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Abstract

Maintaining the efficiency of the produced-water treatment system is important for the oil and gas industry,
especially taking into consideration the environmental impact caused of the produced-water. De-oiling
hydrocyclones are one of the most common type of equipment used in the produced-water treatment
system. The low residence time of this device makes it difficult for a control system to maintain efficiencies
at different plant disturbances. In this paper, a control-oriented hydrocyclone model with a traditional
pressure drop ratio (PDR) controller is analysed, and the inability of the PDR controller to maintain the
efficiency when increasing the inlet concentration is shown experimentally as well as in simulation. Then,
we propose three control schemes for dealing with this issue: a feed-forward, a feed-back/cascade and a
model predictive controller. We show in simulation that all proposed schemes are able to improve and
maintain the efficiency of hydrocyclones considering the upstream disturbances, such as variations in inlet
oil concentrations and inflow rates. We also discuss the characteristics of the three methods and propose
guidelines for choosing the appropriate scheme based on the available resources at the industrial site (such
as measurements, hardware and software at hand).
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1 Introduction

The treatment of produced-water (naturally occurring
water that comes out of the ground along with oil and
water) is an inevitable process in oil and gas production
facilities. In Norway, for example, nearly 160× 106 m3

of this waste stream are discharged annually, which
corresponds to a potential release of 1900 tonnes of
crude oil to sea (Beyer et al., 2019). Traditionally, the
produced-water is re-injected into the well. However,
the constant increase of the wastewater volumes and
the associated costs make this choice debatable. On

the other hand, the water can be discharged into the
sea if the oil is separated beforehand. Processes such as
membrane filtration, compact flotation units and sepa-
ration through hydrocyclones can be used for this end.
The challenge then becomes guaranteeing that they op-
erate efficiently, complying with the requirements set
out in local regulations.

Among the disposal alternatives, hydrocyclones are
specially suited for offshore sites. They are compact,
light, and do not require any additional chemicals or
gases to be injected for the operation. Moreover, they
have already been successfully implemented in subsea
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below 800 m (Orlowski et al., 2012). The main problem
with this alternative is the hydrocyclones low residence
times, which makes them more susceptible to upstream
variations such as frequent changes in inlet oil concen-
tration, inflow rate, etc. Typically, control schemes
that use pressure drop ratio (PDR) to control the sep-
aration are implemented to reject these disturbances.
Since this is an indirect way of controlling the hydro-
cyclones, this option can reduce their efficiency signif-
icantly and result in violations of the environmental
requirements.

In this paper, we propose three new control schemes
that take into consideration disturbances such as in-
let oil concentration and inflow rate. Two of the pro-
posed approaches, one based on feed-forward and an-
other on feedback/cascade schemes, automatically ad-
just the setpoint of the PDR controller based on the
current disturbance. The third one uses model pre-
dictive control to minimize the variation of underflow
concentration from a reference value. We also discuss
the pros and cons of the alternatives and provide an
assessment of the possible implementation issues.

1.1 Previous work

The control aspects of hydrocyclones have been gain-
ing more and more focus in recent years. A control-
oriented approach based on transfer functions mod-
els using experimental data from a test rig was de-
veloped by Durdevic et al. (2015). Then, a grey box
static model to calculate the separation efficiency of
hydrocyclones based on flow resistance and droplet
trajectory was developed by Bram et al. (2018). A
control-oriented model for de-oiling hydrocyclone with
a swirl element was developed by Das and Jäschke
(2018). In Bram et al. (2020), a virtual flow resis-
tance model with an extended trajectory model was
developed and performance of hydrocyclone was com-
pared using the model and experimental data from a
scaled pilot plant. A first-principles model for de-oiling
hydrocyclones based on pressure-flow relationship, sep-
aration efficiency and dynamic mass balance was devel-
oped by Vallabhan K G et al. (2020).

Husveg et al. (2007) studied the performance of hy-
drocyclones to varying inflow rates and emphasised
that adequate operational control of hydrocyclone is
necessary to maintain efficiency. Considering a first
stage gravity separator and a hydrocyclone as a single
plant, a robust control strategy was proposed by Dur-
devic and Yang (2018) and a model predictive control
was proposed by Hansen et al. (2018). Later, non-
linear model based control algorithms to improve the
efficiency of hydrocyclones were proposed by Vallabhan
and Holden (2020).

When the hydrocyclones are connected to bulky first

stage gravity separators, the rate of change of distur-
bances at the inlet of hydrocyclones are expected to be
less frequent and of relatively low amplitude. However,
when we move towards compact separation at subsea,
e.g., Marlim fields in Brazil (Pereira et al., 2012), pipe
separators are used upstream of the hydrocyclones.
Due to the compactness of this type of separators, the
hydrocyclones will be subjected to frequent changes in
inlet oil concentration, oil droplet distributions, inflow
rates etc. Consequently, the dynamics are faster and
difficult to control. The existing control schemes for
hydrocyclones uses an indirect pressure drop ratio to
control the separation of hydrocyclones. PDR control
scheme works well if the disturbance is in the inflow
rate of the hydrocyclones as it gets reflected in the
pressure drop. However, the PDR control scheme can-
not detect the changes such as inlet oil concentration
and inlet oil distribution. Hence, it is necessary to ad-
dress these variations when we are designing a control
system for hydrocyclones (produced-water treatment)
subsea.

2 Hydrocyclone model

This section gives a brief description of the hydro-
cyclone model that is used as the “true” system for
studying the different control schemes proposed in
this paper. The model is based on Vallabhan K G
et al. (2020). A simplified diagram of a hydrocyclone
liner and a block diagram representation of a control-
oriented model for hydrocyclone is shown in Figure 1.

WATER-RICH VOLUME

OIL-RICH VOLUME

(INLET)
(UNDERFLOW)

(OVERFLOW)

'

Overflow

   (oil reject)
Underflow

  (water reject)

(a)

(b)

Figure 1: Simplified diagram of a hydrocyclone liner
representing the ‘oil-rich volume’ (VO) and
the ‘water-rich volume’ (VU ) (shown in (a))
and a block diagram representation of a
control-oriented model making use (VO) and
(VU ) (shown in (b))
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We divide the hydrocyclone liners into two volumes:
one is the ‘oil-rich volume’ (VO) and the other is the
‘water-rich volume’ (VU ). The oil droplets entering the
reverse-flow zone (between the red lines in Figure 1)
go to the oil-rich volume and leave the system at the
overflow outlet. The remaining oil in the water-rich
volume comes out at the underflow outlet. A simple
mass bass balance formulation is used to model the
inflow and outflow of the oil inside the volumes. Since
the oil density is assumed constant, we write the mass
balances as

dVO,o
dt

= Qsep −QO,o −QEx,o,

dVU,o
dt

= Qin,o −Qsep −QU,o +QEx,o.

(1)

where VO,o is the volume of oil in the oil-rich volume VO
; VU,o is the volume of the oil in the water-rich volume
VU ; Qsep is the flowrate of the separated oil entering
VO; QO,o is the flowrate of oil at the overflow; QEx,o
is the excess flowrate of oil entering VU (which is the
case when the overflow opening is small and VO is filled
with oil); Qin,o is the inflow rate of oil; and QU,o is the
flowrate of oil at the underflow. Here all the volumes
are expressed in [m3] and flowrates in [m3/h]. The
parameters of hydrocyclone liners used in this paper is
the same as in Vallabhan K G et al. (2020).

The internal separation is expressed in terms of volu-
metric flow and given as

Qsep

Qin,o
. In Vallabhan K G et al.

(2020), a droplet trajectory analysis is used to calcu-
late the internal separation. Oil droplets of different
size categories are tracked using their axial, tangential
and radial velocity components. If the droplets cross
the reverse-flow zone boundary (shown in red in Figure
1) inside the hydrocyclone liner, they are assumed to
be separated. The authors use a polynomial approx-
imation to compute the internal separation

Qsep

Qin,o
. In

this work, we use the same polynomial approximation
model to calculate the internal separation under the
assumption that we know the inflow rate and its value
is between 1.5 m3/h and 3.5 m3/h. This approximation
for internal separation is given as:

Qsep
Qin,o

= p2Q
2
O + p1QO + p0. (2)

where p2 = −9.447e7, p1 = 9024, p0 = 0.7648. Here,
the other factors, such as underflow rate QU , that af-
fect the separation are kept constant and, hence,the
separation is assumed to be only a function of overflow
rate QO.

The excess oil entering VU is computed as:

QEx,o =

{
Qsep −QO, if Qsep −QO > 0

0, otherwise .
(3)

The volume fractions of oil in the two volumes VO
and VU are defined as:

βO,o =
VO,o
VO

, βU,o =
VU,o
VO

. (4)

For simplicity, we assume that the internal volumes
VO and VU are well mixed, which implies that the com-
positions in the outflows QO and QU are the same as
the internal compositions. Then, we get from the defi-
nition of Eq. (4):

QO,o = βO,oQO, QU,o = βU,oQU . (5)

Re-writing (1) in terms of volume fractions gives

dβO,o
dt

=
1

VO

(
Qsep − βO,oQO −QEx,o

)
,

dβU,o
dt

=
1

VF

(
Qin,o −Qsep − βU,oQU +QEx,o

)
.

(6)

The two outflow QO and QU are calculated based on
the simple valve equations given as:

QU =Cv1ZU

√
2(P3 − PU )

ρU

QO =Cv2ZO

√
2(P2 − PO)

ρO
,

where, Cv1 and Cv2 are the valve constants of the
underflow and overflow valves, P2 is the pressure at
the overflow outlet, P3 is the pressure at the underflow
outlet, ZU ∈ [0, 1] and ZO ∈ [0, 1] are the valve po-
sitions, and ρU and ρO are the densities of liquid at
the underflow and overflow outlets, respectively. PO
is the downstream pressure of the overflow valve, and
PU is the downstream pressure of the underflow valve
. In this paper, we assume that PO and PU are known
and equal to the atmospheric pressure. The pressure
P2 and P3 are assumed to be either measured or can
be calculated based on the pressure-flow model, as in
Vallabhan K G et al. (2020).

3 Typical control strategy of
hydrocyclones

The typical operational control of hydrocyclone con-
sists of two control loops, the first one is flow rate con-
trol and the second one is flow split control Husveg
et al. (2007). Figure 2 shows a simplified P&ID repre-
senting the two control loops.

The goal of the flow rate control loop is to main-
tain a certain level in the upstream tank separator and
thereby maintaining the inflow rate of hydrocyclone be-
tween Qin,min and Qin,max. This inlet flowrate range
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Figure 2: A typical control scheme of hydrocyclone representing flow rate and flow split control

characterizes an efficiency plateau, in which the oil-
water separation is more effective (see Figure 3). This
is achieved by manipulating the underflow control valve
LCV01. In turn, the flow split control aims at main-
taining a sufficient overflow rate in the hydrocyclone.
The objective is to have good separation and main-
tain efficiency. The overflow control valve PCV01 is
adjusted to keep a sufficient flow split ratio Fs, where
Fs = QO

Qin
.

Figure 3: Relationship between efficiency and inflow
rate of a hydrocyclone (Husveg et al., 2007).
The efficiency of hydrocyclone is defined as
η = 1− βU,o

βin,o
, where βin,o is the volume frac-

tion of oil at the hydrocyclone inlet and βU,o
is the volume fraction of the oil at the under-
flow outlet (water reject).

Since the flow split has linear relationship with pres-
sure drop ratio (PDR) and pressure sensors are cheaper

and more reliable than flow sensors, PDR is given as
the setpoint to controller PDRC01 instead of the flow
split. The pressure difference at the inlet and the
two outlets is used to calculate the pressure drop ratio
(PDR), defined as:

PDR =
P1 − P2

P1 − P3
(7)

where P1, P2, P3 are the pressures at the inlet, over-
flow and underflow, respectively.

3.1 Issues with the typical control strategy

The experimental results in Meldrum (1988) show that
PDR in the range 1.5 to 3 maintains the efficiency
of the separation, if the inflow rate is kept at the
efficiency plateau. However, keeping the setpoint of
the PDR controller constant during plant disturbances
(e.g., changes in the inlet oil concentration) can re-
duce the efficiency of hydrocyclones (Meldrum, 1988).
Such changes may not be frequent in systems where
first stage separators are gravity based with sufficient
buffer volumes. On the other hand, if compact separa-
tors are used instead, frequent changes in the inlet oil
concentrations for hydrocyclones are likely to happen.

In order to illustrate the effect of constant setpoint
to the PDR controller of a hydrocyclone, we simulate
the model described in Section 2 with a simple PI con-
troller (which acts as a PDR controller). Here, the
process variable is PDR, which is calculated based on
(7), and the manipulated variable is the overflow rate
QO. We assume that the underflow valve is kept at
a constant opening, which maintains the inflow rate
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in the efficiency plateau. The simulation results are
shown in Figure 4.
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Figure 4: Simulation result showing increase in the βU,o
with increase in βin when fixed PDR set-
point. At 50 s, the PDR setpoint is manually
adjusted to reduce βU,o below 30 ppm.

We start the simulation at steady-state with a PDR
setpoint of 2.2, inlet oil concentration βin,o at 500 ppm
and inflow rate of 2.2 m3/h. With this operating con-
dition, the PDR setpoint of 2.2 keeps the underflow
oil concentration, βU,o, below 30 ppm. At 20 s, βin,o
is increased from 500 ppm to 700 ppm. The change in
βin,o increases the underflow oil concentration, which
decreases the efficiency of hydrocyclones. Since the in-
flow rate remains the same, the PDR does not change
and the controller cannot react to the increase in the
inlet oil concentration. At 50 s, the setpoint of the PDR
controller is increased manually to bring the βU,o below
30 ppm. The simulation results indicate that the effect
of changes in inlet oil concentration should be taken
into consideration while designing control system for
hydrocyclones.

We also did a laboratory experiment at a test rig
to show the effect of constant PDR on increase in in-
let oil concentration. The control loop implemented at
the experimental setup is similar to the P&ID shown in
Figure 2. The underflow valve is LCV01 is kept at 90 %
and PCV01 is controlled by the PRDC01. The system
is started with an inlet oil concentration of 350 ppm.
In order to keep the underflow oil concentration below
30 ppm, the setpoint of the PDR controller is defined
as 1.5. Later, the inlet oil concentration is increased to
800 ppm without changing the inflow rate. In Figure 5,
we can see that the PDR is not changed and hence the

controller PDRC01, does not take any action. How-
ever, we can see that the underflow oil concentration
increases when the inlet oil concentration increases and
this reduces the efficiency of hydrocyclone, confirming
the simulation results. In order to deal with this prob-
lem, we propose three different control schemes. A
feed-forward controller, a feedback/cascade controller,
and also a model predictive controller. We compare
their performance using the simulation scenario of Fig-
ure 4. After presenting the three methods, we discuss
the advantages and challenges with their implementa-
tion.
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Figure 5: Laboratory experiment showing increase in
the βU,o with increase in βin when fixed PDR
setpoint.

4 Feed-forward algorithm for
hydrocyclones

If the disturbance can be measured before entering
the system, then feed-forward control can be used for
disturbance compensation. In this control scheme, a
model is used to adjust the setpoints automatically
based on the certain measurements. For example, in
the system shown in Figure 4, we can use the measure-
ments of the inlet-oil concentration βin,o and the inflow
rate Qin to adjust the PDR controller setpoint. By us-
ing this feed-forward scheme, we guarantee that the un-
derflow oil concentration remains below 30 ppm with-
out the need of a manual intervention. The block dia-
gram of the implemented feed-forward control scheme
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Figure 6: A diagrammatic representation of the feed-forward approach adjusting the PDR setpoint

is shown in Figure 6. For the feed-forward model, we
use a Gaussian process regression (GPR) (MATLAB,
2021) model to predict the setpoints of the PDR con-
troller based on the inflow rate and the inlet oil con-
centration. Hence, the GPR model has two input vari-
ables, Qin and βin,o, and one response variable, the
desired PDR setpoint. We use GPR models because
they are relatively easier to handle and interpret than
conventional machine learning methods, such as neu-
ral networks (Williams and Rasmussen, 2006). How-
ever, one can use simple linear regression models for
instance, given that they yield accurate predictions.

The training data for the GPR model identification
is generated by simulating the model described in the
Section 2 with a PDR controller. Then, inflow rates are
varied from 1.8 m3/h to 2.8 m3/h, inlet oil concentra-
tion is varied from 500 ppm to 1000 ppm, and PDR set-
point is manually varied from 2 to 3.5. Later, the PDR
values that keep the βU,o below 30 ppm are filtered out.
In an industrial setup, instead of using simulations, one
can use historical data for inlet oil concentration, inflow
rate and the changes in the PDR setpoint performed
by the operator.

The data set is then fed to the MATLAB function
fitrgp. The fitrgp function returns a GPR model.

Later, the model can be imported as a function in
MATLAB and used as the feed-forward block in the
control scheme shown in Fig. 6. Since this is a data-
based model, its extrapolation capacity is poor. The
model predictions are valid for the flow rate range
1.8 m3/h to 2.8 m3/h and the inlet oil concentration
500 ppm to 1000 ppm, which encloses the considered
operating region. If a new region is to be considered,
a new GPR model needs to be generated.

4.1 Simulation results

Figure 7 shows the simulation results using the feed-
forward model (GPR model) to predict the setpoint
changes of the PDR controller. We plot the variations
of inlet oil concentration βin,o, PDR setpoint predicted
by the feed-forward model, inflow rate Qin, and con-

centration of the oil at the underflow outlet βU,o. For
representing the real system, we use the hydrocyclone
model described in Section 2. We start the simulation
with inflow rate 2.2 m3/h and the inlet concentration of
500 ppm. Then at 50 s, we increase the inlet concentra-
tion to 700 ppm. The feed-forward model detects the
change in the inlet oil concentration and predicts the
setpoint to be 2.8. Thus, the controller is able to main-
tain the underflow oil concentration below 30 ppm. As
an additional check to the GPR model, we increase
the inflow rate to 2.6 m3/h at 100 s. The feed-forward
model changes the controller setpoint to 2.2, thereby
keeping βU,o below 30 ppm. The PDR controller pa-
rameters are given in Table 2.
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Figure 7: Simulation results showing the feed-forward
control scheme. Here, the inlet oil concen-
tration changes at 50 s and the inflow rate is
changed at 100 s.
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Figure 8: A diagrammatic representation of the cascade approach adjusting the PDR setpoint

5 Feedback/cascade control for
hydrocyclones

As before, the goal of the feedback/cascade approach is
to adjust the PDR controller setpoints automatically.
For its implementation, the only pre-requisite is a sen-
sor that measures the oil concentration at the under-
flow outlet with a sampling rate matching the control
system. The diagrammatic representation of the feed-
back approach is shown in Figure 8. Here, a simple PI
controller, OIWC01 acts as the primary controller. We
can set the desired underflow concentration of oil as a
setpoint to the primary controller. Later, this primary
controller adjusts the setpoint of the secondary con-
troller PDRC01 and maintains the underflow oil con-
centration βU,o to a desired level.

5.1 Simulation results

Again, the model of Section 2 is used for represent-
ing the real system. Figure 9 shows the simulation
results. We repeat the scenario from the feed-forward
algorithm analysis. We start the simulation with in-
flow rate of 2.2 m3/h and the inlet oil concentration
of 500 ppm. The setpoint of the primary controller is
kept at 30 ppm. At 50 s, the inlet oil concentration is
increased to 700 ppm, which increases βU,o. The pri-
mary controller automatically adjusts the setpoint of
PDRC01 to increase the separation and bring down
βU,o to 30 ppm. Later, at 200 s, we increase the inflow
rate to 2.6 m3/h. Even though it improves the sep-
aration, the primary controller tracks the setpoint of
30 ppm and, hence, adjusts the setpoint of PDRC01.
The controller parameters of the primary and sec-
ondary controller are given in Table 2
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Figure 9: Simulation result showing the cascade con-
trol scheme. Here the inlet oil concentra-
tion is changed at 50 s and the inflow rate
is changed at 200 s.

6 Model predictive control for
hydrocyclones

In Model Predictive Control (MPC), we use a process
dynamic model in combination with an optimization
method for determining the manipulated variables’ val-
ues. These values are chosen such that the deviation
between the predicted controlled variables values and
their reference is minimized; the MPC determines the
optimal input by simulating its internal model (Seborg
et al., 2010). Here, we implement a nonlinear MPC
that regulates the fraction of oil at the underflow at
a given setpoint by manipulating the flowrate of the
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overflow by the use of the overflow control valve. In
order to obtain a model suited for MPC applications,
we rewrite the model of Section 2 into a state-space
form:

ẋ1 =
1

VO

(
Qsep − x1Ku−QEx,o

)
ẋ2 =

1

VF

(
Qin,o −Qsep − x2QU +QEx,o

)
,

(8)

where the states x1 and x2 represent overflow oil frac-
tion βO,o and, underflow oil fraction βU,o. The control
input u (system manipulated variable) is the overflow

valve opening and K = Cv2

√
2(P2−PO)

ρO
. In simulation,

we assume P2 to be constant during the integration
interval.

The control problem can be formulated as:

min
x,u

1

2

∫ tc+Tp

tc

(
(y(t)− ySP )TQ(y(t)− ySP )+

u̇(t)TRu̇(t)
)
dt

s.t.

ẋ(t) = f(x(t), u(t)), t ∈ [tc, tc + Tp]

y(t) = [0 1] x(t), t ∈ [tc, tc + Tp]

x(tc) = x0,

umin ≤ u(t) ≤ umax, t ∈ [tc, tc + Tp]

− u̇max ≤ u̇(t) ≤ u̇max, t ∈ [tc, tc + Tm]

u̇(t) = 0 t ∈ [tc + Tm, tc + Tp] ∪ [t, t+ Ts] ,
(9)

where, x are the states, u the control input, and f the
system model, all described in (8); y is the measured
output (fraction of oil at the underflow) and ySP its
setpoint; u̇ is the control input change. The inequal-
ity constraints represent technical restrictions on the
control inputs u; umin, umax are the input lower and
upper bounds, and u̇max is the maximum input change
in one sampling time Ts (i.e [t, t + Ts]). tc is the cur-
rent time when the optimization problem is called. The
prediction horizon Tp represents the control interval
evaluated in the optimization problem, and the control
horizon Tm is the horizon in which the manipulated
variable can be optimized. Note that, after the control
horizon Tm, the inputs are kept constant by setting
u̇ = 0. The MPC is run every Ts seconds. Q is a ma-
trix ny × ny that penalizes deviations of y(t) from its
setpoint ySP , and R is a matrix nu×nu for penalizing
manipulated variable movements.

6.1 Implementation

The plant model and the MPC algorithm were imple-
mented in MATLAB using the CasADi framework (An-
dersson et al., 2019). The plant model f is integrated

using CVodes from the Sundials suite in CasADi. A
multiple shooting algorithm (Bock and Plitt, 1984) is
used for computing the numerical solution of the opti-
mal control problem in (9). This algorithm allows us
to re-arrange the model dynamic equations in such a
way that we can solve (9) using standard optimization
nonlinear programming (NLP) solvers. Here we use
IPOPT, which is an interior point NLP solver included
in CasADi (Wächter and Biegler, 2006).

The MPC is implemented in a receding horizon
framework, i.e. we compute the trajectory u? =
[u?1, u

?
2, . . . , u

?
Tp

]T and apply only the first control move
u?1. The next time step, the process is repeated.
This strategy is used for compensating unexpected sys-
tem disturbances and plant-model mismatch (Rawlings
et al., 2017). In the simulation, the plant model and
the controller have the same sampling time of 0.01 s
and the MPC is run every 0.01 s.

6.2 Simulation results

The simulation results with the model predictive con-
troller are shown in Figure 10. We use the same sce-
nario as in the previous case studies. We start the sim-
ulation with inflow rate of 2.2 m3/h and the inlet oil
concentration of 500 ppm. Then, at 40 s, the inlet oil
concentration is increased to 700 ppm, while the out-
let setpoint for the outlet oil concentration is kept at
30 ppm. We see that the MPC automatically adjusts
the overflow valve opening Zo to reject the disturbance
in the feed. Since we added a maximum input change
constraint to account for the system inertia (constraint
on u̇), the Zo profile is smooth, which is important for
practical implementation. Next, we increase the inflow
rate to 2.6 m3/h. The MPC is also able to track the
setpoint of βU,o for this disturbance. Note that we as-
sume full state feedback, i.e. the states (overflow and
underflow oil fractions) are measured at every sampling
time. The MPC parameters are given in Table 2.

7 Comparing the control scheme
alternatives

We compare the three proposed approaches in terms of
necessary measurements, as well as model and solver
requirements. Note, we do not focus on performance
criteria such as integral squared error, integral absolute
error, etc. Since these are highly dependent on the tun-
ing of the approach, poorly chosen parameters could
influence the comparison. Therefore, we focus on qual-
itative criteria that will help the practitioner/engineer
decide which strategy should be used based on the
available resources. The characteristics of the three
methods are summed up in Table 1.
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Figure 10: Simulation result of the MPC implementa-
tion. The controller first tracks the under-
flow oil fraction setpoint. Disturbances en-
ter the system at 40 s and 80 s, represented
by a change in the inlet oil concentration
and the inflow rate respectively. The con-
troller rejects both the disturbance main-
taining βU,o at its setpoint.

The implementation of the feed-forward approach
requires online measurements of the inlet oil-
concentration and inflow rate. They are used in com-
bination with the feed-forward model to update the
PDR setpoints according to the system disturbances.
To obtain this model, we need historical data of the
two previously mentioned measurements, as well as a
specific values of the PDR setpoints. These values are
chosen such that, given an inlet condition, the under-
flow concentration stays under a threshold, e.g., lower
than 30 ppm. The setpoints can be obtained via sim-
ulations or based on process knowledge. Ideally, we
need data from a large operation envelope to ensure
that the feed-forward strategy works in different plant
conditions. This feed-forward approach has the disad-
vantage that, in scenarios such as slugging where the
inlet-oil concentration increases rapidly, the changes
in the PDR setpoint aiming at improving separation
can cause more water at the overflow outlet (oil-rich
stream).

In comparison to the feed-forward approach, the
feedback/cascade control requires measurement only
of the underflow oil concentration. This method is
a direct way of controlling the efficiency of hydrocy-
clones. The secondary PDR controller responds to

changes in the inflow rates and maintains the PDR
at a given setpoint. However, if a disturbance occurs
in the inlet oil concentration and/or in the inlet oil-
droplet distribution, the separation efficiency of the
hydrocyclone changes, and this will not be reflected
in the PDR setpoint. Then, the primary controller can
detect these disturbances by measuring the underflow
oil concentration, and adjust the PDR setpoint to im-
prove the efficiency. Note that there is an upper bound
in the PDR beyond which the separation cannot be im-
proved. In this case, if the primary controller tries to
increase the PDR setpoint to maintain the separation
efficiency, more water goes out through the overflow
outlet. Hence, it is important to know the limitation
of the system in use and deactivate the primary con-
troller at the right time, which can turn out to be a
major disadvantage of this approach.

This deficiency can be mitigated by the model-
predictive control approach. By using MPC, we can
explicitly take into account operating constraint while
dealing with the feed disturbances. Moreover, MPC
has the potential to increase the separation regular-
ity since it considers the interaction among multi-
ple system variables, whereas PI controllers act based
on single-input, single output relationships (Qin and
Badgwell, 2003). The main disadvantage of the MPC
formulation is that it requires a fairly accurate model.
Also, in the model formulation proposed in this paper,
we assume that underflow and overflow oil concentra-
tion are measured. It is not common to have an oil
in water sensor at the overflow outlet of the hydrocy-
clones. As an alternative, we could use soft-sensors
such as Kalman filters to estimate the overflow oil con-
centration. Another possibility of future work is to
re-formulate the optimisation problem to minimize the
underflow βU,o (instead of tracking a setpoint) and also
maximize the total throughput of the hydrocyclones by
adjusting the underflow valve.

Conclusions

In this paper, we propose three new control schemes
for de-oiling hydrocyclones and study the effectiveness
of these controllers when subjected to different plant
disturbances. The schemes were designed in order to
address issues with the standard hydrocyclone control
strategy. Typically, a PDR controller is used to keep
the underflow oil concentration at a given setpoint.
However, if the inlet oil concentration and/or in the
inlet oil-droplet distribution change, the PDR setpoint
needs to be updated or the outlet purity requirements
will not be met. The first scheme uses a feed-forward
model to update the setpoint of a typical PDR con-
troller. The second scheme is a feedback/cascade ap-
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Table 1: Comparison of the three approaches used for controlling the underflow oil fraction of a hydrocyclone.

Approach
Required

measurements
Model

Optimization
solver

Possible
disadvantages

Feed-forward
◦ Inlet oil fraction
◦ Inflow rate

Feed-forward model to
predict PDR setpoint
changes

No

◦ Fast inlet oscillations may
lead to high concentrations
of water at the
overflow outlet

Feed-
back/cascade

◦ Underflow oil frac-
tion

No No

◦ Primary controller may
need to be deactivated
if upper bound in the PDR
is violated, which causes high
water concentration at the
overflow outlet

Model Pre-
dictive
Control

◦ Overflow oil fraction
◦ Underflow oil fraction

Yes.
State-space model of
Eq. (8) can be used

Yes

◦ Fairly accurate model
needed
◦ Oil in water sensor is
necessary (or a soft sensor
needs to be developed).

Table 2: Tuning parameters

Description Variable Value

Feed-forward

PDR control prop. gain Kc 0.67
PDR control int. gain τI 0.047

Feed-back/cascade

Primary control prop. gain Kc 0.5
Primary control int. gain τI 0.5

Secondary control prop. gain Kc −542.16
Secondary control int. gain τI 0.2598

Model Predictive Control

Setpoint weighting matrix Q 5e8
Input weighting matrix R 0.01

Prediction horizon Tp 15
Control horizon Tm 10

Input upper bounds umax 0.01
Input lower bounds umin 1
Max input change u̇max 0.5

proach, where the primary controller takes measure-
ments of oil concentration at the underflow outlet and
updates the setpoint of the secondary controller (PDR
controller) to maintain the underflow oil concentration
at a required level. The third control scheme is a model
predictive controller. Here, the control objective is to
minimize the variation of the underflow oil concentra-
tion from a reference point while taking into account
operating constraints, such as max water-in-oil concen-

trations.

In the simulations, we see that all the control
schemes meet the requirement to keep the underflow
oil concentration below 30 ppm other than briefly dur-
ing transients. We also present guidelines for choos-
ing the appropriate scheme based on the available re-
sources at the industrial site (such as measurements,
hardware and software at hand). As an extension of
this work feed-forward and cascade control schemes are
implemented at a newly constructed experimental rig
at NTNU and result are being finalised.
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