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Abstract

In this paper, a new open-source implementation of the lower-order, 3-D Boundary Element Method
(BEM) of solution to the deep-water, zero Froude-number wave-body interaction problem is described. A
validation case for OMHyD, the new open-source package, is included, where the outputs are compared to
results obtained using the widely used frequency-domain hydrodynamic analysis package ANSYS-AQWA.
The theory behind the solution to the diffraction-radiation problem is re-visited using the Green function
method. The Hess and Smith panel method is then extended to the case of a floating object using the
image-source to impose the wall condition at the free-surface, and a wavy Green function component to
account for presence of free-surface waves. An algorithm for computer implementation of the procedure is
developed and subsequently implemented in PYTHON. The wavy part of the Green function is determined
using a verified and published FORTRAN code by Teleste and Noblesse, wrapped for PYTHON using the
Fortran to Python (F2PY) interface. Results are presented for the various stages of implementation
viz. panelling, body in infinite fluid domain, effect of the free-surface, and effect of surface-waves. The
hydrodynamic coefficients obtained from this preliminary frequency-domain analysis are shown to be in
satisfactory agreement with ANSYS-AQWA results. Conclusions are drawn based on the performance of
the code, followed by suggestions for further improvement by including the removal of irregular-frequencies,
multi-body interactions, and bottom interference, which are not considered in the present implementation.

Keywords: Wave-body interaction, 3D boundary-element method, frequency-domain hydrodynamic anal-
ysis, diffraction-radiation loads

1. Introduction

In offshore applications, there is often a need to simu-
late the dynamic response of ships and floaters to the
environmental loads due to the wind, waves, and cur-
rents, and to the operational loads from cranes, station
keeping systems, risers, pipe-lay systems etc.

The problem of a ship in waves is commonly referred
to as the sea-keeping problem (Fossen, 2011, pp. 11–
12), and involves frequency dependent hydrodynamic
parameters. Determination of these parameters re-
quires numerical solutions to the wave-body interaction
problem. The theory for this is well developed and
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is implemented in commercial frequency-domain hy-
drodynamic analysis packages like WAMIT, ANSYS-
AQWA etc.

The multiphysical simulation of marine operations
can be done in a component-oriented modeling ap-
proach where models representing each component of
the system are interconnected, as demonstrated in
(Viswanathan and Holden, 2019). The interconnection
of the models can be done in a co-simulation arrange-
ment, or as one integrated model. The interconnections
can be implemented using either commercial MODEL-
ICA environments, or the open-source OpenModelica
environment.

Commonly used hydrodynamic analysis packages
like WAMIT and ANSYS-AQWA do not render them-
selves to the open-source philosophy of OpenModelica.
This makes the use of component models requiring in-
puts from such software cumbersome. This is espe-
cially true if there is a need to recalculate the hydro-
dynamic parameters, e.g. due to a large change in the
mean position of the wetted surface, based on which
the hydrodynamic parameters are calculated. A few
open-source, frequency domain, hydrodynamic analy-
sis packages like NeMOH exist, but with limitations in
the number of nodes, documentation, and simulation
times as discussed in (Penalba et al., 2017).

On this note, we decided to develop an open-
source software package for frequency domain hydro-
dynamic analysis, which makes it possible to calculate
the required hydrodynamic parameters for use in a
component-oriented modeling-and-simulation package
based on OpenModelica. The new hydrodynamic anal-
ysis package, OMHyD, is a three-dimensional, lower-
order boundary-element method program, utilizing the
source formulation, and the zero-speed, infinite-depth,
free-surface Green function. This paper presents the
theory and implementation details behind the develop-
ment of OMHyD. The program package is implemented
in PYTHON, and the developed code is made public
at github.com/Savin-Viswanathan/OMHyD-PA.

The paper includes a validation of the program pack-
age for a cuboidal body where the parameters from
OMHyD are compared to the parameters generated for
the same body in ANSYS-AQWA.

Lagrange introduced the concept of the velocity po-
tential in the 1780’s. Lamb (1879, Ch. 3) applied
Green’s second identity to express the velocity po-
tential, in the case of a body in an infinite fluid do-
main, as the effect of a distribution of simple and dou-
ble sources over the body boundary. John (1949) ob-
tained expressions for the wave function in the case
of regular incident waves interacting with bodies satis-
fying certain geometric assumptions. Hess and Smith
(1967) pioneered a method to calculate the flow around

arbitrary, non-lifting, 3D bodies, in an infinite fluid
domain, based on simple source distributions on flat
quadrilateral panels approximating the body surface,
also referred to as the panel-method. Hess and Wilcox
(1969) reported the progresses in the extension of the
panel-method in evaluating the velocity potential by a
small oscillating body in the presence of a free surface.
Wehausen (1971) formulated a potential flow method
for wave-induced motions of free-floating bodies, and
demonstrated the agreement of numerical calculations
based on the diffraction-radiation formulation with ex-
perimental results. Newman and Sclavounos (1988)
presented the WAMIT software package, which was
based on the panel method, for analysis of water-wave
radiation and diffraction.

Further, (Newman, 1977, Ch. 6) and (Faltinsen,
1990, Ch. 3) discussed the wave-body interaction
problem within the confines of potential theory. The
Green’s theorem and the distribution of singularities
is discussed in (Newman, 1977, Ch. 4). Garrison
(1978) described the use of the Green function to rep-
resent the source potential in calculating wave-loads on
large floating-bodies. Numerical implementation of the
panel-method was described in (Faltinsen, 1990, Ch.
4). Telste and Noblesse (1986) presented a method for
numerically evaluating the free surface Green function
and its gradient, in deep-water, and zero forward-speed
conditions, and also made available the print-out of the
associated FORTRAN subroutine in their appendix.

McTaggart (2002) described a method for comput-
ing three-dimensional hydrodynamic coefficients in the
frequency domain, using the Green function given in
(Telste and Noblesse, 1986). Guha (2012) described
the development of a three-dimensional panel-method
using the Green function, as described by Telste and
Noblesse (1986), and based on the overall approach
by McTaggart (2002). The software implementations
of McTaggart (2002) and Guha (2012) have not been
made publicly available.

In implementing the PYTHON code for OMHyD, we
follow the general framework presented in (McTaggart,
2002) and (Guha, 2012).

The paper proceeds with a brief description of the
theory behind the wave-body interaction problem, and
the Green function method. A discussion on the ex-
tension of the Hess and Smith panel method to the
case of an object in the presence of free-surface waves
is then presented, along with analytical expressions for
the source potential, and its derivatives. The method of
determination of the wavy part of the Green function,
and its derivatives is also discussed. Subsequently, the
algorithm for OMHyD is described, and results of the
implementation discussed thereafter.
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2. Theory

In the discussions that follow, ~x represents a vector,
and x̂ represents a unit vector. u̇ represents the time
derivative of u.

2.1. The Wave-Body Interaction Problem

Considering the physical effects of a floating object in-
teracting with incident waves, we observe the following
(Wehausen, 1971):

1. The fluid pressure force on the body changes as a
result of the incident waves, and this causes the
body to oscillate about its mean position.

2. The presence of the body scatters the incident
wave in all directions, and these scattered waves
exert associated fluid pressure forces on the body,
affecting its motion.

3. The motion of the body generates radiation waves
moving out in all directions, and these waves in-
turn exert associated fluid pressure forces on the
body.

Within assumptions of potential flow and linearized
boundary conditions, considering the steady-state in-
teraction of a floating object with a regular-wave prop-
agating in deep water, on an infinite free-surface, the
total velocity potential in the vicinity of the float-
ing object in regular waves can be expressed as (Mc-
Taggart, 2002), (Wehausen, 1971) and (Faltinsen and
Michelsen, 1975):

Φ(~x, γ, t) =

ϕ0(~x, γ) + ϕ7(~x, γ) +

6∑
j=1

ηjϕj(~x)

 eiωt.
(1)

Here, ϕ0 is the spatial component of incident wave
potential, ϕ7 is the scattered wave potential, ϕj=1,...,6

represent the radiation potential for unit amplitude os-
cillation in the jth DoF (mode) of the body, and ηj is
the amplitude of oscillation for mode j. i is the imagi-
nary unit. ~x is the position vector xı̂+ ŷ+ zk̂ of any
field point, and γ is the angle of incidence of the wave
with respect to the positive direction of the x axis of
a right-handed coordinate system with its origin lying
on the water plane directly above the centre of gravity
of the floating object. The notation is illustrated in
Figure 1.

For deep-water, the spatial component of the inci-
dent wave potential is expressed as

ϕ0(~x, γ, ω, ζa) = i
gζa
ω
ekze−ik(x cos γ−y sin γ). (2)
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Figure 1: Definition sketch

Here, ζa [m] is the wave amplitude, and k [m−1] is the
wave number, which is related to the wave frequency
ω [rad/s] through the dispersion relation

ω2 = gk tanh kh, (3)

where, g [m/s2] is the acceleration due to gravity, and
h [m] is the water depth.

Further, ϕj , j ∈ {1, . . . , 7} must satisfy:

∂2ϕj
∂x2

+
∂2ϕj
∂y2

+
∂2ϕj
∂z2

= 0, in the fluid domain (4)

−ω2ϕj + g
∂ϕj
∂z

= 0, on z = 0 (5)

∂ϕj
∂z

= 0, on z = −∞. (6)

In addition, ϕjηj , j ∈ {1, . . . , 6} and ϕ7 must satisfy
the linearized kinematic body-boundary condition

∂ϕj
∂n

=

{
iωnj , j = 1, . . . 6

−∂ϕ0

∂n , j = 7

∣∣∣∣∣
S0

. (7)

Here, ∂
∂n is the normal derivative in the direction of

the unit outward normal n̂ to the submerged surface of
the body in its mean position, S0. The scalars nj are
the components of the generalized normal vectors

n̂ = (n1, n2, n3), (8)

~x× n̂ = (n4, n5, n6). (9)

For further details see (Wehausen, 1971), (Faltinsen
and Michelsen, 1975), and (Milgram, 2003, pp. 238,
241, and 266 ).

It is noted that waves originating as a consequence
of incident waves being scattered by the body surface,
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and those originating due to the motions of the body,
must be outgoing, and should have proper amplitude
behavior at infinity. This imposes an additional radi-
ation condition on ϕj , j ∈ {1, . . . , 7}. Details can be
found in (Wehausen, 1971) and (John, 1949).

In determining ϕj=1,...,7, we make use of the Green
function method as described in Sec. 2.2.

2.1.1. The Bernoulli equation

The Bernoulli equation relates the fluid pressure and
the velocity potential in the fluid domain.

From the linearized form of the Bernoulli equation,
(Faltinsen, 1990, (2.4)), we get

p(~x, t) = −ρ∂Φ(~x, t)

∂t︸ ︷︷ ︸
Hydrodynamic pressure

−ρgz︸ ︷︷ ︸
Hydrostatic pressure

. (10)

With reference to (1), the total velocity potential Φ
is expressed as the sum of the diffraction potential ΦD,
and the radiation potential ΦR. Thus,

Φ = ΦD + ΦR, (11)

where,

ΦD = [ϕ0(~x, γ) + ϕ7(~x, γ)] eiωt (12)

ΦR =

6∑
j=1

ηjϕj(~x)eiωt. (13)

Consider the wetted body surface S(~ξ), ~ξ = (ξ, η, ζ).
Here the ξηζ frame is the body coordinate frame, which
coincides with the global xyz coordinate frame. At the
mean position, let the wetted body surface be denoted
by S0(~ξ). To determine the linear terms of the pressure
loads, the hydrostatic pressure should be integrated
over the instantaneous position of the body, while the
hydrodynamic pressure should be integrated along the
mean wetted surface. Thus, from (10)

O(1)

{∫∫
S

p(~ξ, t)nk(~ξ)dS

}
= −ρ

∫∫
S0

∂[ΦD(~ξ, t) + ΦR(~ξ, t)]

∂t
nk(~ξ)dS︸ ︷︷ ︸

Hydrodynamic pressure Load

−ρg
∫∫

S

ζnk(~ξ)dS︸ ︷︷ ︸
Hydrostatic pressure load

, k = 1, . . . , 6. (14)

Here nk is defined in (8) and (9).
The hydrostatic pressure loads give the mean buoy-

ancy. The component of the hydrodynamic pressure
load due to the diffraction potential gives the wave-
excitation loads and that due to the radiation potential
gives the wave-radiation loads on the oscillatory body.

2.1.2. The diffraction problem: The Froude–Kryloff
and diffraction loads

With reference to (12), the diffraction potential at the
body surface is written as

ΦD(~ξ, t) = Φ0(~ξ, t) + Φ7(~ξ, t). (15)

With reference to the first term on the R.H.S. of (14),
the wave-excitation load along the kth DoF is given by

F ek (t) =−ρ
∫∫

S0

∂Φ0(~ξ, t)

∂t
nk(~ξ)dS︸ ︷︷ ︸

Froude–Kryloff loads

− ρ
∫∫

S0

∂Φ7(~ξ, t)

∂t
nk(~ξ)dS︸ ︷︷ ︸

Diffraction loads

,

k = 1, . . . , 6. (16)

Here, the loads due to the incident wave potential Φ0

are commonly referred to as the Froude–Kryloff loads,
and those associated with the scattered wave potential
Φ7, are referred to as the diffraction loads (Faltinsen,
1990, (3.36)).

2.1.3. The radiation problem: Added-mass and
damping

With reference to (13), the radiation potential at the
body surface is written as

ΦR(~ξ, t) =

6∑
j=1

ϕj(~ξ){ηjeiωt}, (17)

where ηj is the amplitude of motion in mode j, and ϕj
is the spatial component of the complex potential due
to unit amplitude of motion in the jth DoF.

With reference to the first term on the R.H.S. of (14),
the wave-radiation load along the kth DoF is given by

F rk (t) = −ρ
∫∫

S0

∂ΦR(~ξ, t)

∂t
nk(~ξ)dS. (18)

The wave-radiation load along the kth DoF due to body
oscillation along the jth DoF is now expressed as

F rk,j(t) = −ρ
∫∫

S0

{ ˙ηjeiωt}
[
R{ϕj(~ξ)}

+ iI{ϕj(~ξ)}
]
nk(~ξ)dS

=

[
− ρ
ω

∫∫
S0

I{ϕj(~ξ)}nk(~ξ)dS

]
︸ ︷︷ ︸

added mass

¨ηjeiωt

+

[
−ρ
∫∫

S0

R{ϕj(~ξ)}nk(~ξ)dS

]
︸ ︷︷ ︸

damping

˙ηjeiωt.

(19)
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Here, R and I represent the real and imaginary com-
ponents, respectively, and the dot and double-dot rep-
resent time derivatives.

The load component proportional to the acceleration
is referred to as the added mass, and that proportional
to the velocity is referred to as damping. Thus,

Akj = − ρ
ω

∫∫
S0

I{ϕj(~ξ)}nk(~ξ)dS (20)

Bkj = −ρ
∫∫

S0

R{ϕj(~ξ)}nk(~ξ)dS, (21)

where Akj is referred to as the added-mass, and Bkj is
referred to as the radiation-damping, in the kth direc-
tion due to wave radiation in the jth mode of oscilla-
tion. For details, see (Faltinsen and Michelsen, 1975),
and (Guha et al., 2016).

2.2. The Green Function Method

2.2.1. The free-space Green function

Consider a body placed inside an unbounded fluid do-
main. The velocity potential at any field point Q in
the fluid domain is given by (Lamb, 1879, p. 60)

ϕQ =
−1

4π

∫∫
S

(
∂ϕ

∂n
− ∂ϕ′

∂n

)
1

r
dS (22)

i.e., as the resultant potential due to the distribution

of simple sources of strength
(
∂ϕ
∂n −

∂ϕ′

∂n

)
on the body

surface, and where ϕ and ϕ′ correspond to potentials
outside and inside the closed body surface S, respec-
tively. Here, r is the distance between the field point
Q(~x), and the source located at P (~ξ), on the body sur-
face, where ~x = (x, y, z) is the position vector of the

field point, and ~ξ = (ξ, η, ζ) is the position vector of
the source point on the body surface.

The next step is to define the free-space Green func-
tion G∗(~x, ~ξ) = −1

4πr , which is analogous to the source-

potential, and the source density σ(~ξ) =
(
∂ϕ
∂n −

∂ϕ′

∂n

)
.

We may then express the potential at any field point
as

ϕ(~x) =

∫∫
S

σ(~ξ)G∗(~x; ~ξ)dS (23)

2.2.2. The free-surface Green function

In cases where the body may move in a fluid do-
main bounded by other boundaries such as the free-
surface, the fluid bottom, or lateral boundaries, addi-
tional boundary conditions are imposed on the prob-
lem.

The Green function should satisfy the Laplace equa-
tion in the fluid domain, and all boundary conditions
satisfied by ϕ, except the body boundary condition.

Determination of such a Green function provides an
explicit solution to the potential. However, this type
of source potential is not known except for some very
simple body geometries (Newman, 1977, pp. 138–137).

(Wehausen and Laitone, 1960) gives expressions for
the finite-depth Green function. Kim (2008) gives a
detailed derivation for the deep-water Green function.

(Telste and Noblesse, 1986) gives expressions for
the infinite-depth free-surface Green function and its
derivatives, with the velocity potential expressed as
R{G(~x, ~ξ; f)e−iωt}. These expressions, modified for a
temporal component of eiωt of the velocity potential,
are given as

G(~x, ~ξ; f) =
−1

4π

(
1

r
+

1

r′

)
+ G̃(~x, ~ξ, f) (24)

where,

G̃(~x, ~ξ, f) =
−1

4π
[2f {R0(h, v)− iπJ0(h) exp(v)}]

(25)

f =
ω2L

g
, L being the reference length (26)

ρ =
{

(x− ξ)2 + (y − η)2
}

(27)

r =
{
ρ2 + (z − ζ)2

}1/2
(28)

r′ =
{
ρ2 + (z + ζ)2

}1/2
(29)

h = fρ (30)

v = f(z + ζ) (31)

(ξ,η,ζ≤0)

(ξ,η,-ζ≥0)

(x,y,z≤0)

Singular point

Image singular point

Field point

r'=d/f

r

(x-ξ)2+(y-η)2= h/f

z+ζ=v/f

Figure 2: Definition sketch [adapted from (Telste and
Noblesse, 1986)]

Considering the R.H.S. of (24), and the definition
sketch in Figure 2, we make the interpretations that
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the first term represents the sum of the source poten-
tial at a field point ~x = (x, y, z) due to a unit source

at ~ξ = (ξ, η, ζ), and the image-source, having coordi-
nates (ξ, η,−ζ). This image source (Newman, 1977, p.
160) accounts for the interaction between the body and
the linearized free surface which behaves like a rigid
boundary. The second term G̃(~x, ~ξ, f) is the oscillat-
ing potential at the field point due to the oscillation of
the source strength, to account for the oscillating flow
due to the presence of waves, and therefore referred to
as the wavy part of the Green function.

The wavy part of the Green function given by (25)
has partial derivatives:

∂G̃

∂x
=
∂G̃

∂ρ

(x− ξ)
ρ

(32)

∂G̃

∂y
=
∂G̃

∂ρ

(y − η)

ρ
(33)

∂G̃

∂z
=

1

4π

[
− 2f2

{
1

d
+R0(h, v)

− iπJ0(h)ev
}]

(34)

where,

∂G̃

∂ρ
=

1

4π

[
2f2 {R1(h, v) + iJ1(h)ev}

]
(35)

d = (h2 + v2)1/2 = fr′. (36)

Here, J0(h) and J1(h) are usual Bessel functions of
the first kind, and R0(h, v) and R1(h, v) are real func-
tions, which are evaluated by the FORTRAN subrou-
tine GRADIF, the printout of which, is available in the
appendix of (Telste and Noblesse, 1986).

Numerous works cite this method and it has been
validated in (Chakrabarti, 2001).

2.2.3. Determination of the source density
distribution

Once the Green function is determined, the solution
for ϕj , j ∈ {1, . . . , 7} can be expressed as given in
(Faltinsen and Michelsen, 1975) by

ϕj(~x) =

∫∫
S0

σj(~ξ)G(~x, ~ξ; f)dS, (37)

where G is the deep-water Green Function given by
(24).

The application of the body boundary condition
given by (7) to the above gives

∂

∂n(~x)

∫∫
S0

σj(~ξ)G(~x, ~ξ; f)dS

=

{
iωnj(~x), j = 1, . . . 6

− ∂ϕ0

∂n(~x) , j = 7

∣∣∣∣∣
~x∈S0

. (38)

Here, the integral over the body surface is to be in-
terpreted in the Cauchy principal value sense, since
it is singular when ~x = ~ξ. The limiting process of
the Cauchy principal-value gives (Malenica and Chen,
1998):

∂

∂n(~x)

∫∫
S0

σj(~ξ)G(~x, ~ξ; f)dS

=
σj(~x)

2
+

∫∫
S0

σj(~ξ)
∂G(~x, ~ξ; f)

∂n(~x)
dS (39)

Thus, (38) gives

σj(~x)

2
+

∫∫
S0

σj(~ξ)
∂G(~x, ~ξ; f)

∂n(~x)
dS

=

{
iωnj(~x), j = 1, . . . 6

− ∂ϕ0

∂n(~x) , j = 7

∣∣∣∣∣
~x∈S0

. (40)

From this the source density distributions associated
with the diffraction and radiation problems can be de-
termined, provided we have knowledge about the in-
cident potential, the generalized normals to the body
surface, and the normal derivative of the associated
Green function.

The numerical procedure for the determination of
the source density distribution is presented in the fol-
lowing section.

2.3. Numerical Solution to the
Diffraction–Radiation Problem

2.3.1. The Hess and Smith panel-method

We refer to (Hess and Smith, 1967), and consider a
body of arbitrary shape in an infinite fluid domain,
where the body surface is approximated as being built
up of N flat panels, each with an associated constant
source density distribution σp.

This would allow for the representation of the field
point velocity potential as

ϕ(~x) =

N∑
p=1

σp(~ξp)

∫∫
Sp

G∗p(~x; ~ξp)dS, (41)

where, ~ξp is the position vector of the centroid of the
pth panel with surface Sp, and G∗p is the associated
free-space Green function.

2.3.2. Extending the Hess and Smith panel-method
to the free-surface problem

Extending the panelling philosophy to the case of a
body in the presence of a free surface with waves,
the free-space Green function, is now replaced by the
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deep-water, free-surface Green function given by (24),
where, r and r′ represent the distance of the field point
from the source panel and the image panel, as shown
in Figure 3.

p(ξ,η,ζ)

p'(ξ,η,-ζ)

wave induced

oscillatory flow

flat panel

of constant

source density

actual body

contour

wall boundary

condition on 

free surface due

to image source

q(x,y,z)

image body

source body

r'

r

∞

∞

∞

X

Z
Y

Figure 3: Boundary Panels.

The field point velocity potential is then given by

ϕ(~x) =

N∑
p=1

σp(~ξp)

∫∫
Sp

Gp(~x; ~ξp)dS, (42)

and the component velocities are given by

u =
∂ϕ(~x)

∂x
=

N∑
p=1

σp(~ξp)

∫∫
Sp

∂Gp(~x; ~ξp)

∂x
dS, (43)

v =
∂ϕ(~x)

∂y
=

N∑
p=1

σp(~ξp)

∫∫
Sp

∂Gp(~x; ~ξp)

∂y
dS, (44)

w =
∂ϕ(~x)

∂z
=

N∑
p=1

σp(~ξp)

∫∫
Sp

∂Gp(~x; ~ξp)

∂z
dS. (45)

In view of (24), the double integrals in (42)–(45) can
be written as∫∫

Sp

Gp(~x; ~ξp)dS

=
−1

4π

∫∫
Sp

[
1

r(~x, ~ξp)
+

1

r′(~x, ~ξp′)
+ G̃p

]
dS, (46)

∫∫
Sp

∂Gp
∂x

dS

=
−1

4π

∫∫
Sp

∂

∂x

[
1

r(~x, ~ξp)
+

1

r′(~x, ~ξp′)
+ G̃p

]
dS, (47)

∫∫
Sp

∂Gp
∂y

dS

=
−1

4π

∫∫
Sp

∂

∂y

[
1

r(~x, ~ξp)
+

1

r′(~x, ~ξp′)
+ G̃p

]
dS, (48)

∫∫
Sp

∂Gp
∂z

dS

=
−1

4π

∫∫
Sp

∂

∂z

[
1

r(~x, ~ξp)
+

1

r′(~x, ~ξp′)
+ G̃p

]
dS. (49)

Applying the body-boundary condition given by (38)
to the body-surface, now approximated by N panels,
each having respective constant source-densities, for
each mode j of the body, where j ∈ {1, . . . , 6} cor-
responds to the six radiation modes, and j = 7 corre-
sponds to the diffraction mode,

N∑
p=1

σjp(~ξp)

∫∫
Sp

∂Gp(~x, ~ξp; f)

∂n(~x)
dS

=

{
iωnj(~x), j = 1, . . . 6

− ∂ϕ0

∂n(~x) , j = 7

∣∣∣∣∣
~x∈ ~ξp

where p ∈ {1, . . . , N}. (50)

Thus, the Hess and Smith panel-method transforms
the body-integral equation (38) to a set of linear alge-
braic equations, which can be solved to determine the
source densities σjp associated with each mode j, and
for each panel p.

The integral of the normal derivative of the Green
function in (50) can be determined from the derivatives
along the x, y, z directions as given by (63)–(65), and
the velocity potential φj associated with each mode
can be determined from equations of the form of (42).
Once the velocity potentials associated with each mode
is known, the hydrodynamic parameters can be deter-
mined.

In determining the integrals of the Green function,
and its derivatives, at any field point ~x, due to a con-
stant source distribution over a flat panel p with cen-
troid at ~ξp, as indicated in (46)–(49), we need to solve

integrals of the form
∫∫
Sp

1
rdS,

∫∫
Sp
G̃dS, and their

derivatives. The method for evaluation of such inte-
grals follow.
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2.3.3. Analytical expressions for the integral of the
source-potential, and its derivatives

(Katz and Plotkin, 2001, pp. 245–247) refer to (Hess
and Smith, 1967) and give analytical expressions for
the integrals of the source-potential and its derivatives,
as given by equations (62)–(65). The expressions are
for a unit source density distribution on a rectangular
panel with vertices Vk = (xk, yk, 0), k ∈ {1, 2, 3, 4}, and
evaluated at a field point Q(x, y, z), with respect to a
panel co-ordinate system (PCS) with its origin at the
centroid of the panel as shown in Figure 4.

Z

X
Y

V4(x4,y4,0)
V1(x1,y1,0)

V2(x2,y2,0)

V3(x3,y3,0)d
12

d23

d
34

d41

Q(x,y,z)

r
r1 r3
r4

dS

r2

Figure 4: The panel co-ordinate system.

The following are defined

d12 =
{

(x2 − x1)2 + (y2 − y1)2
}1/2

(51)

d23 =
{

(x3 − x2)2 + (y3 − y2)2
}1/2

(52)

d34 =
{

(x4 − x3)2 + (y4 − y3)2
}1/2

(53)

d41 =
{

(x1 − x4)2 + (y1 − y4)2
}1/2

(54)

m12 =
y2 − y1

x2 − x1
(55)

m23 =
y3 − y2

x3 − x2
(56)

m34 =
y4 − y3

x4 − x3
(57)

m41 =
y1 − y4

x1 − x4
(58)

rk =
{

(x− xk)2 + (y − yk)2 + z2
}1/2

(59)

ek = (x− xk)2 + z2 (60)

hk = (x− xk)(y − yk) (61)

where k = 1, 2, 3, 4.

Now,

∫∫
S

1

r
dS =

[
(x− x1)(y2 − y1)− (y − y1)(x2 − x1)

d12

× ln
r1 + r2 + d12

r1 + r2 − d12

+
(x− x2)(y3 − y2)− (y − y2)(x3 − x2)

d23

× ln
r2 + r3 + d23

r2 + r3 − d23

+
(x− x3)(y4 − y3)− (y − y3)(x4 − x3)

d34

× ln
r3 + r4 + d34

r3 + r4 − d34

+
(x− x4)(y1 − y4)− (y − y4)(x1 − x4)

d41

× ln
r4 + r1 + d41

r4 + r1 − d41

]

− z

[
tan−1

(
m12e1 − h1

zr1

)

− tan−1

(
m12e2 − h2

zr2

)

+ tan−1

(
m23e2 − h2

zr2

)

− tan−1

(
m23e3 − h3

zr3

)

+ tan−1

(
m34e3 − h3

zr3

)

− tan−1

(
m34e4 − h4

zr4

)

+ tan−1

(
m41e4 − h4

zr4

)

− tan−1

(
m41e1 − h1

zr1

)]
(62)

We note that direct use of the expression for
∫∫
S

1
rdS

as given in (Katz and Plotkin, 2001, pp. 245–246) ap-
pears to be for cases where the field point z-coordinate,
in the PCS, is always positive. Hence, we modify the
term z in (62), based on discussions in Appendix A,
to suit our methodology where the field point may have
a negative z co-ordinate.

Also,
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∫∫
S

∂

∂x

(
1

r

)
dS =

[
y1 − y2

d12
ln
r1 + r2 − d12

r1 + r2 + d12

+
y2 − y3

d23
ln
r2 + r3 − d23

r2 + r3 + d23

+
y3 − y4

d34
ln
r3 + r4 − d34

r3 + r4 + d34

+
y4 − y1

d41
ln
r4 + r1 − d41

r4 + r1 + d41

]
(63)

∫∫
S

∂

∂y

(
1

r

)
dS =

[
x1 − x2

d12
ln
r1 + r2 − d12

r1 + r2 + d12

+
x2 − x3

d23
ln
r2 + r3 − d23

r2 + r3 + d23

+
x3 − x4

d34
ln
r3 + r4 − d34

r3 + r4 + d34

+
x4 − x1

d41
ln
r4 + r1 − d41

r4 + r1 + d41

]
(64)

∫∫
S

∂

∂z

(
1

r

)
dS =

[
tan−1

(
m12e1 − h1

zr1

)

− tan−1

(
m12e2 − h2

zr2

)

+ tan−1

(
m23e2 − h2

zr2

)

− tan−1

(
m23e3 − h3

zr3

)

+ tan−1

(
m34e3 − h3

zr3

)

− tan−1

(
m34e4 − h4

zr4

)

+ tan−1

(
m41e4 − h4

zr4

)

− tan−1

(
m41e1 − h1

zr1

)]
(65)

It is noted that the values given by (63) and (64)
become infinite when the field point is on the element
edges, and go to zero when the field point is at the
centroid (Katz and Plotkin, 2001, p. 247). This is not
a problem in the present development, as the compu-
tation at the singular field points are not used.

The value given by (65) is singular at the centroid
and tends to ∓2π, depending on the direction of ap-
proach towards z = 0. I.e., the normal velocity induced
by a source panel at its centroid is +σ

2 on the positive

side, and −σ
2 on the negative side. This accounts for

the limiting procedure described in the formulation of
(40).

We avoid this singularity by considering the source
panels s to lie at an infinitesimal distance below the
body panels p as shown in Figure 5 (Guha, 2012). The
point where the body boundary condition is to be sat-
isfied now lies at the centroid of the body panel, at a
very small distance from the source panel, and thus the
singularity is avoided in the calculations based on (65).

Actual body
contour

Edges of flat
body panels 
approximating
the body surface

Source panels
lying below
body panels

body panel
null point

collocation
distance

Figure 5: Source panels beneath body panels.

2.3.4. Numerical evaluation of the integrals of the
wavy Green function, and its derivatives

The wavy part of the Green function, G̃p, and its
derivatives along the x, y, and z directions, can be
evaluated using the GRADIF subroutine of Telste and
Noblesse (1986), as discussed in Sec. 2.2.2. To imple-
ment the GRADIF subroutine in our PYTHON code,
we reconstruct the subroutine in FORTRAN and wrap
it to PYTHON as discussed in Sec. 3.2 and 3.2.4.

In evaluating the integrals of the wavy part of the
Green function, and of its derivatives, we make use of
the consideration that these terms are regular through-
out the fluid domain and vary spatially with the wave
length, which is generally large compared to the di-
mension of the immersed surface panel. Hence, G̃ and
∂G̃/∂n can be considered constant over a panel, and a
valid approximation to the integral is to evaluate the
integrands at the centroid of a panel and multiply it by
the associated panel area. See (McTaggart, 2002, Sec.
5.3), and Guha and Falzarano (2013). Thus,∫∫

Sp

G̃pdS = G̃p∆Sp (66)∫∫
Sp

∂G̃p
∂~x

dS =
∂G̃p
∂~x

∆Sp, ~x = xı̂+ ŷ+ zk̂, (67)

where ∆Sp is the surface area of panel p.
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2.3.5. Determination of the source densities – The
α matrix

When the expressions for the Green function have been
computed, the next step is to compute the source den-
sities. To this end, let α be an N × N matrix where
each term αps represents the induced normal velocity
at the centroid of body panel p, p ∈ {1, . . . , N}, due
to unit source density distributions on source panel s,
s ∈ {1, . . . , N}. In the presence of a free surface, this
term would also include the induced normal velocity at
the body panel centroids due to the image of the source
panels about the free surface. In addition, if there is a
wave present on the free surface, then this term would
also include the integral of the normal derivative of the
wavy part of the Green function due to an oscillating
source of unit magnitude on the source panel s, oscil-
lating at a frequency equal to the wave frequency ω.
Application of the body boundary condition (7) yields

αω11 αω12 . . . αω1N
αω21 αω22 . . . αω2N

...
...

...
...

αωN1 αωN2 . . . αωNN



σωj1
σωj2
...

σωjN

 =


vn,ωj1
vn,ωj2

...
vn,ωjN

 (68)

where, with reference to (7), vn,ωjp , p ∈ {1, . . . , N} is

given by iωnj for j ∈ {1, . . . , 6} and
−∂ϕω

0

∂n for j = 7,
evaluated at the centroid (xp, yp, zp) of panel p. Here
nj is given by (8), and (9).

Thus, (68) is the integral equation (40) expressed as
a set of algebraic equations in the matrix form. The
source density distribution associated with each panel
s for the jth mode, corresponding to the frequency ω,
σωjs , may now be determined from (68).

2.3.6. Determination of the velocity potentials –
The β matrix

Next, the velocity potentials are computed. Let β
be an N × N matrix where each term βωps repre-
sents the velocity potential at the centroid of panel
p, p ∈ {1, . . . , N}, due to unit source distributions on
each panel s, s ∈ {1, . . . , N}, subject to the same con-
ditions as above for the presence of a free surface, and
waves on the free surface. Then, we have

ϕωj1
ϕωj2

...
ϕωjN

 =


βω11 βω12 . . . βω1N
βω21 βω22 . . . βω2N

...
...

...
...

βωN1 βωN2 . . . βωNN



σωj1
σωj2
...

σωjN

 . (69)

We note that (69) is the matrix equivalent of the set
of algebraic equations representing the integral equa-
tion (37) when evaluated at the panel centroids. The
solution of (69) gives the velocity potentials ϕωjp for

j ∈ 1, . . . , 7, for each incident wave frequency ω, eval-
uated at the centroid of each panel p.

2.3.7. Determination of the Froude–Kryloff and
diffraction loads

Having determined the diffraction potentials ϕω7p
from

(69), the excitation force along any DoF k, for any inci-
dent frequency ω may now be expressed with reference
to (16) as

F ek (ω, t) =

[
−iωρ

N∑
p=1

{
ϕω0p

+ ϕω7p

}
nkp∆Sp

]
eiωt.

(70)

Here, nkp is the kth component of the generalized unit
normal vector given by (8), and (9), evaluated at the
centroid of body panel p, and ∆Sp is the area of body
panel p.

2.3.8. Determination of the radiation loads

Having determined the radiation potentials ϕωjp from

(69), the added-mass and damping loads along the kth

DoF due to body oscillation along the jth DoF with
frequency ω, can now be expressed with reference to
(19) as

Aωkj = − ρ
ω

N∑
p=1

I
{
ϕωjp

}
nkp∆Sp (71)

Bωkj = −ρ
N∑
p=1

R
{
ϕωjp

}
nkp∆Sp. (72)

Here, j, k ∈ {1, . . . , 6}, nkp is the kth component of
the generalized unit normal vector given by (8), and
(9), evaluated at the centroid of body panel p, j is the
radiation mode of the body, and ∆Sp is the area of
body panel p.

3. Computer Implementation

3.1. The aims

To develop a methodology for computer implementa-
tion of the panel method, we list out the desired results
from the implementation:

• body visualization.

• mean free surface visualization.

• image body visualization in case of the presence
of a free surface.

• visualization of panel diagonals and normals to
check correct orientation of panels.
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• field point velocities along the xy and xz planes
for visualization of the effects of the source part,
image part, and wavy part of the Green function.

• graphical representation of the source density dis-
tribution associated with each panel.

• determine added-mass, damping and excitation
forces for specified degrees of freedom.

• output storage as a .txt file with simulation pa-
rameters specified for identification.

• graphical representation of specific hydrodynamic
results from the results stored in the .txt file, and
generation of .csv files to enable presentation of
results in a LATEX document or similar environ-
ment.

3.2. The implementation

From the flow-chart shown in Figure 6, we note that
the implementation has the following structure:

SFI OMHyD V0R1 : The file containing the below
listed code components.

3D Diffraction.py : The front end PYTHON code
where the analysis parameters
and options are specified.

diff 3d obj func.py : The PYTHON code containing
the various functions used in
carrying out the analysis.

Hyd mstr( ): The master function which in-
terfaces the other miscellaneous
functions and solves the various
sub-problems.

gradif... .pyd : A dynamic link library that
contains a PYTHON module,
or set of modules, to be called
by other PYTHON code. In
this case, the wrapped FOR-
TRAN code for the infinite
depth Green function.

libgradif... .dll : Additional .dll files generated
during the wrapping of FOR-
TRAN code.

am.txt : The text file that contains the
results of the analysis.

Plotter.py : PYTHON code for generating
plots of the outputs stored in
the generated text file.

plt file.csv : The comma separated value file
for easy plotting of hydrody-
namic parameters in LATEX or
similar package.

The description of the implementation is given be-
low.

3.2.1. Plotting the body, free surface, image
body,determination of panel parameters, and
calculation of hydrostatics

The environment, body, panel, DoF, and plot param-
eters are to be specified in the 3D Diffraction.py,
which is the front-end of the code. Details of inputs
are indicated by comments in the code.

The above parameters are passed on as arguments to
the function Hyd mstr.py, which is present inside the
file diff 3d obj func.py, and a message is displayed
in the shell indicating this transfer.

The unit conversion of the user-defined data to units
for use during computations is performed, e.g., the
wave direction is specified in degrees by the user, and
this is converted to radians for use in the code.

The next step is to check if the type of body specified
by the user is defined in the code. An error message is
displayed if the body type is not defined, and the pro-
gram execution is terminated. This step is not shown
in the flow-chart.

If the body type is defined, then the next step is to
set the plot definitions for displaying the body and the
free surface, if any.

This is followed by a block of code to mitigate con-
flicting scenarios, as described by the comments in the
code. This step is not shown in the flow chart.

The next step is to determine the parameters for
plotting the body, image, and free surface as required.
It is effected by calling the function cube param. De-
tails of the arguments passed, and values returned can
be found in the code comments. To summarize, this
function takes the passed arguments and generates pa-
rameters for plotting (i) the body, and the complete
image body, in the case of a submerged body, in the
presence of a free surface, (ii) the body surface, exclud-
ing the top surface, and image of all surfaces except the
top surface, for a floating body, and (iii) only the body,
if there is no free-surface.

The next step is the plotting of the body/image/free
surface based on the return values from the previous
step. This is effected by a call to the plt cube func-
tion which contains the PYTHON code for plotting the
required surfaces.

Once this stage of execution is reached, a progress
message is displayed in the shell window. This is not
depicted in the flow chart.
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Figure 6: Implementation flow chart.
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The next step is to determine the panel vertices of
the source and image body. The order of storage of the
panel vertices is important in the view of determining
the diagonals and the surface normals. This is effected
by calling the function pan vert cub. The process is
easily understood from the code comments. The re-
turn values are vectors ‘vert’, ‘verti’, ‘z bp’, and ‘z tp’,
which contains the vertex coordinates of the body pan-
els, the image panels, the z-coordinate of the bottom
surface, and the z-coordinate of the top surface, respec-
tively.

The next step is the determination and storage of
panel parameters as described below.

If the coordinates of the four vertices of a quadri-
lateral panel are Vi(xi, yi, zi), i ∈ {1, . . . , 4}, then the

diagonals ~D1 and ~D2 are given as

~D1 = ~V3 − ~V1 = (x3 − x1)̂ı+ (y3 − y1)̂+ (z3 − z1)k̂
(73)

~D2 = ~V4 − ~V2 = (x4 − x2)̂ı+ (y4 − y2)̂+ (z4 − z2)k̂.
(74)

Here, ı̂, ̂, k̂ are unit vectors along x, y and z directions.
The normal ~n and the unit normal n̂ to the panel

are then given as

~n = ~D1 × ~D2 (75)

n̂ =
~n

|n|
= n1 ı̂+ n2̂+ n3k̂, (76)

where n1, n2, and n3 are the x, y and z components of
the unit surface normal.

Similarly, defining ~L lying on the surface of the panel
as

~L =

[
x4 + x3

2
− x1 + x2

2

]
ı̂

+

[
y4 + y3

2
− y1 + y2

2

]
̂

+

[
z4 + z3

2
− z1 + z2

2

]
k̂. (77)

The unit vector along ~L is

l̂ =
~L

|~L|
= l1 ı̂+ l2̂+ l3k̂. (78)

Another vector lying on the surface of the panel and
perpendicular to both l̂ and n̂ would then be given by

~P = n̂× l̂. (79)

The unit vector along ~P is given as,

p̂ =
~P

|~P |
= p1î+ p2ĵ + p3k̂. (80)

The postion vector of the centroid of the panel is

~C = cx ı̂+ cy ̂+ cz k̂, (81)

where

cx =
cx1d1 + cx2d2 + cx3d3 + cx4d4

d1 + d2 + d3 + d4
,

cy =
cy1d1 + cy2d2 + cy3d3 + cy4d4

d1 + d2 + d3 + d4
,

cz =
cz1d1 + cz2d2 + cz3d3 + cz4d4

d1 + d2 + d3 + d4
. (82)

cx1 =
x1 + x2

2
, cx2 =

x2 + x3

2
, cx3 =

x3 + x4

2
, cx4 =

x4 + x1

2
,

cy1 =
y1 + y2

2
, cy2 =

y2 + y3
2

, cy3 =
y3 + y4

2
, cy4 =

y4 + y1
2

,

cz1 =
z1 + z2

2
, cz2 =

z2 + z3
2

, cz3 =
z3 + z4

2
, cz4 =

z4 + z1
2

.

(83)

and

d1 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2,

d2 =
√

(x3 − x2)2 + (y3 − y2)2 + (z3 − z2)2,

d3 =
√

(x4 − x3)2 + (y4 − y3)2 + (z4 − z3)2,

d4 =
√

(x1 − x4)2 + (y1 − y4)2 + (z1 − z4)2. (84)

The panel coordinates (xi, yi, zi), i ∈ {1, . . . , 4}, can
be transformed from the body coordinate system de-
fined by (̂ı, ̂, k̂) to the local coordinate system defined

by (l̂, p̂, n̂) as (xli, y
l
i, 0), i ∈ {1, . . . , 4}, using

xli = (xi − cx)l1 + (yi − cy)l2 + (zi − cz)l3,
yli = (xi − cx)p1 + (yi − cy)p2 + (zi − cz)p3. (85)

The centroid of the source panel (cxp , c
y
p, c

z
p), lying

at a distance specified by parameter cp from the body
panel, is given by

cxp = cx − cp · n1, c
y
p = cy − cp · n2, c

z
p = cz − cp · n3

(86)

The panel parameters calculated above for each
source and image panel are stored as a vector of vectors
for use in later calculations. Details of the storage can
be understood from the code.

If the diagonals, normals and centroids of the source
panels are required to be plotted, functions plt diag,
plt norm, and plt src are called.

The function hydrostatics determines the hydro-
static parameters of the body as described below.

The area of a quadrilateral panel, given its four ver-
tices, is

A =
1

2

{
(x1y2 + x2y3 + x3y4 + x4y1)

− (x2y1 + x3y2 + x4y3 + x1y4)
}
. (87)

59



Modeling, Identification and Control

Thus, the volume bounded by N panels is given by

∇ =

N∑
j=1

Ajn3,jzj . (88)

Here, n3,j is the z component of the unit normal to
panel j, and zj is the z-coordinate of the centroid of
panel j.

The vertical and longitudinal centres of buoyancy are
given by

zCB =
1
2

∑N
j=1Ajn3,jz

2
j

∇
, (89)

xCB =
1
2

∑N
j=1Ajn3,jzjxj

∇
. (90)

Here, xj is the x -coordinate of the centroid of panel j.
The longitudinal centre of flotation is given as

xWP =
−
∑N
j=1Ajn3,jxj

AWP
, (91)

where AWP is the waterplane area given by

AWP = −
N∑
j=1

Ajn3,j . (92)

The moment of the waterplane about the x and y
axes are given by

IxxWP = −
N∑
j=1

Ajn3,jy
2
j , (93)

IyyWP = −
N∑
j=1

Ajn3,jx
2
j . (94)

The hydrostatic stiffness terms are then given by

C33 = ρgAWP (95)

C35 = −ρgAWPxWP (96)

C44 = ρg {∇zCB −∇zCG + IxxWP} (97)

C53 = C35 (98)

C55 = ρg {∇zCB −∇zCG + IyyWP} . (99)

They may be non-dimensionalized as

Cnd
33 =

C33

ρgL2
nd

, (100)

Cnd
35 =

C35

ρgL3
nd

, (101)

Cnd
44 =

C44

ρgL4
nd

, (102)

Cnd
53 = Cnd

35 , (103)

Cnd
55 =

C55

ρgL4
nd

, (104)

where Lnd is the characteristic length. This is simi-
lar to the non-dimensionalization in WAMIT (Newman
and Lee, 2013, Sec. 3.1).

Once the hydrostatics are determined, they are dis-
played in the shell output along with a progress mes-
sage.

3.2.2. The source, and image-source Green
functions

The next step is to determine the non-wavy part(s)
of the Green function at the body panel centroids
due to unit source distribution on the source pan-
els/image panels. This is effected by calling the func-
tion non wav green func, which returns the follow-
ing:

The IV matrix: An N × N matrix, each element of
which represents the induced velocity at the cen-
troid of panel p, by unit source density distribu-
tion on source panel s. Each element ivps is itself
a vector [vxps, v

y
ps, v

z
ps], which represents the x, y, z

components of the induced velocity.

The IVI matrix: An N × N matrix, each element of
which represents the induced velocity at the cen-
troid of panel p by unit source density distribu-
tion on image of source panel s, referred to as
panel s′. Each element ivips′ is itself a vector
[vxps′ , v

y
ps′ , v

z
ps′ ], which represents the x, y, z com-

ponents of the induced velocity.

The DNR matrix: An N ×N matrix, each element of
which represents the normal component of the in-
duced velocity at the centroid of panel p by unit
source density distribution on source panel s.

The DNRI matrix: An N × N matrix, each element
of which represents the normal component of the
induced velocity at the centroid of panel p by
unit source density distribution on image of source
panel s, referred to as panel s′.

The R INV matrix an N × N matrix, each element
of which represents the induced velocity potential
at the centroid of panel p by unit source density
distribution on source panel s.

The RI INV matrix an N × N matrix, each element
of which represents the induced velocity potential
at the centroid of panel p by unit source density
distribution on image of source panel s, referred
to as panel s′.

In determining the IV and IVI matrices, we make
use of (63), (64), and (65).
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In determining the DNR and DNRI matrices, we
make use of the relation

vnps = ~vps · n̂p, (105)

where vnps is the induced normal velocity at the cen-
troid of panel p due to source density distribution on
panel s. ~vps = vxps ı̂+vypŝ+vzpsk̂ is the induced velocity
vector at the centroid of panel p due to source den-
sity distribution on panel s, and n̂p is the unit positive
surface normal at the centroid of panel p given by (76).

In determining the R INV and RI INV matrices,
we make use of (62).

3.2.3. Body in steady, uniform incident flow

In the presence of an incident flow, assuming the body
to be fixed, the problem to be solved is a diffraction
problem, and hence the mode j = 7 for (68). Each
term αps of the α matrix represents the induced normal
velocity at the centroid of the pth body panel due to
unit source density distribution on the sth source panel,
and on the s′ th image-source panel in addition, if there
is a free surface . Thus, each term αps is given as

αps =
−1

4π

[ ∫∫
S

∂

∂n(~ξp)

{
1

r(~ξp, ~ξs)

}
dS

+

∫∫
S′

∂

∂n(~ξp)

{
1

r′(~ξp, ~ξs′)

}
dS

]
. (106)

Here, p, s, s′ ∈ {1, . . . , N}.
With reference to the definition of the DNR, and

DNRI matrices, the α matrix can be expressed as

α = DNR + DNRI (107)

Once the α matrix is determined, the source density
distribution associated with each panel may now be
determined as

[σ7s
]T = [αps]

−1[vn7p
]T; p, s ∈ {1, . . . , N} (108)

Here, in the sole presence of an incident flow defined
by ~v∞ = [vx∞, v

y
∞, v

z
∞], vn7p

is the negative of the com-
ponent of the incident flow velocity in the direction of
the positive surface normal of the pth panel, as given
in the description of (68), and is expressed as

vn7p
= −~v∞ · n̂p. (109)

Here, ~v∞ is specified in the inputs, and n̂p is deter-
mined using (76).

Once the density distribution associated with each
source panel is determined, the null point velocities at
the panel centroids may be determined as

[Vp]
T = [IVps][σ7s

]T + [IVIps′ ][σ7s
]T. (110)

These are then summed up with the incident flow at
the centroid of each panel and plotted as a quiver plot.

3.2.4. Body in the presence of free-surface waves

If waves are present, and the body is free to move along
the specified DoFs, then the diffraction-radiation prob-
lem is to be solved.

We start by determining the generalized normals
given by (8) and (9).

The presence of waves necessitates the
evaluation of the integral of the wavy part
of the Green function and its derivatives.
This is accomplished by calling the function
wav green func, which returns, for each wave
frequency specified in the input:

The SG0 matrix: An N × N matrix, each element of
which represents the integral of the wavy part of
the Green function at the centroid of panel p due
to an oscillating unit density source distribution
on panel s, calculated based on (25) and (66).

The SDG0 N matrix: An N × N matrix, each ele-
ment of which represents the integral of the normal
derivative of the wavy part of the Green function
at the centroid of panel p due to an oscillating unit
density source distribution on panel s, calculated
based on (32)–(34), (67), and (105).

In determining the R0(h, v) and R1(h, v) in (32)–
(34), we make use of the gradif function which is orig-
inally written in FORTRAN, the printout of which, is
given as an appendix to (Telste and Noblesse, 1986).
We use F2PY (Peterson, 2005) to wrap the FOR-
TRAN code for PYTHON. This wrapping generates
the gradif... .pyd and the libgradif... .dll

files in Windows OS. Instead of .dll files, .so files are
generated by F2PY on Linux/Mac OS. The gradif
function may now be called into PYTHON, as any
other regular PYTHON function.

With reference to (68), the α matrix corresponding
to wave frequency ω is now defined as matrix αω, where
each element αωps represents the normal component of
the induced velocity at the centroid of body panel p
due to

1. unit source density distribution on source panel s,
and,

2. unit source density distribution on the image of
source panel s, referred to as s′, in case of the
presence of a free surface, and,

3. oscillating source density distribution of unit mag-
nitude on panel s.
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Thus, the elements of the αω matrix are given by

αωps =
−1

4π

[ ∫∫
S

∂

∂n(~ξp)

(
1

r(~ξp, ~ξs)

)
dS

+

∫∫
S′

∂

∂n(~ξp)

(
1

r′(~ξp, ~ξs′)

)
dS

]

+

∫∫
S

∂G̃(~ξp, ~ξs; f)

∂n(~ξp)
dS, (111)

where p, s, s′ ∈ {1, . . . , N}.
With reference to the definitions of the DNR,

DNRI, and the SDG0 N matrices, we see that

αω = DNR + DNRI + SDG0 Nω (112)

Again, in determining the normal components from
the (x, y, z) components given by (43), (44), (45), and
(67), we make use of (105).

Once the α matrix is determined, we may determine
the source density distribution σωjs associated with each
source panel s, for a given frequency of oscillation ω,
for a given mode of oscillation j from equations of the
form of (108), with vn,ωjp ’s corresponding to the nor-
mal velocity at the panel centroids due to oscillations
with unit amplitude corresponding to each mode j, as
indicated by (7), (8), and (9). Thus,

[σωjs ]T = [αωps]
−1[vn,ωjp ]T (113)

With reference to (69), the β matrix correspond-
ing to wave frequency ω, is now defined as matrix βω

where each element βωps represents the induced velocity
potential at the centroid of body panel p due to

1. unit source density distribution on source panel s,
and,

2. unit source density distribution on image of source
panel s, referred to as s′, in case of the presence
of a free surface, and,

3. oscillating source density distribution of unit mag-
nitude on panel s.

Thus, the elements of the βω matrix are given by

βωps =
−1

4π

[ ∫∫
S

(
1

r(~ξp, ~ξs)

)
dS

+

∫∫
S′

(
1

r′(~ξp, ~ξs′)

)
dS

]
+

∫∫
S

G̃(~ξp, ~ξs; f)dS, (114)

where p, s, s′ ∈ {1, . . . , N}.

With reference to the definitions of the R INV,
RI INV, and the SG0 matrices, we see that

βω = R INV + RI INV + SG0ω. (115)

The complex spatial component of the velocity po-
tential at the centroid of body panel p, corresponding
to the jth mode, with frequency ω, can now be ex-
pressed, with reference to (69), as

[ϕωjp ]T = [βωps][σ
ω
js ]T. (116)

Once the radiation potentials are known, the corre-
sponding added mass and damping components in the
kth DoF, due to body motion along the jth DoF, can
be determined by using (71) and (72).

Mode j = 7 in this case, is the diffraction problem
with the body held fixed at its mean position in inci-
dent waves of specified frequencies.

With reference to (68),

vn,ω7p
= − ∂

∂n
(ϕω0 )

∣∣∣∣
~ξp

(117)

Where ϕω0 is the velocity potential given by (2),
~ξp(ξp, ηp, ζp) is the centroid of submerged body panel
p.

The wave induced water-particle velocity at the cen-
troid of the pth panel is indicated by ~u0p(u0p , v0p , w0p),
where

u0p
=

∂

∂x

(
ϕω0p

)∣∣∣∣
~ξp

= Zaω cos γe−ik(ξp cos γ−ηp sin γ)ekζp (118)

v0p
=

∂

∂y

(
ϕω0p

)∣∣∣∣
~ξp

= Zaω sin γe−ik(ξp cos γ−yηp sin γ)ekζp (119)

w0p
==

∂

∂z

(
ϕω0p

)∣∣∣∣
~ξp

= iZaωe
−ik(ξp cos γ−ηp sin γ)ekζp . (120)

Here, γ [rad] is the wave direction, and Za = 1 m is
the wave amplitude. See, (Guha, 2012, pp. 31–32).

Also, with reference to (105),

vn,w7p
= −~u0p · n̂p, (121)

where n̂p is the unit outward normal to the pth body
panel given by (76).

The α matrix being given by (112), an equation
of the form (108) may now be solved to determine
the source densities σω7s

corresponding to each incident
wave frequency ω.
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The matrix of diffraction potentials
[
ϕω7p

]
associated

with each body panel p, for each incident wave fre-
quency ω, is obtained from a relation similar to (116).

The excitation force along any DoF, k, may now be
determined with reference to (16) as

F ek = −iωρ
N∑
p=1

(
ϕ0p

+ ϕ7p

)
nkp∆Sp. (122)

The added-mass, damping and excitation force ma-
trices are now written to an output file am.txt,
along with identification details, and placed inside the
SFI OMHyD folder.

If field point velocities are to be plotted, the function
field point vel is called. This function calculates the
field point velocities in a similar manner to the calcu-
lation of the body panel null point velocities described
earlier. The only difference being that the IV and
IVI matrices are determined for the field points and
source/image panels, in this case.

In plotting the field velocities to illustrate the effect
of the radiated waves, only the IV matrix is considered,
since the effect of the image source is inherent in the
calculation of the source strengths corresponding to the
radiation modes.

If source densities associated with each panel are to
be displayed, they are plotted as colormapped spheres
at the body panel centroids by calling the function
src str.

A separate post processing code Plotter.py enables
the user to generate required plots of data contained
within the .txt file. The code has options to spec-
ify the k, j components of the added-mass and damp-
ing terms, as given by (20) and (21), to be plotted.
The plot for the excitation force in the kth direction
is also generated. Options are also available to plot
dimensional as well as non dimensional values. In ad-
dition to this, the code also generates a .csv file for
the data contained in the generated plots to make it
readily available for use in LATEXdocuments by using
the pgfplots package.

4. Results

We endeavour to discuss the results generated using the
OMHyD code, as far as possible, by using the screen-
shot of the graphical output as obtained. Wherever
possible, we compare OMHyD and ANSYS-AQWA re-
sults.

The OMHyD files are available for download at
github.com/Savin-Viswanathan/OMHyD-PA.

The required parameters for the various cases pre-
sented are specified in the front-end files identified by

the figure number in this paper. Thus, for each case
presented, there is a different front-end file available
in the download, but they all use the same functions
contained inside the file named diff 3d obj func.py.
More instructions on how to run the different scenarios
are given in the README.txt file of the download.

For better comprehension of some of the scenarios,
it is recommended to run the corresponding front-end
code to get the three-dimensional graphical output.

4.1. Plotting the body and image panels

Figure 7a shows the body panels generated by the code
for a cubical body of side 10 m discretized into square
panels of side 5 m, while Figure 7b shows the normals
and diagonals of the body panels. The indication of the
surface normals and diagonals helps us in ascertaining
that the vertices are stored in the required order during
the function call pan vert cub.

If the free surface is present, the effect of the image
panels are also to be considered in the determination
of the Green function. Hence, for a submerged body,
in the presence of a free surface, the plot is as shown
in Figure 8a. The image body is represented by the
grey dashed lines, and the free surface by the red grid
at z = 0. The diagonals and normals are not shown
to avoid cluttering the image. However, these may be
switched on, if required. In this case the body has
dimensions 10× 10× 5 m and the panel side is 2.5 m.

If the body is floating, then the top surface of the
body, and the image of the top surface need not be
plotted as is shown in Figure 8b.

4.2. Body in infinite fluid in the presence
of a steady uniform flow: Effect of
the free-space Green function

Consider a cube of side 10 m, in an unbounded fluid,
in the presence of a steady flow along the positive X
axis given by vf = [1, 0, 0] m/s. The free space Green
function is applicable, and is given by G∗ = −1

4πr . Con-
sider a field point lying at a distance, greater than the
length of the panel side, from the body. The velocity
potential of this field point may now be expressed as
the sum of the incident velocity potential and the veloc-
ity potential due to source density distributions on the
quadrilateral panels discretizing the body surface. The
inability to plot velocities at field points lying closer to
the body surface is due to the fact that the velocity po-
tential increases as one approaches the element edges
and goes to infinity at the edge, as indicated by (62).
The induced velocities at the body panel centroids can
also be determined and plotted. The graphical output
from the code showing the field point and null point ve-

63

https://github.com/Savin-Viswanathan/OMHyD-PA


Modeling, Identification and Control

x [m]

6
4

2
0

2
4

6

y [
m]

6

4

2

0

2

4

6

z 
[m

]

6

4

2

0

2

4

6

(a) Body panels.

x [m]

6 4 2 0 2 4 6

y 
[m

]

6

4

2

0

2

4

6

z 
[m

]

6

4

2

0

2

4

6

(b) Panel normals and diagonals.

Figure 7: Body in infinite fluid domain.
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Figure 8: Body in semi-infinite fluid domain.
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locities is shown in Figure 9. The velocities of the fluid
at grid points lying only in the XY and XZ planes are
shown to avoid clutter.

We observe that the presence of the body causes a
change in the flow field, and it is no longer uniform.
The flow diverges as it approaches the body and con-
verges as it leaves the body.

The effect of a diagonal flow given by vf =
[0.707, 0.707 , 0] m/s is shown in Figure 10.

The source strengths may also be indicated by a color
bar as shown in Figure 11. We notice that, on the aft
panels facing the incident flow, the source strengths
are positive since an outward flow from the panel is re-
quired to oppose the incident flow and bring the total
velocity of the fluid to zero at the panel null points,
thus satisfying the boundary condition. Similarly on
the forward side, the body boundary condition implies
the presence of a flow into the panels such that the total
fluid velocity at the null points is zero. This flow into
the panel implies the presence of a sink. This combina-
tion of sources and sinks ensures the fulfillment of the
conservation of mass equations in the fluid domain.
The source strengths are negative on the starboard,
port, bottom, and top panels, bordering the aft pan-
els. This is to prevent the flow from separating from
the body surface due to the effect of the induced ve-
locity by the aft source panels. Similarly, the positive
source strengths on the starboard, port, bottom and
top panels, bordering the forward panels prevent the
fluid from penetrating the body under the influence of
the aft sink panels.

4.3. Body in semi-infinite fluid domain:
Effect of the image-source Green
function

Consider a cuboidal body of dimensions 15 × 10 × 10
m, submerged such that the top surface is 2.5 m be-
low the free surface. Consider a steady, uniform flow
along the positive X axis given by vf = [1, 0, 0] m/s
in the fluid domain. Since a free-surface is present,
the effect of the image-body is also to be considered,
and the free-surface Green function is now given by
G = −1

4π

[
1
r + 1

r′

]
. The field and null point velocities

are shown in Figure 12a.

When the immersion is such that top surface is 0.5 m
below the water surface, the field point and null point
velocities are as shown in Figure 12b.

When the top surface immersion depth is 2.5 m, the
incident flow deviates almost symmetrically. However,
when the immersion depth is 0.5 m, the flow deviation
is not symmetric. This can be observed from the null
point velocities of the top and bottom starboard panels
bordering the aft panels, and the second and third row
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(a) Field point velocities in the XY plane.
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(b) Field point velocities in the XZ plane.

Figure 9: Fully submerged body in infinite fluid do-
main, and in the presence of a steady uniform
flow vf = [1, 0, 0] [m/s].
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Figure 10: Fully submerged body in infinite fluid do-
main, and in the presence of a steady uni-
form flow vf = [0.707, 0.707, 0] m/s.
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Figure 11: Body in infinite fluid domain: Source den-
sity distribution magnitudes.
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Figure 12: Submerged body in semi-infinite fluid, and
in the presence of a steady uniform flow
vf = [1, 0, 0] m/s.
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of field velocities from the free surface.
This points to the wall condition at the free surface.

As the body moves towards the wall, the area avail-
able for the flow above the body decreases, and the
flow deviates to pass around the body along the other
available paths. An increase in the fluid velocity in
the space between the free surface and the top surface
of the body is also observed. The function of the im-
age body is to enforce this wall condition as described
in Sec. 2.2. If it were not for the image-source, the
whole of the free surface would have to be modeled
with source panels, as is done for the body.

Figure 13 shows the field and null point velocities
when the body is floating at a draft of 5 m. Again, we
observe that the flow near the surface does not deviate
in the XZ plane but deviates in the XY plane to pass
around the body.

4.4. Body in semi-infinite fluid domain in
the presence of a free surface and
waves: Effect of the wavy part of the
Green function

We consider a cuboidal body of dimensions 15×10×10
m floating at a draft of 5 m. To illustrate the effect of
radiation waves, we consider the induced velocities at
the field points, due to the wavy part of the Green func-
tion alone, as given by (25). The incident wave frequen-
cies [rad/s] to be considered are specified by the user
against the vector ‘omega’ in the 3D Diffraction.py
file. We can select a particular frequency and plot the
induced velocity at the field points due to the body
oscillating along the required DoF by specifying the
requirements against parameters under the n rad freq
and the Degrees of freedom fields, respectively. To
make the velocities visible, we might need to scale the
velocities using the parameter sf rad. The image body
is kept hidden, for aesthetic purposes.

Considering the surge motion of the body, the field
point velocities are as shown in Figure 14. As the body
moves in the positive x-direction, there is an increase in
the fluid pressure forward of the body, and a decrease
in the fluid pressure aft of the body. The fluid now
circulates around the body, from the high pressure zone
to the low pressure zone, as shown by the plots for the
field point velocities in the XY plane. Considering
the XZ plane, we observe that low- and high-pressure
zones also develop along the bottom surface.

Considering the sway motion of the body, the field
point velocities are shown in Figure 15. Again, we
observe similar behaviour of the field velocities as in
the surge case.

Considering the heave motion of the body, the field
point velocities are shown in Figure 16. We observe
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Figure 13: Floating body in semi-infinite fluid, and in
the presence of a steady uniform flow vf =
[1, 0, 0] [m/s].
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(b) Field point velocities in the XZ plane.

Figure 14: Radiation waves due to surge of floating
body.
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Figure 15: Radiation waves due to sway of floating
body.
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that the figure shows the field point velocities as the
body moves down, pushing water away in a radial di-
rection.

Considering the roll motion of the body, the field
point velocities are shown in Figure 17. We observe
that the figure shows the field point velocities as the
body rolls to the starboard. From the XY field point
velocities, we observe that as the body rolls to the star-
board side, the port side rises, pushing the water away,
thus creating a high pressure zone on the port side,
while on the starboard side, the motion of the body
causes a low pressure zone. From the Y Z field point
velocities, we correlate that a high pressure zone is cre-
ated near the starboard side of the bottom surface as it
moves down, and a low pressure zone is created on the
port side of the bottom surface as it moves up. These
pressure differences causes the fluid flow.

Considering the pitch motion of the body, the field
point velocities are shown in Figure 18. As the body
pitches forward down, a high pressure is created near
the forward part of the bottom surface and a low pres-
sure is created at the aft part as seen in the XZ field
point velocities. This causes a flow from the high pres-
sure regions to the low pressure regions. As indicated
by the XY plane field point velocities, fluid is sucked
down from the free surface at the aft of the body while
the fluid is pushed towards the free surface in the for-
ward part.

Considering the yaw motion, the field point velocities
are shown in Figure 19. As the body yaws towards the
port, a high pressure zone forms near the forward of
the port side, while a low pressure zone forms towards
the aft of the port side, and vice versa at the starboard
side. This sets up the flow corresponding to the yaw
oscillation of the body. Only the XY plane field point
velocities are shown since the other planes do not show
other relevant information.

Considering the heave motion of a submerged body
of dimensions 20 × 10 × 5 m, the field point velocities
are shown in Figure 20. Here, the body moves up and
pushes the fluid on the top while pulling the fluid at the
bottom. Looking at Figures 20b and 20c, we observe
that this causes a wave crest to form on top of the body.
The field velocities oscillate in time, with a frequency
corresponding to the radiation frequency of the body,
and after half a cycle, the velocities would point in the
downward direction with the same magnitude, causing
a trough formation above the top surface of the body.

The crest/trough formation in both longitudinal
and transverse cross-sections indicate that the wave is
three-dimensional.

Another inference drawn is that the wave is a prop-
agating wave and not a stationary one. Had it been
a stationary wave, the velocities of the water particles
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(b) Field point velocities in the Y Z plane.

Figure 16: Radiation waves due to heave of floating
body.
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(b) Field point velocities in the Y Z plane.

Figure 17: Radiation waves due to roll of floating body.
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Figure 18: Radiation waves due to pitch of floating
body.
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Figure 19: Yaw induced velocities at field points lying
on the XY plane.
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Figure 20: Heave radiation of submerged body.

would have had only the vertical component.
Yet another conclusion drawn is that, far away from

the body, the wave induced velocities die out.
The above paragraphs, read in conjunction, indicate

the presence of circular outgoing waves with reducing
amplitudes, as the wave moves away from the body.
Thus, we confirm from the results that the wavy part
of the Green function generates waves that satisfy the
radiation condition as described by the theory in Sec.
2.

These radiation waves cause a change in the hydro-
dynamic pressure distribution on the body surface, and
as a result, the body experiences a force which is ex-
pressed mathematically by (19). The component of the
force proportional to the acceleration of the body is
referred to as the added mass, and the component pro-
portional to the velocity of the body is termed as the
damping. Since both velocity and acceleration of the
body are frequency-dependent, the radiation added-
mass and damping are also frequency-dependent.

4.5. The hydrodynamic coefficients of a
deeply submerged cube.

Considering a deeply submerged object, we hypothe-
size:

1. Since the object is submerged beyond half the
wave length of the longest wave, the excitation
forces must be zero.

2. There exists an associated added mass, which
must be independent of the frequency of motion
for a deeply submerged body. This is because the
extent of the volume of water which is accelerated
by the body, as is the interpretation of added mass
made by Newman in (Newman, 1977), is constant
in the absence of the influence of the free surface.

3. There is no associated potential damping since no
radiation waves are present to carry energy away
from the body.

(Sarpkaya and Isaacson, 1981) gives the analytical
expression for the translational added mass of a deeply
submerged cube as 0.7ρa3 [kg]. Here ρ [kg/m3] is the
density of water, and a [m] is the side of the cube.

Table 1 compares the added masses calculated by the
code to results obtained by Guha using MDLHydroD
frequency domain solver, as given in (Guha, 2012, p.
60).

The results in OMHyD are for a cube of side 1 m,
sea water of density 1025 kg/m3, panel size of 0.125 m
giving 384 diffracting panels, (or)panel size of 0.0625 m
giving 1536 diffracting panels, and an immersion depth
of 10000 m. In MDLHydroD, 864 panels were used,
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Table 1: Translational added-mass [kg] of a deeply sub-
merged cube of side 1 m.

DoF Analytical OMHyD OMHyD Guha
Panels N/A 384 1546 864

Surge 717.50 673.29 661.68 665.37
Sway 717.50 673.29 661.68 665.37
Heave 717.50 673.29 661.68 665.34

while no details are given for the immersion depth and
frequencies.

The added mass, damping and excitation forces ob-
tained from the code are plotted in Figure 21.
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Figure 21: Hydrodynamic coefficients of a deeply sub-
merged cube (384 panels).

.

Currently, only square panels can be used in
OMHyD. Use of exactly 864 panels gives erroneous re-
sults. However, we see that Guha’s results with 864
panels lie between our results using 384 and 1536 pan-
els. We also notice that as the mesh becomes finer, the
results are diverging from the analytical value, contrary
to what one would normally expect.

Sec. 2.2.1 General Modelling Requirements of the
ANSYS-AQWA user manual Release 14.5, 2012, re-
quires the surface to be split at the water plane, and
hence such an analysis seems implausible in AQWA.
Further, there is no indication of the results of a panel
convergence study in (Guha, 2012), for this case.

Notwithstanding the above deficiencies, the results
presented confirm our hypothesis above. We also ar-
rive at the conclusion that our implementation of the
surface panelization, and evaluation of the integrals of
the wavy Green function and its derivatives, are not
wrong. Further proof of correctness of our procedure is
presented in sections that follow.

4.6. Panel convergence.

We look at the heave added mass, damping and excita-
tion forces for a cube of side 24 [m], floating at a draft
of 12 [m]. Results for discretization with square panels
of side 12, 6, 4, 3, and 2 m are shown in Figure 22.

We observe convergence when the panel side is 3 m.
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Figure 22: Panel Convergence.

4.7. The hydrodynamic coefficients of a
cuboidal barge.

Results from MDLHydroD and WAMIT, for a cuboidal
barge of dimensions 80× 20× 20 m, floating at a draft
of 10 m, in sea water with density 1025 kg/m3, are
given in (Guha, 2012). We model the same barge in
both OMHyD and ANSYS-AQWA for incident waves
with periods that lie in the time range [5.45,251.32]
s, with a time interval of 5.45 s, corresponding to the
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frequency range [0.025,1.153] rad/s, with an interval of
0.023 rad/s.

In OMHyD, the submerged body surface is dis-
cretized into 576 square panels of side 2.5 m, and the
hydrodynamic coefficients are non-dimensionalized for
a characteristic length of 40.0 m. In ANSYS-AQWA,
the water depth of 10, 000 m is specified to simulate
deep water conditions. ANSYS-AQWA gives dimen-
sional hydrodynamic coefficients, and these are non-
dimensionalized using (123) and (124), in the Excel
sheet available in the download.

The non-dimensionalization follows (Newman and
Lee, 2013), where, the non-dimensional added-mass
and damping terms are expressed as:

Aij =
Aij
ρLknd

; Bij =
Bij

ρLkndω
(123)

Here k = 3 for i, j ∈ {1, 2, 3}, k = 4 for i ∈ {1, 2, 3}; j ∈
{4, 5, 6} or i ∈ {4, 5, 6}; j ∈ {1, 2, 3}, and k = 5 for
i, j ∈ {4, 5, 6}. Aij and Bij are the dimensional terms
obtained from (20), and (21). Lnd [m] is the charac-
teristic length.

The non-dimensional wave excitation forces are ex-
pressed as:

Xi =
Xi

ρgALmnd
(124)

where m = 2 for i ∈ {1, 2, 3}, and m = 3 for
i ∈ {4, 5, 6}. The dimensional excitation force Xi is
obtained from (16).

The results are compared with results generated for
the same barge using ANSYS-AQWA in Figures 23–28.

For higher frequencies, we encounter the irregular
frequencies, the effects of which are noticeable in the
vicinity of non-dimensional frequency of 2 or higher, in
Figures 23–27.

Numerically, irregular frequencies are frequencies at
which the α matrix becomes ill conditioned in equa-
tions of the form of (68), as described in detail in
(Malenica and Chen, 1998). Physically, irregular fre-
quencies correspond to the frequencies of the free-
surface standing waves formed in the interior fluid do-
main bounded by the body surface, (Ohmatsu, 1975,
p. 4). As there is no function to eliminate irregular
frequencies in OMHyD yet, their appearance is antici-
pated.

The effect of irregular frequencies can be observed
in the results for the same barge using MDLHydroD in
(Guha, 2012). Irregular frequency effects can also be
observed in analyses carried out using NeMOH, e.g., in
(Penalba et al., 2017).

With reference to (Newman and Sclavounos, 1988,
p. 4), and (Faltinsen and Michelsen, 1975, p. 6), these
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Figure 23: Cuboidal barge a11, b11, a15, and b15
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Figure 24: Cuboidal barge a22, b22, a24, and b24
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Figure 25: Cuboidal barge a33, b33, a42, and b42
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Figure 26: Cuboidal barge a44, b44, a51, and b51

OMHyD ANSYS

0.5 1 1.5 2
0

5

10
·10−2

ω
√
L/g

A
5
5
/
ρ
L

5

(a) Non-dimensional added mass (a55).

0.5 1 1.5 2
0

0.5

1

1.5
·10−2

ω
√
L/g

B
5
5
/
ρ
L

5
ω

(b) Non-dimensional damping (b55).

0.5 1 1.5 2
0

5

10

15
·10−2

ω
√
L/g

A
6
6
/ρ
L

5

(c) Non-dimensional added mass (a66).

0.5 1 1.5 2
0

5

10
·10−2

ω
√
L/g

B
6
6
/ρ
L

5
ω

(d) Non-dimensional damping (b66).

Figure 27: Cuboidal barge a55, b55, a66, and b66
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Figure 28: Cuboidal barge fe1 , f
e
3 , and fe5

irregular frequencies are not of practical significance
for most offshore structures.

The satisfactory agreement demonstrated here be-
tween OMHyD and ANSYS-AQWA results, and also
with WAMIT and MDLHydroD, as given in (Guha,
2012), indicates the correct modelling of the wave ra-
diation and diffraction effects, or in other words, the
wavy Green function, which was reconstructed from
the printout given in (Telste and Noblesse, 1986).

5. Conclusions

The theory behind the linearized, infinite water-depth,
zero forward-speed wave-body interaction problem is
refreshed to demonstrate that the determination of the
diffraction and radiation potentials enable the evalua-
tion of the first order wave excitation, added-mass, and
potential-damping loads.

Lamb’s use of the free-space Green function method
to represent the field point velocity potential in the in-
finite fluid domain as the effect of a source distribution
on the surface of the submerged body, and its exten-
sion to the wave-body interaction problem through the
use of the appropriate free-surface Green function, is
then presented in brief.

The infinite water-depth, zero Froude-number free-
surface Green function formulated in (Telste and No-
blesse, 1986) is discussed, and the break-down of
the Green function to its source, image-source, and
pulsating-source components is presented.

Analytical representations presented for the source,
and image-source Green functions, and its derivatives,
are based on the lower-order quadrilateral boundary
panel method given in (Hess and Smith, 1967), and
those for the wavy Green function and its derivatives,
are based on the FORTRAN code sourced from (Telste
and Noblesse, 1986).

A detailed description of the extension of the Hess
and Smith method to the wave-body interaction prob-
lem, in order to determine the source density distribu-
tion associated with each body panel, from the matrix
formulation of the set of algebraic equations represent-
ing the linearized kinematic body boundary condition,
is presented. Calculation of the panel null-point veloc-
ity potentials, for the corresponding frequencies and
radiation modes, is then discussed. This is followed
by the discussion on the method of calculation of the
added-mass and damping loads, for the corresponding
frequencies and radiation modes. The method of calcu-
lation of the wave excitation loads for the correspond-
ing frequencies along the various DoFs are then dis-
cussed.

A detailed description of the implementation of the
above method of solution using PYTHON is then pre-
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sented, and the code for the frequency domain hydro-
dynamic analysis package OMHyD is made available
for public access.

A comprehensive discussion of the outputs from
OMHyD is presented, to demonstrate the effects of the
source, image-source, and pulsating-source part of the
Green function, in order to gain better perspectives
on the effect of a submerged/floating body on incident
fluid flow, the effect of the free surface, and of radiation
loads.

The hydrodynamic analysis results for a cuboidal
barge, obtained using OMHyD, is then benchmarked
with results obtained using the commercial software
ANSYS-AQWA. From other sources discussed, it was
noticed that there is satisfactory agreement between
OMHyD results, and results from WAMIT, MDLHy-
droD, and ANSYS-AQWA.

A shortcoming of the present implementation lies
in the presence of irregular frequencies. Such effects
are observed in MDLHydroD and NeMOH implemen-
tations also. The ability to remove irregular frequency
effects is one major feature that sets apart commer-
cial software like ANSYS-AQWA and WAMIT from
the other software discussed above.

It is thus concluded that the work succeeded in:

1. Building up a compendium on the source formu-
lation of three dimensional, lower-order boundary
element method of solution, for the first order, infi-
nite water-depth, zero-Froude number wave-body
interaction problem, using the free-surface Green
function.

2. Demonstrating the computer implementation of
the theory discussed in the item above, using
PYTHON, to develop the open-source frequency
domain hydrodynamic analysis software, OMHyD.

3. Demonstrating satisfactory agreement between
OMHyD results, and results from other commonly
used commercial and proprietary software.

The simplicity of the PYTHON syntax is particu-
larly advantageous for those interested in gaining a
better understanding of the working of panel meth-
ods. Further, the comprehension of the implementa-
tion algorithm would enable code development using
compiled software like C or FORTRAN.

6. Considerations for improvement

The following may be considered for improving the
present work:

1. A global approximation to the deep-water free-
surface Green function is given in (Wu et al.,

2017), and is much simpler than the approxima-
tions given in (Telste and Noblesse, 1986). Replac-
ing the wav green func function with the global
approximation is expected to reduce the associ-
ated computation time.

2. The panel parameters in OMHyD are computed
solely based on the vertex coordinates of the
quadrilateral panels discretizing the body surface.
All subsequent computations are thereafter based
on these panel parameters. Noting that triangu-
lar panels are special cases of quadrilateral pan-
els, with two coincident vertices, as mentioned in
(Newman and Sclavounos, 1988, p. 5), extending
the present capabilities of OMHyD to accommo-
date arbitrary shapes is relatively easy. One may
develop a customized panelling procedure, or im-
port panel vertex co-ordinates generated using ex-
ternal software.

3. For objects with a symmetric submerged surface,
one can take advantage of the reflection rela-
tionship as described in (Hess and Smith, 1967,
p. 25), (Hess and Smith, 1962, p. 65), and p.
30 of the lecture notes about sink-source meth-
ods and wave induced loads by O.M Faltinsen,
prescribed as course material for course MR8300
(Hydrodynamic Aspects of Marine Structures-1),
Department of Marine Technology, NTNU. Most
commercial software take advantage of symmetry
(Newman and Lee, 2013, Sec. 6.1). The advan-
tage is that only the non-redundant portion of the
body needs to be discretized, effecting a significant
reduction in computation time, as can be inferred
from (Newman, 1992).

4. The induced velocity potential at a point lying far
from the quadrilateral source panel of area A, of
given source density distribution σ, approximates
the velocity potential due to a point source of
strength Aσ placed at the centroid of the panel, as
can be inferred from (Garrison, 1978, p. 106). One
may make use of this fact to reduce the associated
computational load.

5. Use of compiled languages like FORTRAN or C
can improve computation time. OMHyD may
entirely be implemented in FORTRAN, wrapped
for PYTHON using F2PY (Peterson, 2005), and
called into MODELICA taking advantage of inter-
operability, as described in (OpenModelica, 2020).
Or, OMHyD may also be coded in C, and called
directly into MODELICA using the interoperabil-
ity features.

6. Lau and Hearn (1989) present a review of different
methods for removal or irregular frequencies. In
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the ‘extended boundary condition method’ formu-
lated by Ohmatsu (1975), and Kleinman (1982),
a rigid lid is placed on the interior free surface to
suppress the internal sloshing modes. Guha (2012)
refers to the results of the numerical implemen-
tation of this method presented in (Zhu, 1994),
including the algorithm for automatic lid genera-
tion, and opines that this method is, by far, the
most efficient method.

7. The theoretical basis of the evaluation of the fi-
nite water-depth Green function is discussed in
(John, 1949), (John, 1950), (Thorne, 1953), (We-
hausen and Laitone, 1960), (Chiang, 1983, Ch. 7),
and (Linton and McIver, 2001, Appendix B. 4).
Numerical evaluations are discussed in (Newman,
1985), (Newman, 1992), (Pidcock, 1985), (Linton,
1999), and (Liu, 2015). Implementation of such
methods will enable extension of OMHyD capa-
bilities to handle shallow water problems.

A. Analytical expression for the
velocity potential due to a plane
source panel

With reference to (Katz and Plotkin, 2001, p. 245),
the velocity potential induced at point Q(x, y, z), due
to unit source density distribution on a quadrilateral
panel S is given as

φ(x, y, z) =
−1

4π

∫∫
S

1

r
dS, (125)

where,∫∫
S

1

r
dS =

[
(x− x1)(y2 − y1)− (y − y1)(x2 − x1)

d12

× ln
r1 + r2 + d12

r1 + r2 − d12

+
(x− x2)(y3 − y2)− (y − y2)(x3 − x2)

d23

× ln
r2 + r3 + d23

r2 + r3 − d23

+
(x− x3)(y4 − y3)− (y − y3)(x4 − x3)

d34

× ln
r3 + r4 + d34

r3 + r4 − d34

+
(x− x4)(y1 − y4)− (y − y4)(x1 − x4)

d41

× ln
r4 + r1 + d41

r4 + r1 − d41

]

− |z|
[

tan−1

(
m12e1 − h1

zr1

)
− tan−1

(
m12e2 − h2

zr2

)
+ tan−1

(
m23e2 − h2

zr2

)
− tan−1

(
m23e3 − h3

zr3

)
+ tan−1

(
m34e3 − h3

zr3

)
− tan−1

(
m34e4 − h4

zr4

)
+ tan−1

(
m41e4 − h4

zr4

)
− tan−1

(
m41e1 − h1

zr1

)]
. (126)

The variables in the above equation are as defined in
(51)–(61). We notice that using the absolute value of

the z co-ordinate, as indicated by |z| in the above

expression, gives inconsistent results, for negative z co-
ordinates of the field point, as demonstrated below.

With reference to (Garrison, 1978, p. 106), expres-
sion (126) for a field point lying at a distance r >
2
√

∆S [m] from the centroid of a panel of surface area
of ∆S [m2], can be approximated as ∆S

r .

We write the following downloadable code in
PYTHON for the velocity potential at a field point
(x, y, z), z 6= 0, due to unit source density distribution
on a panel with vertices (xi, yi, zi), i ∈ {1, . . . , 4}, such
that the panel lies in the XY plane of the co-ordinate
system with its origin at the panel centroid as shown
in Figure 4.

HS.py : Python code based on the analytical ex-
pression for the field point potential given
in (Hess and Smith, 1967, p. 54).

FM.py : Python code based on the integral formu-
lation for the field point potential given in
(Faltinsen and Michelsen, 1975, Appendix
2).

KP.py : Python code based on the analytical ex-
pression of the field point potential given
in (Katz and Plotkin, 2001, p. 245), as re-
produced in (126).

KPC.py : Based on the modified expression given by

(62), where the |z| in (126) is replaced by

z .
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Table 2 gives the comparison for
∫∫
S

1
rdS evaluated

using the different approximations above for a square
panel with side 5 m. We notice that using (126) gives
erroneous values for z < 0, as indicated by the values
enclosed in the blue box. Hence, we use the corrected
expression given by (62) in OMHyD.

Table 2: Comparison of field potential approximations.

x y z ∆S/r HS FM KP KPC

0 0 25 1 0.997 0.997 0.997 0.997

0 0 -25 1 0.997 0.997 2.977 0.997
3 3 15 1.603 1.592 1.592 1.592 1.592

3 3 -15 1.603 1.592 1.592 4.500 1.592
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