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Abstract

This paper proposes a generally applicable method of optimizing the power and energy balance of the
main vessel producer and consumer units. The method is also used after an equipment failure as part of
the power management process flow. The method proposes that the route plan is divided into distance
steps and an optimization algorithm is used to determine the optimal way of producing power, deploying
energy storage systems and controlling propulsion. The algorithm is used to autonomously determine the
estimated vessel speed. By using additional inputs to the functions it is possible to assess the weather
conditions and their effect on the travel plan, and thus always provide the most optimal solution to reach
the harbor.
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1 Introduction

As the current trends of development in all fields of
mobility focus on energy efficiency and emissions re-
duction, also the marine industry is rapidly developing
new hybrid and full electric systems to comply with the
stricter regulations and to preserve our environment
(Dedes et al., 2012). Networking and cloud services
may vastly improve the overall efficiency of modern
marine systems, and the more autonomous control de-
vices being developed may also contribute towards the
achievement of the development goals. (Vagia et al.,
2016; Munin, 2018).

The benefits of hybridization are based on peak shav-
ing and being able to more freely operate internal com-
bustion engines in load points with more optimal fuel
consumption (Sciberras and Grech, 2012). Moreover, it
is possible to avoid unnecessary acceleration of the en-
gines and run them with less emissions. This also bene-
fits the mechanical life span of the internal combustion
engine (ICE) (Geertsma et al., 2017; Lana et al., 2012).

The complexity of the hybrid system adds up to
more costs and weight. Weight has adverse effects on
the efficiency of the vessel payload. Ships sailing long
distances may also benefit significantly from the wave
load compensation implemented with rechargeable en-
ergy storage systems (RESS), which helps to maximize
the engine life span and optimize the load point (Lana
et al., 2019). There are also other new technologies,
such as rotor sails, to boost efficiency especially in long-
distance sailing (Kornei, 2017).

Technology is developing rapidly, and marine vessel
scale units are becoming more available and accessi-
ble for shipyards. It is also a chance for new system
providers that may bring more economical or more flex-
ible solutions to the market. In addition to designing
new systems, retrofits of vessels already in service are
also being carried out (Jaurola et al., 2019). Not only
hardware is required, but increasingly complex soft-
ware solutions are needed to control the onboard tech-
nology in an efficient way (Lana et al., 2019; Skjetne
and Sørensen, 2004).
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This sets new requirements for the robustness of au-
tomation, more specifically, the robust control of the
vessel powertrain, which has been studied here as part
of a project called INTENS (Integrated Energy Solu-
tions to Smart and Green Shipping). This paper dis-
cusses the principles of a robust control method that
is used to define control references for the available
equipment. The travel plan must always comply with
the safety requirements and environmental operational
limits and simultaneously provide an efficient plan for
the economical use of the vessel. The problem is sim-
plified to a cost optimization problem.

In addition to optimizing the efficiency, there have
to be methods to safely handle fault situations. The
demand for such methods is acute as new vessel pow-
ertrain system topologies have become more complex
with different hybrid and full electric systems, and ef-
ficient control of the system by the user or users is not
always assured. With the development of autonomous
vessel control systems it is even more crucial to be able
to mitigate fault situations with respect to optimal ef-
ficiency (Thieme and Utne, 2017).

Optimizing the travel plan in a time-stepping man-
ner has been considered, and it has been shown that the
method is applicable to analyze and plan the use of the
vessel when typical consumption data or estimates are
known Ritari et al. (2019). With this approach, the lo-
cation of the vessel is calculated in relation to time and
vessel speed. The method suggested here, however, op-
timizes power production over a known route divided
into distance-based segments and minimizes the opera-
tional expenditure (OPEX) of the vessel. The process
values are updated and reoptimized upon the changing
of external (e.g., route change) or internal (e.g., equip-
ment failure) conditions. The fundamental idea is that
the route and its constraints are static and it is pos-
sible to vary the driving parameters and thus simplify
the object of optimization. Handling of faults can also
be accomplished by simple logical operations, but in
order to provide an optimal solution to prevent delays
in service, saving fuel and minimizing operating costs
are also considered crucial. Ritari et al. (2020) have
investigated a time-stepping method based on prede-
termined vessel speed obtained from collected vessel
use data. The methodology also utilizes a rule-based
logic to better match unexpected changes in the power
demands. By optimizing the system control strategy as
distance-steps it is possible also to optimize the vessel
speed as well, and similarly, a rule-based logic handles
the acute power production changes locally.

The objective of this paper is to investigate optimiza-
tion of the operating plan of a vessel powertrain system
as a function of cost derived by power references versus
distance. The actual optimization process can be cal-

culated using different optimization methods; however,
an analysis of the efficiency of different methods was
not within the scope of this study.

1.1 Vessel powertrain system example

The system design of a modern vessel consists of multi-
ple power producer and consumer units. It is possible
that a shaft generator is used as a propulsion motor
and vice versa, and that there are power storage units
in the system. To efficiently control such a system, the
use of the subsystems must be optimized. Informa-
tion about equipment efficiency is crucial for creating
cost functions. This, in particular, concerns the in-
ternal combustion engine and its control strategy, for
which the information is obtained from brake-specific
fuel consumption data and emissions analysis. For the
calculations suggested here, the system can be simpli-
fied as in Figure 1, where the system consists of a DC
distribution system, two diesel generators, a hotel grid,
and a battery unit. Such systems have become more
popular, offering some additional advantages over pre-
vious topologies (Kyunghwa et al., 2018).

Figure 1: Illustration of possible power consumer and
production units in a hybrid system based on
DC distribution.

The components in the simplified system presenta-
tion represent producers (generators), consumers (ho-
tel, other loads, propulsion), and producer–consumers
(mainly energy storage). In the calculations studied
here the common variable is power, and thus, the opti-
mization problem is effectively used to solve a problem
of the cost of the power balance estimation. Each com-
ponent may be operating normally (online or offline),
have restricted operational limits, or no availability af-
ter complete equipment failure.

2 Overview of the optimization
strategy

The method suggests to optimize the travel plan us-
ing a cost function. Here, the cost function is a sum
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function that consists of several subfunctions, which
provide the cost of use for each subsystem at a certain
level of use. Several additional functions can be added
to steer the optimization in the desired direction. This
is explained in more detail in the following.

The travel plan is divided into distance-based steps
where the optimization algorithm will decide the set-
points for the powertrain control and how to optimally
control the energy balance. Depending on the com-
plexity of the cost function and mainly the penalties
or rewards formulated therein, the importance of esti-
mating exact costs is case specific and the cost informa-
tion is not open data, and not relevant to explain the
proposed method. We will use weighted cost functions
to direct the optimization results in a desired direction
mainly to reduce unnecessary starting and stopping of
engines and to direct the use of the energy storage.
The route profile is known beforehand, and the opti-
mization is carried out from the current position on
the route, while reducing the optimization problem by
leaving out the faulty equipment and adjusting con-
straints, if necessary. The optimization variables can
be limited to decrease the time required to solve the
problem.

In a hybrid or full electric system where a RESS is
included, the optimization problem is essentially simi-
lar to the power plant problem investigated by Tiainen
et al. (2008), where the main factor adding complex-
ity is the control of the energy storage. The problems
of energy storage control in a marine vessel are fur-
ther discussed in Lana et al. (2012) and analyzed in
more detail with generator control strategies in Lana
et al. (2019). The costs of storage use must cover the
lifetime costs of the RESS. When using constant-length
distance steps, the equipment including an energy stor-
age system is expected to use a constant reference for
each step. Thus, the steps must be short in places
where the energy storage is expected to be discharged
or charged more frequently. It is to be noted that the
objective of this paper is to examine the problem of
control methodology rather than the dimensioning of
the system components, as in Lana et al. (2019). Multi-
ple RESS control must also take care of the balancing
of the state of health figures of the energy storages.
The use of RESS is becoming more important also due
to requirement for partial full electric operation and
other benefits obtained by using more optimal system
topologies. For example, Ritari et al. (2020) has stud-
ied optimal vessel equipment dimensioning and topol-
ogy suggesting optimizing ICE load points with the use
of RESS and replacing some of the ICE-based reserve
production capacity with RESS-based energy reserve
strategy.

In this paper, a series hybrid propulsion system is

observed, and the propulsion is equipped with electric
machines. The starting and stopping cost of each inter-
nal combustion engine is defined, and the use costs are
incorporated within the estimated lifetime costs and
fuel costs.

The energy storage costs are estimated per charging
and discharging power, and the final state of charge
(SOC) is rewarded or penalized in the cost function.
The lifetime costs of the batteries are highly depen-
dent on the investment costs and the expected bat-
tery lifetime, in which charge cycles and use condi-
tions play a significant role (Lana et al., 2019). This is
an important matter also in the system component di-
mensioning, but for this problem-solving method, the
storage usage function and costs must be predefined.
The costs of using the electric propulsion machine were
neglected in the optimization as the optimization was
done from the perspective of power production versus
vessel speed. Naturally, it is possible to estimate more
realistic travel costs or to add other items to preserve
the lifetime of other equipment.

In the simplest form, the vessel speed is estimated
as a function of propeller curve, and additional forces
affecting the vessel dynamics could be added as a feed-
back term. The produced speed is determined by the
overall power allocated to the propulsion by energy bal-
ancing. This determines the speed estimate for each
step of travel and accumulates the estimated travel
time. The travel time has a predefined target, and
arriving late will be penalized by using an additional
cost term.

2.1 Overview of the logical system design

The route planning system must consist of the follow-
ing three main stages, which can be presented as black
boxes with relevant inputs and outputs:

• a system for dynamic positioning and routing,
which considers the weather conditions and pro-
duces an optimal route to the destination with
least resistance;

• optimization of the available resources using the
route plan;

• allocating and controlling power producers and
consumers to autonomously prevent a blackout in
a failure situation, until an updated travel plan is
available.

The interdependences of these processes are illus-
trated in Fig. 2. Internal decision-making process is
illustrated in the next section.
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Figure 2: Optimization process flow.

In addition to automated replanning of the route, the
remaining distance with the short-time average energy
consumption can be offered to the crew.

2.2 Handling of faulty equipment

First, the optimal route from point A to point B must
be determined. Then, the route optimizer occasionally
reruns the optimization process if, e.g., live weather
data can be taken into account when estimating an op-
timal route. A systematic approach could define sub-
stitute routes by determining nodes on the way from
which the route to the nearest harbors will be opti-
mized.

The predefined constant loads are prioritized so that
there is an absolute reserve value for the most impor-
tant consumers. For example, it is possible to design
the consumer grids as a secondary level or a nonneces-
sity consumer level, which may have a lower priority
than the propulsion. The prioritization must be imple-
mented within the power allocating algorithm, which
then takes care of the power balance equation require-
ments based on the current maximum power available
from the power production system. The algorithm can
also ensure the predefined power reserve or the mini-
mum number of power production units online.

To prevent a blackout, a local allocation algorithm
must override, if necessary, the previously optimized
plan until a reoptimized operating plan matching the
available equipment is available. For example, if the
ship has four similar combustion engines of which two
are running before a failure, and two running engines is
the minimum requirement in the optimization plan, the
allocation process alone will address the initial prob-
lem by starting more power production. However, the
availability of each unit must be assessed and the limits
used in the optimization have to be reset accordingly.
As the equipment availability has changed, the opti-
mization must be run to ensure proper operating plan
for the rest of the route. In a fault case where similar
equipment is available, it is likely that the plan will not
be changed.

Whenever an equipment failure occurs, the power

limits, or other optimization constraints, are affected.
Thus, the limits for production and consumption must
be specified for each case individually. For example,
the storage unit power limits can be adapted or re-
set to zero to simulate a total failure during which the
storage is offline. Whenever a fault is triggered, the
availability and restrictions (or limits) of the subsys-
tems are evaluated, and the optimization is run. The
basic flowchart of a process cycle is demonstrated in
Figure 3.

Figure 3: Logical implementation of the power alloca-
tion process plan.

The reoptimization process must determine whether
the fault prevents the ship from reaching the main tar-
get harbor. In such cases, a substitute route to a har-
bor closer by must be selected and optimized for least
travel losses. The power optimization must then de-
termine the best way to operate on the selected route.
The optimization problem will also get smaller as the
vessel moves along the route, as the problem is always
defined from the point of the current location on the
route, using the equipment available at the moment. If
there is no route optimizer available, it is also possible
to give an estimate on how far the ship is able to travel
with the selected speed.

3 Optimization principle

The travel plan is divided into segments or steps based
on distance, and thus, the resolution of the algorithm
depends on the length of the steps. Because an energy
storage has limits regarding the capacity and charge
level, the intervals must be short enough to prevent
over- or undercharging, or otherwise the power refer-
ences may become too low. This may happen as a
result of averaging, which is caused by a low charge or
discharge power, and thus limits the system unneces-
sarily. For example, the battery may get full during
a step, and therefore, the charging must be limited.
Thus, the average power for the step time is estimated.
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This, however, affects the power supply from other pro-
ducers, unless the optimizer determines that the vessel
speed can be kept at the same level, and thus, only the
fuel consumption gets higher. In some cases, longer
steps may limit the use of the power storage, so this
must be taken into account when defining the route
steps and setting the constraints. The same applies to
ICEs, in principle, but usually the fuel storage is large
enough to make this kind of observation unnecessary.

Segments with a variable distance would be useful,
but it would greatly complicate the optimization. The
optimization is based on estimated location per step
and the time or distance covered by each step varies,
producing a vast number of nonlinearly connected cases
to be solved. Depending on the implementation of the
algorithm, one way to address this would be to limit
the number of steps, set the rules on a route look-up
table, and then let the algorithm optimize the route
with a free distance variable. Some decisions, how-
ever, will cause illegal overlapping of the step results.
This method would allow the optimization algorithm
to make a great number of illegal guesses, making the
process much slower. It would require more calculat-
ing power and could be unnecessarily complicated to
perform online after a component failure.

An optimization algorithm is used to determine the
overall power production target so that the current
static power requirement is met and the rest is allo-
cated to electric propulsion or charging of the storage.
The constraints must reflect the known or estimated
future situation. The route is divided into segments
covering a certain distance, and the speed limits of the
route must be set. The permission to use diesel en-
gines is also indicated for each section, e.g., in a case
where full electric operation is preferred. The mini-
mum number of power production units online can also
be used as a constraint. The algorithm must determine
the achievable maximum speed with the current power
reserve and adjust the constraints accordingly. Opti-
mally, the propulsion force equation would be adapted
to prevailing weather conditions using an additional
resistance factor.

The cost function will return the total cost, which
will then be minimized. In the algorithm, several
weight factors are used to either penalize or reward
depending on the desired behavior. For example, en-
ergy storage levels can be appreciated in a way that the
plan does not consume the stored energy fully on the
route, but will try to charge so that the next trip can be
started with an adequate SOC level. In this function,
it is implemented as a rewarding factor, but could also
be carried out by using a multivariable optimization
strategy. At the beginning, the initial values of each
energy storage system must be given as inputs to the

first step. This applies also to a fault case, where the
location of the vessel and the actual status of the com-
ponents must be known to have proper initial values
and correct optimization constraints.

3.1 Object function

The cost function is combined with the factors of the
energy balance equation. Simplified functions for each
device were used in the calculations.

Ctotal total costs
CICE use cost of internal combustion

engines
CRESS use costs of energy storage sys-

tems
Cpenalties total penalty costs
runbin binary, engine running
V vessel velocity
R resistive forces affecting the ves-

sel
c ship dynamics constant
p penalty factor
t travel time
s distance of travel
a appreciation of SOC in the end

Constrained variables of the object function

PICE power reference for the internal
combustion engine (ICE)

PRESS power reference for the recharge-
able energy storage system
(RESS)

The total cost sum is calculated per steps ∈
[1..nsteps] as in the equation

Ctotal =

( nsteps∑
j=1

CICEj + CRESSj

)
+
∑

Cpenalties

(1)

The internal combustion engine costs include the
starting cost of the engine, a cost component as a func-
tion of power used, additional running cost, and a stop-
ping cost.

The energy storage costs represent the lifetime costs,
and in this experiment they were treated as absolute
values, the charging and discharging being thus equally
destructive to the battery. An example of cost func-
tion:
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Ctotal =

nsteps∑
j=1

(
nICE∑
i=1

(
runij (startij ∗ Cstartij

+ CPICE,ij
(Pij) + CtICEi

∗ tj) + stopij ∗ Cstopij

)
+

nRESS∑
i=1

(
|PRESS,ij |∗CRESS,P ij

+ ai ∗
(
Eendi

− Ebegini

))
+

n∑
k=1

Cpenaltiesk

)
+ Cdelay

(2)

The term Cpenalties refers to any number of addi-
tional cost factors. The operational costs of an ICE
can be calculated using a figure based on running hours
and then adding the fuel consumption and starting and
stopping costs.

The power variables must fulfill the power balance
equation

Pbalance =

nunits∑
i=1

(
Pi ∗ ηi

)
(3)

Another point is that relevant efficiencies should be
taken into account when defining the power terms and
how they relate to the equipment variables. The avail-
ability of the equipment is controlled by the power con-
straints. Power reserve and its logical implementation
has been omitted here for simplicity. The efficiency of
the power producers is also taken into account.

Generator and converter losses reduce the input
power of the power balance equation versus the power
reference. The efficiency of the energy storage system
and its DC/DC converters must consider both charg-
ing and discharging, and the vessel speed is calculated
using the effective propulsion shaft power.

3.2 Vessel velocity and travel time

The vessel velocity is then calculated from the power
allocated to the propulsion using the propeller law
equations as explained in the Basic principles of ship
propulsion published by MAN. The resisting forces R
behave as in equation 4, where V is the ship velocity
and c is a ship-related constant.

R = c ∗ V 2 (4)

With a fixed pitch propeller, the propulsion power re-
quired to achieve a certain velocity is calculated by the

propeller law equation MAN Diesel & Turbo publica-
tion (2011)

Pprop = R ∗ V = c ∗ V 3 (5)

Thus, the ship velocity derived from the propeller
law equation is

V = 3

√
1/c ∗ Pprop (6)

and the travel time estimate follows from the vessel
speed over the steps

t =

nsteps∑
i=1

Vi(Ppropi
∗ si (7)

The delay cost Cdelay is the sum of time consumed
by each step compared with the preset target time mul-
tiplied by a penalty factor as

Cdelay = |MIN(0, t− tmax) ∗ pdelay| (8)

3.3 Generator start and stop costs

An engine start cost is added if the engine has not been
running in the end of the previous step

starti =

{
b = 0, if runb,i−1 > 0 and 1 < i ≤ nsteps
b = 1, if runb,i−1 = 0

(9)
Similarly, if the engine is not required during the

step, a stop cost is added. A running condition for the
step is defined as

runi =

{
b = 0, if Pij = 0

b = 1, if Pij > 0
(10)

3.4 Constraint and penalty functions

The power constraints can be defined as

Pmini
≤ Pacti ≤MIN(Pavaili , Pmaxi

) (11)

Distance-based constraints to be defined are:

• Speed limits (based on geographical location or
available power production);

• Use of combustion engine permitted;

• Power use: minimum and maximum power per
production unit;

• Energy storage: minimum and maximum allowed
charge, maximum charge, and discharge currents.

136



Alho et al., “Optimal control of powertrain and energy balance......”

The penalty and cost functions can be presented,
where Cn can refer to excess travel time, storage SOC
out of bounds, velocity out of bounds, and additional
penalties, e.g., to prevent unnecessary variance of ve-
locity.

Cpenalty = Cdelay + Cn + ... (12)

The number of producers online is calculated as a
sum of running engines or available units (e.g., stor-
age). This is governed in the optimization process so
that each step is constrained by a certain minimum
number of producers.

Target values for the optimization, which have to be
adjusted because of the unavailability of certain equip-
ment and change of boundaries, may include:

• Maximum travel time;

• Energy storage SOC in the end of the travel plan;

• Equipment costs; start cost, use cost, stopping
cost.

3.5 Decision variables

In this experiment, the decision variables for the al-
gorithm were the energy balance equation powers P
for each unit. It was thus allowed to freely choose the
operational logic of the generators.

runICEij
binary ”run” variable to each
ICE, if, e.g., engine needs to be
running without load

PICEij
power to be obtained from each
ICE

PRESSij
power reference of each RESS
(here negative sign for discharge,
positive for charge)

3.6 Variable step length

Variable step length was experimented, but it turned
out that the optimization problem became extremely
complex and slow to solve, because the boundary con-
ditions change according to the decision variables and
the behavior of the equation is not easily predictable.
There are ways to simplify this by using a custom op-
timization function that will first rule out all the il-
legal cases and limit the decision variable resolution.
However, on a longer journey it would require cloud
computation to achieve results in an acceptable time.

3.7 Assessment of optimization results

Optimally, the distance-stepping drive references de-
termined by using the cost function would be the input
of a time-stepping ship model that would return more

precise speed and power estimates. The speed limits
and other constraints should be compared against the
results provided by the model to take vessel inertia as
well as roll and drag forces into account.

3.8 Failure of the optimization process

To prevent any failure of the optimization process, any
route-related constraints affected by the limitations of
energy production or propulsion power must be up-
dated. Other rules, such as energy storage SOC appre-
ciation, may have to be changed in order to allow more
power during the emergency operation.

The optimization of such a system is a complex task,
and the resulting surface is an uneven grid that may
cause the optimization algorithm to stop for a local
minimum. If possible, the constraint functions must
be set so that the produced grid or gradient would not
be extremely difficult for the optimization algorithm to
be used.

The optimization process is supposed to produce the
best available resolution that is also best in terms of
cost. If the specification of the energy storage is too
small for the intended travel plan, or in a case of fault,
the energy supply must be provided by allowing the
use of generators. If optimization is not successful, the
constraints prevent finding an optimal solution and it
may be necessary, e.g., to automatically alter the gen-
erator permissions and retry. An automatic emergency
fail safe mode should thus be implemented. The speed
constraints must also be adjusted if the lack of available
power restricts the maximum speed under minimum
level constraints. By using a carefully tuned penalty
logic the algorithm will provide acceptable results.

4 Case example

In this case example, the route plan and ship equip-
ment are imaginary. The case specifications cover the
required parameters and setting up of the optimization
problem. Electric propulsion is simplified to operate as
one unit with powers summed together. To establish
dual electric propulsion, both machines require individ-
ual decision variables and the energy balance must be
weighted according to the value. The required propul-
sion power has to be optimized according to the route
weather conditions. In a simplified case, each motor
unit will reduce its own nominal power of the total
propulsion power available.

4.1 Power equation

In our example calculation, we use a simple power bal-
ance equation. The parameters of each step must fulfill
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the equation. The variable Pstatic represents a static
load or power reserve. The intended use of the vessel
and the active operating mode determine the complex-
ity of the system controlling the power reserve.

Pbalance = Pstatic + PRESS

−PProp

+PGenset1 + PGenset2

Pbalance = 0

(13)

The use of bow and aft thrusters during maneuver-
ing can be included in the static load estimation as a
power reserve, predefined in the route plan for a spe-
cific location. The typical use is high power bursts, and
the overall power consumption varies greatly according
to weather conditions. The power balance is guarded
inside the cost function and penalized if not zero.

4.2 Vessel speed

The vessel speed is obtained by using the propeller
curve. In reality, a more complex model could be used
to cover the compensation of lateral forces and to more
realistically model the acquired speed. In our case, the
propulsion costs were omitted and only the availabil-
ity was observed. The load caused by waves can be
estimated and averaged in the resisting forces added
to the power-to-speed conversion. It is also possible to
combine a time-stepping simulation of the route to in-
clude scheduled events, e.g., a restaurant causing more
power consumption at certain times, but this will fur-
ther complicate the optimization process.

To achieve a more structured approach, implementa-
tion of the control layers and subcontrollers is required.
As pointed out before, these controllers are responsible
for internally optimizing the energy production look-up
tables for decision-making. Allowing subcontrollers to
act according to predefined look-up-tables, optimiza-
tion of the propulsion power requirement can be carried
out more efficiently with fewer decision variables.

4.3 Route constraints

The route constraints consist of speed limits over the
travel steps. The speed constraints are illustrated to-
gether with the result speed estimates in Figure 6.

4.4 Other factors for calculation

The collection of parameters includes

• genset power range, production costs, production
efficiency;

• storage capacity, power limits, operating costs, ef-
ficiency;

• vessel dynamic value and propulsion efficiency;

• route specification as length per step, permitting
of diesel operation, and minimum and maximum
speed accordingly.

5 Results

The optimization method used for this study was a
genetic algorithm. The specific requirements for the
method of optimization depend on the implementation
and complexity of the cost function terms.

Table 1 shows the nominal values of each power train
unit and Table 2 the power constraints and trip-related
values.

Table 1: Parameters

Varible Description Value
c ship dynamic constant 0.045
PRESSin

nominal charge power 800 kW
PRESSout nominal discharge power 2400 kW

Table 2: Constraints

Power system constraints
Pgenset1 0..3000 kW
Pgenset2 0..3000 kW
PRESS -2400..800 kW
ERESS (SOC) 210..1050 kWh

Trip-related boundary conditions
division steps 20
time target 6 h

ERESS/SOC
at start 1040 kWh

end target 500 kWh

Fig. 4 demonstrates the original route plan and Fig.
5 the plan after losing one power producer in the middle
of the trip.

It can be seen in Figure 6 that the estimated ves-
sel velocity is not greatly affected as long as adequate
power production is available. The chosen velocity is a
result of rewarding arrival on time and penalizing de-
lay. In this experiment, the method was able to provide
a valid substitute travel plan with equal travel time.

As can be seen from the figures, the method pro-
vides adequate results, still being able to fulfill the
route and time constraints. It was noted, however, that
poor tuning of the awarding and penalizing factors or
poor design of the generator cost functions may lead to
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Figure 4: Original power optimization plan.

Figure 5: Example of the power optimization plan
modified amid the route after losing genset
1 halfway.

Figure 6: Estimated peak velocity and SOC% for each
segment; original travel plan and substitute
plan with equipment failure halfway.

seemingly irrational decisions by the algorithm. In its
simplest form, the method is insensitive to changes in
vessel velocity, which in some cases can lead to accel-
eration and deceleration during the travel. Because of
the energy storage systems, the route sections may not
be directly sorted to minimize the velocity changes.

6 Discussion

In an equipment failure, the power production and
powertrain management must be capable of providing
a feasible solution first to prevent a blackout and then
to preserve as normal operation as possible. This is
achieved by using a local powertrain and production
manager, which will always protect the vessel power
production according to local control position require-
ments (e.g., operator lever), and an onboard or remote
calculation server, which will update the drive plan ac-
cording to the resources available in the vessel power-
train and production.

In the case of a wider equipment failure (depend-
ing on the vessel topology), and after the local man-
agement has dealt with the acute situation, the man-
agement layer must adapt and provide a new driving
scheme by which the operation can be continued in an
efficient way.

Reoptimization is carried out from the current posi-
tion observing the availability of the equipment, pos-
sibly taking into account additional conditions (e.g.,
weather). Ideally, the actual optimization system
should have a database or web of route options, which
is optimized by using weather data, and use route-
related information to calculate the route dynamics
and then optimize the most viable control strategy for
the powertrain management. The use of constraints
must be considered carefully. For example, it may be
sensible to not penalize the delayed arrival if there is a
major loss of production affecting the maximum vessel
velocity.

As the basic methodology seems plausible, the op-
timization method should be extended to include de-
termination of the route distance resolution and step
lengths to further enhance the optimal behavior of the
energy storage system. This would require coopera-
tion of different individual systems, and thus, signifi-
cant computational resources. Naturally, it would be
ideal to perform the calculation on a cloud server or the
like and provide the updated optimal route plan for the
vessel system so that the control system or crew can
take appropriate measures.

Basically, the method proposed to optimize the
power production aims at an average velocity of the
vessel over a certain distance. The resulting power de-
mand offers an average of the estimate for the trip seg-
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ments. In reality, the propulsion power fluctuates if
driven with a speed reference, and thus, there must
be reserve to take care of the energy required by dif-
ferent wave and wind conditions. On the other hand,
if driven with a power reference, the speed fluctuates.
Therefore, in its simplest implementation, the current
estimation works on the principle of average power.
Ideally, a ship model would be included that could fur-
ther estimate the power requirements and vessel veloc-
ity against the limitations and driving conditions.

7 Conclusions

Using distance steps in optimization makes the opti-
mization relatively fast and easy to manage as the se-
lected route and its constraints are typically static con-
stants, also in the case of an equipment failure. The
only exception would be a case of rerouting. In a time-
stepping approach, each step of distance would be vari-
able and extend the complexity of the optimization.

The actual acceleration and its effects on the costs
of travel were not considered important in this study,
as the distance of the steps would more or less average
the behavior of the vessel. For example, for a small
vessel in the case of a 5 km step, the required power
can be estimated by using step power references.

The use of different values in the penalizing functions
significantly affects the optimization results, and thus,
the parameters must be carefully tuned for each sys-
tem. This is especially true for the engine costs. In the
case of faulty equipment, some constraints may have
to be loosened or forgotten, and time limits may also
have to be adjusted or at least the current top speed
has to be used to calculate the minimum time frame
for the route.

The approach taken in this paper is relatively simple
to implement and was found feasible. It is possible to
control multiple generators as a combined power plant
and by dividing the solution of the optimization prob-
lem into several control layers.
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