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Abstract

This paper presents a system for the estimation of ship deck motion using camera, lidar and gyroscopes.
A camera is used in a vision system that is based on the detection of lines as input to a vanishing point
detector. This is done under a Manhattan assumption for man-made structures where the majority of
lines are along 3 orthogonal axes. Two sets of parallel orthogonal lines are detected for the ship deck, and
this is used to estimate the attitude using a complementary filter with input from lidar and gyroscopes.
Since the vision algorithm depends on lines rather than points, the system is more resistant to occlusions
like vision algorithms based on point tracking. In addition, a lidar is used to measure the distance between
the sensor frame and the plane, and gyroscopes are used to improved the accuracy of the estimates. The
system is validated in real time in lab experiments on a model of a ship.
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1 Introduction

Crane operations from one ship to another is still heav-
ily dependent of human interaction. The consequences
of a failure could be grave, with potential damage on
cargo and ship, and injuries on human operators in-
volved in the process.

The topic of marine crane control has been an ac-
tive topic of research in the last decades, as seen from
the reviews in Abdel-Rahman et al. (2003) and Ramli
et al. (2017). Also the topic of sensors for crane con-
trol in marine applications has been studied, where an
important research field is the measurement of payload
motion, which is considered in Rauscher et al. (2018)
where a IMU was mounted in the crane hook, and in
Tysse et al. (2021) where a camera is used to track the
motion of markers on the wire. Also the tracking of
the target ship motion can be important when there
is significant wave motion to ensure that the payload
of the crane is give a soft landing on the deck of the
target ship. This was investigated in Tørdal and Hov-

land (2019), where an extended Kalman filter (EKF)
was formulated to estimate the relative pose between a
crane ship and a target ship for safe landing of the pay-
load on the target ship. This system used an accurate
industrial motion reference unit (MRU) in combination
with a laser tracker.

A related sensor problem appears in the control and
automatic landing of unmanned aerial vehicles (UAVs).
In Lin et al. (2017) a system for the landing of a UAV
on a cluttered ship-deck environment was presented,
where the H marker of a helicopter landing pad was
identified. In Patruno et al. (2019) a system for auto-
matic landing of a UAV on ship deck was presented,
where a vision system was used to identify the heli-
copter landing pad. Autonomous landing on a mov-
ing target with a camera system and fiducial markers
was studied in Polvara et al. (2017), where a UAV was
landed on a moving target in an experiment.

To track the motion of a target ship with camera
it is required to have reliable feature extraction. A
ship deck is an example of a man-made structure where
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there are many parallel lines, and many of these lines
will cluster orthogonal directions along the coordinate
axes of the ship-fixed coordinate frame, which is re-
ferred to as the Manhattan assumption Coughlan and
Yuille (2003). Line detection is less prone to prob-
lems with occlusions than point detection. As shown
in works such as Zitnick and Dollár (2014), this may be
beneficial when determining relative pose. Perspective-
n-Lines (PnL) is a common way to determine the rel-
ative camera pose using the correspondences between
3D reference features and their 2D projections, where
the features are lines Xu et al. (2017). To apply PnL
it is required that the 3D lines are known in the scene.
This is possible in target ship tracking if lines of the
ship have been identified from the geometric design
data of the ship. However, this is not a practical so-
lution for a crane ship that is to serve a wide range of
target ships, so some other technique would be useful
to determine relative attitude without any prior knowl-
edge of the target ship.

Points at infinity in the scene are mapped to vanish-
ing points in the image Hartley and Zisserman (2004),
Ma et al. (2003). Vanishing points have been impor-
tant in calibration Caprile and Torre (1990), and are
used in calibration toolboxes Bouguet (1999). Van-
ishing points are also used in combination with the
Manhattan assumption in Coughlan and Yuille (2003).
Then it assumed that the majority of lines are along
three orthogonal directions. This result is then used to
find the relative orientation between the camera and
the Manhattan directions. Early work on the detection
detection of vanishing points was based on the Hough
transform Barnard (1983), Magee and Aggarwal (1984)
where the direction of the intersection for each of the
possible line pairs was computed and accumulated in
the angular bins.

One of the major issues with estimating vanishing
points is to know which line segments correspond to
the relevant vanishing points, and which lines that are
outliers. A way to detect vanishing points is to ap-
ply segmentation methods, based on random sampling
methods such as multi-RANSAC Zuliani et al. (2005),
however, this would require knowledge of a number of
models in the image. Other solutions are based on J-
linkage Toldo and Fusiello (2008) and T-linkage Magri
and Fusiello (2014), which give good results for clus-
tering of lines. An important contribution is due to
Tardif Tardif who used J-linkage for clustering of lines
to identify vanishing points according to the Manhat-
tan assumption. This technique has certain limitations
when it is used for tracking the motion of a target ship.
In particular, J-linkage clustering method may be non-
optimal when the majority of line segments are parallel
and belong to only one of the vanishing points. In this

case the Jaccard distance in the J-linkage method be-
comes very small for small line clusters. Moreover, line
segments that coincide happen to disturb the cluster-
ing process and result in erroneous detected vanishing
points.

In this paper we present a system for camera tracking
of the deck of a target ship. The lines that characterize
the ship deck are identified with a clustering technique
based on J-linkage and the Manhattan assumption as
used in Tardif. We replace the Jaccard distance used
in Tardif with another similarity measure, and use pre-
processing to reduce the number of line segments in the
clustering to achieve real-time performance. The cam-
era system is used in combination with a lidar, and
one gyroscope in the crane tip, and one gyroscope on
the target ship. The attitude estimator was based on
the combination of the complementary filter on SO(3)
Mahony et al. (2008), and a low pass filter on the lidar
measurements. The main difference from Tørdal and
Hovland (2019) is that we use inexpensive sensors like
cameras, lidar and gyroscopes, which makes it neces-
sary to develop the required vision algorithms. The
paper does not address the control of the crane pay-
load, only the sensor system. The proposed system
was validated in experiments in a lab setup.

This paper is organized as follows: Section 2 contains
the preliminaries, Section 3 describes the sensors used
in our experiment setup, Section 4 describes the ob-
server used for plane estimation, the algorithm for es-
timating vanishing points is described in Section 5 and
finally experiments results are shown and presented in
Section 6.

2 Preliminaries

2.1 The Special Orthogonal Group SO(3)

Consider the set of rotation matrices SO(3), which is
a matrix Lie group, and the corresponding Lie algebra
so(3) (Mueller, 2019). A rotation matrix R ∈ SO(3)
is given by the exponential mapping

R = exp(u×) ∈ SO(3) (1)

where

u× =

 0 −uz uy
uz 0 −ux
−uy ux 0

 ∈ so(3) (2)

is the skew symmetric form of the vector u =
[ux, uy, uz]T. The vector form of the logarithm can
be written u = θk where θ = ‖u‖ is the rotation an-
gle and the unit vector k is along the axis of rotation.
Then if |θ| < π the logarithm of R is

u× = logR ∈ so(3) (3)
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The angular distance da(R, I) from R to the identity
I is given by (Hartley et al., 2013)

da(R, I)2 = ‖u‖ = θ (4)

The angular distance is also known as the geodesic dis-
tance. The angular distance is biinvariant, and it fol-
lows that the angular distance between two rotation
matrices R1 and R2 is da(R1,R2) = da(RT

2R1, I).
The exponential in SO(3) can be computed for all

u× from

expu× = I + sinc(θ)u× +
1

2
sinc2

(
θ

2

)
u×u× (5)

This result is obtained from (Park, 1995) by inserting
sinc(x) = sin(x)/x and sinc2(x/2) = 2(1− cos(x))/x2.
Computation around x = 0 can be done with the Tay-
lor series expansions sinc(x) = 1 − x2/6 + . . .. The
logarithm can be computed for ‖u‖ < π from

u× =
θ

2 sin θ

(
R−RT

)
, θ = arccos

(
trR− 1

2

)
(6)

where the Taylor series expansion x/ sin(x) = 1 +
x2/6 + . . . can be used around x = 0.

The kinematic differential equation on SO(3) is
given as

Ṙ = ω×l R = Rω×r (7)

where ωl is the left angular velocity, and ωr is the right
angular velocity.

2.2 Computation of the Mean Element on
SO(3)

Consider the set of rotation matrices Ri ∈ SO(3), i =
1, . . . , N . Let µ ∈ SO(3) be the average rotation with
respect to the angular distance, and let R̃i = µTRi be
the deviation between µ and Ri (Hartley et al., 2013).
The logarithm of R̃i is denoted u×i = log(R̃i), where
ui = θiki. Suppose that |θi| < π/2. Then the mean µ
minimizes

N∑
i=1

da(Ri,µ)2 =

N∑
i=1

da(R̃i, I)2 =

N∑
i=1

θ2i (8)

The mean µ will satisfy the condition (Moakher, 2002)

N∑
i=1

log(R̃i) = 0 (9)

and can be computed by iteration as follows (Manton,
2005). Initialize the mean with µ as µ := Rj for an

arbitrary rotation matrix Rj and choose a tolerance
value λ > 0. The average rotation matrix µ is then
found from

ε×i = log(µTRi) (10)

ε̄ =
1

N

N∑
i=1

εi (11)

µ : = µ exp(ε̄×) (12)

where (10), (11) and (12) are iterated until
√
ε̄Tε̄ ≤ λ.

2.3 Points and Lines in 2D

A point p = [x, y]T ∈ R2 in the plane can be repre-
sented by the homogeneous vector x = [pT, 1]T ∈ P2

in the projective space P2. The homogeneous point
x and the scaled homogeneous point αx represent the
same Euclidean point p for α 6= 0.

Consider the homogeneous point x = [αaT, 1]T

where a ∈ R2 is a unit vector. Then (1/α)x =
[aT, 1/α]T will represent the same point p = αaT. In
particular, if α tends to infinity, then p will tend to
infinity in the direction of a, and (1/α)x = [aT, 1/α]T

will tend to z = [aT, 0]T, which is said to be a point
at infinity.

A line in the the plane can be represented by the
homogeneous vector ` = [a, b, c]T where n = [a, b]T

is the normal vector to the line. Then a point x is
on the line ` if and only if `Tx = 0. If it is given
that two homogeneous points x1 and x2 are on the
same line `, then the line is given by ` = x×1 x2. It
is straightforward to verify that this implies `Tx1 =
`Tx2 = 0.

Consider the two lines `1 = [nT
1 , c1]T and `2 =

[nT
2 , c2]T, and suppose that the angle between the

two lines is α ∈ [−π/2, π/2]. Then the angle be-
tween the two normal vectors n1 and n2 will also
be α, and it follows that n×1 n2 = sinα|n1||n2| and
nT

1 n2 = cosα|n1||n2|. This can be used to define the
distance measure

d(`1, `2) =
n×1 n2

nT
1 n2

= tanα (13)

between the two lines `1 and `2.

2.4 Points and Planes in 3D

A point t = [x, y, z]T ∈ R3 in the 3 dimensional Eu-
clidean space R3 can be represented by the homoge-
neous point X = [tT, 1]T ∈ P3. A point X = [aT, 0]T

where a ∈ R3 is a point at infinity in the direction of
a.

A plane is represented by the homogeneous vector
π = [nT, d]T where n = [n1, n2, n3]T is the normal
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Figure 1: A plane π can be described in terms of a
surface vector n of unit length and a scalar
d which describes the shortest distance be-
tween the origin O of the selected coordinate
frame and the point P ∗ which is the point on
π being the closest to O.

vector of the plane, and d is related to the distance
from the origin to the plane. The homogeneous point
X is on the plane π if and only if

πTX = 0

It follows that if X = [tT, 1]T is on the plane, then
d = −nTt, and it follows that if n is a unit vector, then
−d is the distance from the origin to the point P ∗ on
the plane that is closest to the origin. An illustration
is provided in Figure 1.

Suppose that all the points X on the plane π un-
dergo a motion to X ′ = TX where T ∈ SE(3). Then
the plane will move to π′ = T−Tπ. This is seen from
(π′)TX ′ = πTT−1TX = πTX = 0, which shows that
X ′ is on π′.

2.5 Camera model

Consider a point with position given by the homoge-
neous vector Xo ∈ P3 in the object frame o. The po-
sition of this point in the camera frame c is given by
the homogeneous vector Xc = [X1, X2, X3, X4] ∈ P3

where Xc = TXo and

T =

[
R t
0T 1

]
∈ SE(3) (14)

is the homogeneous transformation matrix from the
camera frame c to the object frame o. This point is
imaged to the homogeneous point s = [sx, sy, 1]T in
the normalized image plane, where sx = X1/X3 and
sy = X2/X3, and to the homogeneous point x = Ks
in pixel coordinates, where x = [u, v, 1]T and K is the
camera parameter matrix. The camera model can then
be written

λx = K[R | t]X (15)

where λ = X3 is the depth coordinate.

2.6 Vanishing points

Suppose that a point in the camera frame is given by
Xc = [aT, 0]T where a = [a1, a2, a3]T is a unit vec-
tor. Then Xc is a point at infinity in the 3D scene.
This point at infinity is mapped to normalized image
coordinates as the point

λs = a (16)

If a3 6= 0, then s is a finite point which is called a
vanishing point. In this case the vanishing point s in
the image represents a point at infinityXc in the scene.
In the special case a3 = 0, the point has zero depth,
and the point s will be a point at infinity.

2.7 Parallel lines in the scene

Consider a line in the 3D scene through the two
points X = [xT, x4]T and Y = [yT, y4]T where x =
[x1, x2, x3]T and y = [y1, y2, y3]T. The line is given in
Plücker coordinates as

L = (x4y − y4x,x×y) (17)

where y − x is the direction vector and x×y is the
moment. To find the representation of this line in the
normalized image plane it is noted that X is imaged
to sx = (1/x3)x and Y is imaged to sy = (1/y3)y.
The resulting line ` in the image plane is through the
points sx and sy, which gives the homogeneous line

` = s×x sy = (1/(x3y3))x×y (18)

in the normalized image plane, which can be scaled to
` = x×y, which is the moment of the 3D line L.

Next, suppose that the 3D line is through the point
X = [xT, 1]T and the point [a, 0]T at infinity. Then
the line is

L = (a,x×a) (19)

where the direction vector is given by the point at in-
finity. It is noted that all lines that intersect at the
same point at infinity will be parallel and vice versa.
This line is imaged to the homogeneous line

` = x×a (20)

in the normalized image plane. It is recalled that the
point [a, 0]T at infinity is imaged to the vanishing point
s = a. This means that if there are n parallel lines Li

in the 3D scene, where Li passes through the point xi

and the point [aT, 0]T at infinity, then the correspond-
ing lines `i = x×i a in the normalized image plane will
intersect at the vanishing point s = a.
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Figure 2: Block diagram of the passive complementary filter (in red) for the attitude estimation with bias
correction, combined with the low pass filter (in blue) on the lidar measurements which provide the
estimated plane.

3 Complementary Filter and
Low-Pass Filter for Plane
Estimation

3.1 Estimation of a Plane

Let a plane π at time instance tk be described as

πk =

[
nk

dk

]
∈ R4, ‖nk‖ = 1 (21)

where nk ∈ R3 is a unit surface normal of the observed
plane, and dk ∈ R is the shortest distance between the
origin of the selected inertial frame and the plane.

We will assume that a plane evolves over time on the
form

πk = T−Tk π0 (22)

where π0 = [nT
0 , d0]T denote a plane initiated at time

instance t0. It is noted that unless anything else is
specified, the surface vector of the initialized plane is
set to n0 = [0, 0, 1]T, and the scalar term is set to
d0 = 0. However, n0 and d0 can be arbitrarily chosen
by the practitioner. The matrix

Tk =

[
Rk tk
0T 1

]
∈ SE(3) (23)

is the homogeneous transformation matrix at tk, and
T−Tk is the corresponding form for plane transforma-
tions (Hartley and Zisserman, 2004, p. 68). The plane

πk is then given on the form

πk =T−Tk π0 =

[
Rkn0

d0 − tTkRkn0

]
(24)

where tk can be any arbitrary point on the observed
plane. The estimated plane is written in the form

π̂k =

[
n̂k

d̂k

]
(25)

where n̂k = R̂kn0 and d̂k = d0 − nT
0 R̂

T
k t̂k. The plane

π could be used as a state vector, but we choose to
define a state element

x = {R, d} (26)

which is an element of SO(3) and a scalar R. This
allows us to employ the dynamics given in (7), and the
complementary filter on SO(3) can be used directly.

3.2 System Model

The rotation matrix to be estimated describes the rel-
ative attitude between the camera frame c and a coor-
dinate frame fixed on the observed ship deck, s, and is
denoted Rc

s. The corresponding dynamics is, as in (7),
given by the following kinematic differential equation

Ṙc
s = Rc

s[ω
s
sc]
× (27)

where ωs
sc describes the relative angular velocity be-

tween s and c, given in s. The relative angular velocity
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between frame s and c, being expressed in s, is given
as

ωs
sc =ωs

is − ωs
ic (28)

=ωs
is − (Rc

s)
Tωc

ic

where i denotes the inertial frame.
Let t(t) = [0, 0, r(t)], where r denotes the true

distance between the origin of c and the observed plane,
along the z-axis of c. We will assume that the dynamics
of r is random walk, such that ṙ(t) = v(t) where v(t)
is unknown.

3.3 Measurement Models

The sensor configuration consists of a camera for mea-
suring relative attitude, and a lidar to measure the dis-
tance between its sensor frame and the observed ship
deck. Moreover, two IMUs are mounted on the sensor
bracket and the observed ship.

Camera Measurements

The vision algorithm measures structural lines on the
observed ship, which in turn will be used to construct
a rotation matrix R ∈ SO(3) which describes the rel-
ative orientation between the camera frame c, which
for brevity coincides with a, and the observed plane
which will be denoted π. The measured attitude Ry is
assumed to be on the form

Ry =RR̃ ∈ SO(3) (29)

where R̃ = exp(η∧R) is the left-invariant measurement
error of the attitude, ηR ∈ R3 denotes white Gaussian
measurement noise, and R is the true attitude.

Lidar Measurements

The lidar measures a distance r between the lidar fixed
frame L and a point on π. We assume that the mea-
sured value can be written as the sum

ry = r + ηr (30)

where r is the true distance, and ηr is a noise term. If
the z axis of the lidar-fixed frame is parallel with the
sensor direction, then we can represent the measure-
ment as the vector ty is given on the form

ty = (0, 0, r)T + (0, 0, ηr)T (31)

Gyroscope Model

The IMUs are used to measure the angular rate of A
and B, and when combined with the relative attitude

RA
B , we can measure the relative angular velocity be-

tween A and B which is important for controlling pur-
poses. The measured angular velocity ωy data will, as
in (Kok et al., 2017), be assumed to be on the form

ωy =ω + bω + ηω ∈ R3 (32)

where ω is the true angular velocity, bω ∈ R3 is a slowly
time-varying bias term, and ηω is the white, Gaussian
noise.

3.4 Filter Design

The estimator is designed such that an attitude es-
timator and a low pass filter run independently, and
their respective outputs are combined such that a full
plane description can be provided, as illustrated in Fig.
2. The attitude estimator is the complementary filter
formulated on SO(3) (Mahony et al., 2008), while the
low pass filter is simply an observer based on negative
feedback with an observer gain.

Complementary Filter on SO(3)

The kinematics of the complementary filter are as-
sumed to be given on the form

˙̂
R =R̂

(
ωy − b̂+KReR

)×
(33)

˙̂
b =−KbeR (34)

where e×R = 1
2

(
R̃− R̃T

)
, and the estimated angular

velocity is, based on the deterministic components of
eq. (32), related to the measurements and the bias term
as

ω̂ = ωy − b̂ (35)

The matrix R̃ represents the left-invariant error rota-
tion introduced in eq. (29), which in practice is found
as the error between the measurement and the esti-
mate, i.e. R̃ = R̂TRy. It is noted in systems where

IMUs are not accessible, ωy = 0, and
˙̂
b = 0, which

gives
˙̂
R = R̂(KReR)×.

The filter configuration is illustrated in terms of a
block diagram in Figure 2. The discretized form of
eq. (33) and (34) gives

R̂k =R̂k−1 exp
(
h(ωy,k − b̂ω,k +KRe

×
R,k)

)
(36)

b̂ω,k =b̂ω,k−1 − hKbeR,k (37)

where h is the time step.

104



Holen et al., “Estimation of Ship-Deck Motion using LIDAR,Gyroscopes and Cameras”

Figure 3: An illustration of clustered lines in the image.
Lines of same color are assumed parallel, and
the rotation from camera down to the ship
deck is illustrated in the form of an axis.

Low Pass Filter for Lidar Measurements

Let rk be the true distance at tk, let ṙk be the rate
of change of the true distance, and let r̂k and v̂k = ˙̂rk
represent the estimated distance and estimated rate of
change, respectively. The discretized solution of the
random walk model is r̂k+1 = r̂k + hv̂k over the time
step h = tk+1 − tk. Moreover, consider the error term
ek = ry,k− r̂k, where ry,k = rk +ηk is the measurement
model in eq. (30), and ηr is the noise term. The filter
can then be formulated as

r̂k+1 = r̂k + h(v̂k +K1ek) (38)

v̂k+1 = v̂k + hK2ek (39)

where K1 and K2 are positive, user defined parameters.
It is noted that as the estimated velocity term v̂ is
driven by the error term e and not by a system model
or any sensor measurements directly, it is actually a
bias term.

The output r̂k is used to define the estimated dis-
tance vector t̂k = [0, 0, r̂k] as in eq. (31), which in
combination with the output from the attitude filter,
n̂k = R̂kn0, the estimated plane distance is computed
as d̂k = −n̂T

k t̂k.

4 Vanishing point detection

The vanishing point detection method used in this pa-
per is based on J-linkage method in (Tardif). The
method is extended in the present paper for real-time
performance with the following features. Firstly, we
merge potential line segments from the line segment
detector in a preprocessing stage. Secondly, instead of
the Jaccard distance used in (Tardif) for clustering we
use a different similarity measure which is more suited

for the small line clusters, as the Jaccard distance gets
very small for small clusters, which typically occurs in
our experiments. Thirdly, we use a distance function
between lines based on angle instead of translation.

Parallel lines in the 3D scene will intersect at a point
at infinity. These parallel lines are mapped to the im-
age plane as lines that intersect at the vanishing point
corresponding to the point at infinity in the 3D scene.
In a man-made 3D scene, it can be expected that the
majority of the lines will belong to sets of parallel lines.
These sets of parallel lines can be found by detecting
the corresponding lines in the image, and then check
if these lines intersect at a vanishing point. Lines in
the image are found with a line segment detector, and
then candidates for the vanishing points can be found
as intersection points for the lines that are identified in
the image.

The Line Segment Detector will give a set of M line
segments where line segment i the two endpoints ei1
and ei2. The resulting line is then

`i = e×i1ei2 (40)

The midpoint of the line segment `i is at eic =
(1/2)(ei1+ei2). A condition for the two lines `i and `j
to coincide is that the midpoint eic of line `i is on line
`j , and that the angle between the two lines is zero.
This is checked with the approximate conditions

`Tj eic

‖nj‖
≤ ε and d(`i, `j) ≤ ψ (41)

where ` = [nT
j , cj ]

T and d(`i, `j) is the distance func-
tion defined in (13), which equals the tangent of the
angle between the lines. The threshold values are set
to ε = 4 and ψ = 0.01, which is the maximum pixel off-
set. If the two lines are considered to coincide, then the
two lines are merged, which will decrease the number
of lines that needs to be evaluated from M to K ≤M .

4.1 Preference matrix

From the set of K lines, a set of N hypothetical van-
ishing points vn, n = 1, . . . , N are generated from

vn = `×in`jn (42)

where in, jn ∈ {1, . . . ,K} are randomly chosen indices
for n = 1, . . . , N .

It is then checked which of the remaining lines Ll,
that pass through the hypothetical vanishing point vn.
This is done by checking if the test line

`ln = e×lcvn (43)

from the midpoint of line `l to the vanishing point vn is
coincident with `l. This is checked with the condition

d(`ln, `l) ≤ 0.05 (44)
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If this condition is satisfied, then `l is considered to
pass through vn.

This is encoded in a K ×N preference matrix P =
{pln} where pln = 1 if `l passes through vn, and zero
otherwise. This means that row l corresponds to line
`l, and column n corresponds to vanishing point vn.

4.2 Clustering

It is assumed that all lines passing through the vanish-
ing point vn correspond to parallel lines in the scene.
These lines are therefore grouped in the same set Kn,
with elements encoded by column n in P . Each row
Pl in the preference matrix P encodes the vanishing
points that are intersected by the line `l. If the rows
Pl1 and Pl2 of P are sufficiently similar, then the cor-
responding two lines `l1 and `l2 are considered to be
coincident. The degree similarity between two rows
was described with the Jaccard distance

dJ(Pl1 ,Pl2) =
|Pl1 ∪ Pl2 | − |Pl1 ∩ Pl2 |

|Pl1 ∪ Pl2 |
(45)

in (Tardif). Here |Pl1 ∪ Pl2 | denotes the number of
columns where the rows Pl1 or Pl1 (or both) has a
one, while |Pl1 ∩Pl2 | is the number of rows where both
rows Pl1 or Pl1 has a one.

Instead we used the similarity measure

dS(Pl1 ,Pl2) =
|Pl1 ∩ Pl2 |

|Pl1 ⊕ Pl2 |+ |Pl1 ∩ Pl2 |
(46)

where |Pl1 ⊕ Pl1 | is the number of rows where Pl1 or
Pl1 (but not both) has a one. By using the exclusive
disjunction Pl1⊕Pl1 the system seems to be more sensi-
tive to smaller clusters as the non-relevant elements in
the preference sets are not considered when calculating
the similarities.

The similarity measure is calculated for all combina-
tions of two rows in P , the two rows with the highest
similarity measure are merged into one row where an
element is zero where both rows has zeros, one where
both rows have ones, and one where one row has zero
and the other has one. An updated P matrix is stored
where the two rows are replaced with the new row, and
the two lines are put in the same cluster of lines. This
is repeated with the updated matrix until the highest
similarity measure between two lines is below 0.3, and
the final result is stored in Pf . Then each row in Pf

will represent a cluster of lines with a potential vanish-
ing point. It is assumed in this paper and experiment
that the two clusters which contain the most lines will
correspond to the two vanishing points in the x and y
directions in agreement with the Manhattan assump-
tion. These two clusters are denoted Kx and Ky, where
the lines in the cluster Kx correspond to lines in the

3D scenes that are parallel to the x axis, while the lines
in Ky correspond to 3D lines that are parallel to the y
axis.

4.3 Refining the vanishing points

Consider the sets of linesKn, n = 1, 2 obtained through
the clustering process. If the cluster Kn only consists of
two lines the vanishing point is found as vn = `i×`j . If
the set Kn consists of more than two lines the vanishing
point can be found by minimizing the angle distance
function according to

v∗n = arg min
vn

∑
`j∈Kn

d(`j , e
×
jcvn) (47)

where e×jcvn is the line going through the estimated
vanishing point and the centre point ejc of line segment
`j .

4.4 Rotation estimation

A homogeneous point X in the 3D scene is mapped
to the corresponding homogeneous pixel point x in the
image plane as

x = K[R | t]X (48)

The Manhattan assumption states that all surfaces
in the man-made environment are aligned with three
dominant directions, corresponding to the points at
infinity which is defined as X = [1, 0, 0, 0]T, Y =
[0, 1, 0, 0]T and Z = [0, 0, 1, 0]T. As the points are not
finite the last element in the direction representation
is zero. The points at infinity can then be mapped to
the image plane such that

λvx = K[R | t]X (49)

λvy = K[R | t]Y (50)

λvz = K[R | t]Z (51)

where λ is the depth coordinate. Then the columns of
R = [r1, r2, r3]T can be found from

r1 =
K−1vx
‖K−1vx‖

, r2 =
K−1vy
‖K−1vy‖

, r3 =
K−1vz
‖K−1vz‖

(52)

However, as all of the above vectors are orthogonal only
two vanishing points are needed, and the last column
of the rotation matrix can be found as

r3 = r1 × r2 (53)

The computed rotation matrix R may not be or-
thogonal due to measurement inaccuracies. Then the
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closest orthogonal matrix Ro is found from the orthog-
onal Procrustes problem (Golub and Van Loan, 1996)

min
Ro∈SO(3)

‖Ro −R‖2F (54)

which is equivalent to maximizing the trace of RoR
T.

The solution is (Umeyama, 1991)

Ro = Udiag(1, 1,det(UV T))V T (55)

where R = UΣV T is the SVD of R.

Figure 4: The experiment setup consisting of a Stewart
platform with a ship and an IMU attached
and a robotic arm with a camera, lidar and
an IMU attached at the end effector.

5 Experiments and Results

This section presents experimental validation of the
measurement systems, the vanishing point detection,
and the performance of the total system with filtering.
A small scale lab was made to test the vision algorithm
along with the gyroscopes and the lidar. As seen in Fig-
ure 4, a ship model was mounted on the motion base
of a Stewart platform, along with a gyroscope. The
platform was controlled by a computer where an in-
put signal based on a sum of sine and cosine functions
was generated to simulate wave motions. Moreover, a
robot arm was used to simulate the crane motion from
another ship. A sensor package consisting of a monoc-
ular camera, a lidar distance sensor and a gyroscope
was attached to the end effector of the robot.

The ground truth data was provided by an ArUco
tracking system (Garrido-Jurado et al., 2014). The
ArUco system tracked a printed set of 35 fiducial mark-
ers arranged in a 5 by 7 grid to ensure high accu-
racy. The measured position and attitude was obtained
by computing a mean position and rotation based on
which markers being available in the image frame.
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Figure 5: Angular distance with raw VPD data
(dashed black curve), filtered VPD data (red
curve) the found truth from the ArUco sys-
tem (blue curve).

5.1 Validation of Measurements

In the first experiment the relative pose between the
ship and the sensors was static. Attitude measurement
were obtained with a camera running vanishing point
detection (VPD) to identify the deck of the ship. The
distance measurements were performed with a lidar.
The measurements were filtered with the observer with
the gains KR = 2.5 · 10−2, Kb = 2.5 · 10−3, K1 =
0.1, and K2 = 0.01. In the experiment, the unfiltered
raw measurements and the filtered measurements were
compared to the ground truth from the ArUco system.

The uncertainty in the attitude measurements is de-
scribed in terms of the standard deviation of the angu-
lar distance, which is computed from

σ2 =
1

N

N∑
i=1

θ2i (56)

Validation of Attitude Measurements

With reference to Figure 5 the ground truth from the
ArUco system was very accurate with low noise. The
results in Table 1 show that the raw data had a stan-
dard deviation of about 0.48◦ degrees in the angular
distance, while the filtered data had a standard devi-
ation of about 0.1655◦ in the angular distance using
filter gain KR = 5 and no bias correction. It is noted
that a higher KR gain gives faster system respone, but
increased noise, while a lower gain gives slower response
and reduced high frequency noise. The ground truth
from the ArUco system had a standard deviation of
0.0727◦ in the angular distance.
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Table 1: The standard deviations of each data set con-
sisting of geodesic distances on SO(3) are
shown in degrees.

Data set Raw data Filtered
data

ArUco

Std.dev. 0.4801 0.1655 0.0727

Table 2: Standard deviations of plane distances, given
in centimeters. It is noted that the estimated
distance was initiated by the first lidar and
attitude measurements.

Data set Raw
data

Filtered
data

ArUco

Std.dev. 1.7925 1.6694 0.0593

Validation of Lidar Measurements

The distance from camera sensor and to the plane
of the ship deck was measured to be 40.2 cm. The
raw data from the lidar had a standard deviation
of 1.7925 cm. The filtered lidar measurement had a
standard deviation of 1.6694 cm using the filter gains
KR = 5, K1 = 7 and K2 = 2. The ground truth
from the AruCo system had a standard deviation of
0.0593 cm. The curves are shown in Figure 6, and the
standard deviations are given in Table 2.
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Figure 6: The black plot shows the plane distance ob-
tained by the raw data from the lidar mea-
surements and the VPD algorithm. The red
plot shows the output from the filter shown
in Fig. 2, while the blue plot is the distance
based on the fiducial markers.

5.2 Vanishing point detection

In the second experiment it was investigated how the
number N of hypothetical vanishing points influenced
the the computational time and the accuracy of the
vanishing point detection. In this investigation 4 dif-
ferent images were used where the deck of the ship was

imaged from different angles. One of the 4 images is
shown in Figure 7. The hypothetical vanishing points
are generated from randomly selected line segments, so
each image was processed 250 times and the average ac-
curacy was found as the standard deviation in the an-
gular distance as given by (56). In addition, the aver-
age computation time for the 4 images was found. The
results are presented in Table 3. In (Tardif) 500 hypo-
thetical vanishing point were used for vanishing point
detection. The experimental results obtained here in-
dicate the 200 is a better number for the hypothetical
vanishing points. At this number the standard devi-
ation was only slightly higher than with 500 or 1000
points, and the running time was significantly better.
From our results it is seen that 200 points give a com-
putational time of 25 ms, which allows for a frame rate
up to 40 frames per second.

Figure 7: The top image shows the line segments which
have been detected while the bottom image
shows the vanishing points detection based
on these line segments. The blue lines are
considered to be parallel in the x direction,
and the red lines are parallel in y direction.

The tests were conducted with an Intel Core
i7 1.30 GHz computer with 32 GBs RAM on
Ubuntu 21.04.

5.3 Case Studies

Three case studies were conducted on the experimental
data. The ship was actuated with a Stewart platform
which simulated a wave motion, and sensors were at-
tached. The camera sampled line and marker data si-
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Table 3: Standard deviation in degrees for each of the
4 test images as a function of the number of
hypotheses for vanishing points. The average
computation time in ms is shown in the last
line.

N 50 100 200 500 1000
Image 1 0.6360 0.2406 0.1776 0.1203 0.09167
Image 2 2.481 2.286 1.719 1.432 1.381
Image 3 18.64 0.6474 0.4985 0.4870 0.4641
Image 4 11.60 0.8480 0.1891 0.1318 0.1031
Av. time 17 19 25 41 69

multaneously to build two comparable data sets. More-
over, the lidar measured the distance between the sen-
sor bracket and the planar surface. One gyroscope was
attached to the sensor package on the robot, and one
gyroscope was attached to the ship deck.

Case 1

In Case 1, a time history was recorded for a predeter-
mined ship motion over 60 s. Vanishing point detection
and lidar data were used to track the ship deck. No gy-
roscopes were used in this experiment. The filter gains
were KR = 10, Kb = 0.01, K1 = 7 and K2 = 2. The
unfiltered measurements and the filtered measurements
were compared to the ground truth. The measured and
estimated relative attitude between the ship deck and
the camera frame in shown in Figure 8.
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Figure 8: The plots show the measured, estimated and
true Euler angles of the rotation matrices
which represent the relative attitude between
the sensor frame and the observed plane.

The raw measurements of the attitude had a stan-
dard deviation of 0.43◦ with a maximum error distance
of 3.59◦ relative to the ground truth. The estimated
attitude had a standard deviation of 0.38◦, and a max-
imum angular erro of 2.14◦. The time history of the
error attitudes is shown in Figure 9.

The plane distances based on the unfiltered lidar
and attitude data had a standard deviation of 1.72 cm,
and the maximum error distance was 6.10 cm The es-
timated plane distances had a standard deviation of
0.93 cm, and a maximum error of 3.23 cm. The error
distances over time is shown in Figure 10.
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Figure 9: The black plot shows the measured geodesic
distance between the measured rotation ma-
trices and the true attitudes over time. The
red plot shows error angles between the esti-
mated attitudes, based on vision data only,
and the true rotation matrices.
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Figure 10: The plot shows the plane distances based
on raw measurements, filtered data based
on the scheme in Figure 2, and the true dis-
tance. Moreover, two error plots are added,
namely the difference between the measured
plane distances and the true values, and the
estimated distances and the true values.

Case 2

In Case 2 the time history and the measurements of
Case 1 was used, and in addition, measurements were
included from one gyroscope at the robot sensor pack-
age and one gyroscope at the ship deck. The filter
gains were KR = 6, Kω = 15, Kb = 0.01, K1 = 7 and
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K2 = 2. Figure 11 shows the geodesic angular errors
of the measurements and the estimates in comparison
with the ground truth.

The standard deviation of the estimated error atti-
tude was 0.35◦ and the maximum angular error was
1.83◦. The standard deviation of the estimated plane
distance was 0.92 cm, with a maximum error of 3.05 cm.
The estimated plane distances in Case 2 are shown in
Figure 12.
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Figure 11: The black plot is the same as in Figure 9,
while the red plot is the estimated error an-
gle when the gyroscopes are used in addition
to the camera data.
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Figure 12: The difference between the estimated plane
distances and the true values when gyro-
scopes are utilized is not significant. This
is because K1 and K2 remained unchanged
from the first case, and the gyroscope data
only altered the surface normal.

Case 3

In Case 3, the sensor configuration was the same as the
one in Case 2. However, in the time interval from 30 s

to 40 s, only gyroscope and lidar measurements were
available.

The absence of attitude correction made the estimate
to drift from the ground truth. It was seen that the
estimated roll had deviated 5.2◦ after 10 seconds. The
estimated pitch and yaw parameters had deviated 6.6◦

and 3.1◦ respectively over the same time span, as shown
in Figure 13. The corresponding geodesic distance was
8.6◦, as shown in Figure 14.

The estimated plane distance was also affected by
the loss of angular corrections. It was seen that the
estimated plane distance had deviated 2.9 cm over the
time span without camera measurements as shown in
the time history of Figure 15. However, as the atti-
tude measurements were available from 40 s, the plane
distance and the angular offset was corrected.
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Figure 13: Estimated roll-pitch-yaw angles when the
vanishing point detector is unavailable from
30 s to 40 s. It is seen that the angles drift
off in the interval.
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Figure 14: Estimated angular distance of the estima-
tion error when the vanishing point detec-
tor is unavailable from 30 s to 40 s. It is seen
that the angles drift off in the interval.
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Figure 15: The plot illustrates how the estimated dis-
tance to the plane was affected by the loss
of vanishing point detector.

6 Conclusion

We have in this paper presented a system for estima-
tion of a ship deck using camera, lidar and gyroscopes.
The camera has been used in a vision system that is
based on the detection of lines as input to a vanishing
point detector. This has been done under the Manhat-
tan assumption where the majority of lines are along
3 orthogonal axes. Since the vision algorithm depends
on lines rather than points,the system is more resis-
tant to occlusions like vision algorithms based on point
tracking. Two sets of parallel orthogonal lines are de-
tected on the ship deck and used to construct an el-
ement of SO(3) to describe the relative attitude, and
we have validated the algorithm in experiments. We
have shown that the algorithm has an average compu-
tational running time of 25 ms per frame, which allows
for a frame rate up to 40 frames per second.

The vanishing point algorithm was used to estimate
a ship deck using a complementary filter with input
from lidar and gyroscopes. It was seen that the stan-
dard deviation in the angular distance of the VPD algo-
rithm was 0.4801◦ in a static setup, and the measure-
ments from the selected lidar sensor had a standard
deviation of 1.7925 cm in the same case. Moreover, it
was shown in both the static and dynamic cases that
the observer was able to reduce the noise significantly.

Future work includes experiments performed on full
scale systems in outdoor environments, as well as im-
plementing the estimation technique in combination
with a controlled crane, and using more accurate, in-
dustrial sensors.
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