing-up balance - - - -

Table 2: Showing the configuration of each experiment-task and the results from training in the last 3 columns.
Steps is the training steps until the task was solved. FOF is the full feedback run, while POF is the
partial feedback run using the time-delay embedding. Green indicates that a task was solved, yellow
that the task was almost solved and red that the agent was unable to solve the task. Experiments
marked grey where not performed as the simpler task was not successful.

The agent actually learned the swing-up tasks almost
equally fast on the embedding as it did on the orig-
inal manifold. While we were hoping that the agent
would also learn the swing-up + balance tasks of the
DoublePendulum and Acrobot environments, the PPO
algorithm simply converged to a low score and did not
learn the task.

4 Conclusion

We have in this paper presented the results of applying
RL to time-delayed embeddings as a method to solve
the problem of partial observability of unknown envi-
ronments. The results show that the RL agent quickly
learns to solve tasks that involve movement, such as
swing-up, while steady state tasks such as stabiliz-
ing/balancing are more challenging, but still achiev-
able. The agent actually learned the swing-up tasks
almost equally fast on the embedding as it did on the
original manifold, and we conclude that tasks that are
efficiently solved on the original manifold are also ef-
ficiently solved on a time-delay embedding. Interest-
ingly, we also found that shorter delay intervals yielded
better performance. All in all, we have found the ap-

plication of applying RL on delay embeddings to be a
promising method to overcome partial observability.

We also hypothesized that the brains widely recur-
rent neural wiring may be utilizing delay embeddings
as a means to operate in a highly complex, dynamic
and partially observable world. While this hypothesis
requires much more rigorous investigation going for-
ward, we find the results presented here to be support-
ive to this claim by showing how partial observability
indeed can be addressed by the use of delay embed-
dings.
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