
Modeling, Identification and Control, Vol. 42, No. 1, 2021, pp. 1–16, ISSN 1890–1328

NorFisk: fish image dataset from Norwegian fish
farms for species recognition using

deep neural networks

A. M. Crescitelli 1 L. C. Gansel 1 H. Zhang 2

1Department of Biological Sciences, Norwegian University of Science and Technology, Ålesund, Norway. E-mail:
{alberto.m.crescitelli,lars.gansel}@ntnu.no

2Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology,
Ålesund, Norway. E-mail: hozh@ntnu.no

Abstract

Long-term autonomous monitoring of wild fish populations surrounding fish farms can contribute to a bet-
ter understanding of interactions between wild and farmed fish, which can have wide-ranging implications
for disease transmission, stress in farmed fish, wild fish behavior and nutritional status, etc. The ability to
monitor the presence of wild fish and its variability with time and space will improve our understanding of
the dynamics of such interactions and the implications that follow. Automatic fish detection from video
streams at farm sites using neural networks may be a suitable tool. However there are not many image
datasets publicly available to train these neural networks, and even fewer that include species that are
relevant for the aquaculture sector. This paper introduces the first version of our dataset, NorFisk, which
can be found publicly available at Crescitelli (2020). It contains 3027 annotated images of saithe and
9487 of salmonids and it is expected to grow in the near future to include more species. Annotated image
datasets are typically built manually and it is a highly time-consuming task. This paper also presents an
approach to automate part of the process when generating these types of datasets with fish underwater. It
combines techniques of image processing with deep neural networks to extract, label, and annotate images
from video sources. The latter was used to produce NorFisk dataset by processing video footage taken in
several fish farms in Norway.

Keywords: Annotated image dataset, Deep neural networks, Fish detection, Fish species recognition,
Marine aquaculture applications.

1 Introduction

Wild fish is attracted to aquaculture sites for a variety
of reasons and previous studies have shown that large
numbers of wild fish may congregate near fish farms
Tuya et al. (2006), Fernandez-Jover et al. (2008). Wild
fish can interact with farmed fish in varying ways. For
instance farmed fish may perceive wild fish as potential
predators. If they try to enter fish cages through the
netting, this can stress farmed fish and change their be-

havior. Wild fish may also feed on lost feed pellets or
farmed fish feces, which can impact their foraging be-
havior and body composition. Diseases and parasites
can spread between farmed and wild fish as well. In
order to understand such interactions and to identify
and manage potentially negative impacts of interac-
tions between wild and farmed fish, it is important to
have good knowledge of the presence and behavior of
wild fish in the vicinity of fish farms. This includes
variations of the distribution and composition of wild

doi:10.4173/mic.2021.1.1 c© 2021 Norwegian Society of Automatic Control

http://dx.doi.org/10.4173/mic.2021.1.1

Modeling, Identification and Control

fish assemblages. To date we lack proper monitoring
systems for wild fish in the water column around and
on the bottom below fish farms. As many authors have
been proposing in recent years (Bjelland et al. (2015),
Grotli et al. (2015), Utne et al. (2015)), these condi-
tions are drivers for the development of autonomous
systems for long-term monitoring to support farmers’
decisions and increase fish welfare and farms produc-
tion.

One of the problems to tackle with respect to au-
tonomous monitoring systems is fish species detec-
tion. Reliable systems that continuously recognize fish
species surrounding fish farms would enable scientists
to evaluate farm-wild fish interactions with more de-
tail. The oceans present a high environmental diversity
that makes it hard for scientists to reach a final solu-
tion with respect to fish detection. Because of this,
different authors have proposed several approaches.

Zhang et al. propose an automatic method for fish
counting using image density grading with local regres-
sion in water tanks Zhang et al. (2020). Hossain et
al. have applied techniques of computer vision with
machine learning for fish species classification Hossain
et al. (2016). Others have used convolutional neu-
ral networks (CNN) for the same task (Salman et al.
(2016), Tamou et al. (2018)). They all have used the
well known LifeCLEF Fish dataset Joly et al. (2015) as
a benchmark. Rauf et al. also use CNNs for fish species
classification Rauf et al. (2019), but they apply it on
the Fish-Pak dataset Shah et al. (2019). Pelletier et al.
Pelletier et al. (2018) implement CNN architectures for
classifying fish on board fishing boats with a dataset
provided by The Nature Conservancy Nat (1964).

Rathi et al. Rathi et al. (2018) applied CNN on an-
other public benchmark called Fish4Knowledge Boom
et al. (2012), as well as Wang et al. (2019), proposing
a deep encoding-decoding network for fish classifica-
tion. Other authors have created their own fish species
datasets for image classification from video footage.
They have annotated the images manually. Exam-
ples of this are found in Villon et al. (2018) and Sid-
diqui et al. (2018). On the side of object recogni-
tion/segmentation for fish species, Cutter et al. Cut-
ter et al. (2015) utilize Haar-cascades Viola and Jones
(2001) for detecting rockfish using their own dataset.
Salman et al. Salman et al. (2019) apply region-based
convolutional neural networks (R-CNN) Girshick et al.
(2014) under the benchmark LifeCLEF; Mandal et
al. Mandal et al. (2018) implement Faster R-CNN
Ren et al. (2017) and train the neural networks with
their own dataset. Liu et al. Liu et al. (2018) use
YOLOv3 Redmon and Farhadi (2018) with the bench-
mark Fish4Knowledge to detect and track fish. Raza
and Hong Raza and Hong (2020) propose an improved

version of YOLOv3 to perform detections on a custom
dataset of four fish species.

The task of annotating images is usually done manu-
ally (Boom et al. (2012), Joly et al. (2015), Villon et al.
(2018)). As Raza Raza and Hong (2020) and other au-
thors state, bounding boxes labeling and annotations
must be taken with much care to reach an accurate
model, which translates into a very time-consuming
process. Most fish classification/recognition solutions
have been built using the LifeClef and Fish4Knowledge
benchmarks that contain coral reefs species. There is
a lack of data, publicly available, regarding fish species
that are relevant for aquaculture.

The first contribution of this paper is a public
dataset of annotated images with salmonids and saithe
species which can be found at Crescitelli (2020). The
second contribution is the approach used to gener-
ate and annotate this dataset. It consist of a semi-
automatic system combining basic techniques of com-
puter vision with the state-of-the-art of neural net-
works.

In the next section, the proposed approach and the
different parts of the system are explained. In section
3 the procedure and experiments setup performed to
validate the system are presented. Section 4 presents
and discusses the results. Sections 5 and 6 present the
paper’s conclusions and directions for future work.

2 Proposed Approach

We propose to use techniques of image processing (IP)
combined with deep neural networks (DNN), to build a
mechanism that enables the creation of large datasets
of fish images, with annotations, in a semi-automatic
approach. Scientists typically annotate images man-
ually, sometimes using software such as LabelImg to
speed up the process. This type of software requires
the user to draw a bounding box around every object
of interest in each image and give it a label. The soft-
ware essentially takes the coordinates of the bound-
ing boxes and labels and generates the annotation files
in the right format. In this work the goal is to go
a step further and generate the bounding boxes auto-
matically.

2.1 Top level description

The top-level architecture of the developed system is
shown in figure 1. It has three main components: Im-
age Processing Stage (IPS), Image Extraction Stage
(IES), and Neural Network Stage (NNS).

The IPS is especially useful for creating a dataset
of a certain class (e.g. salmon) from scratch, without
any previous data regarding that class. It uses basic

2

Crescitelli et.al., “NorFisk: fish image dataset from Norwegian fish farms for species recognition using deep NN”

Initial
Videos / Frames

Videos / Frames

Image Processing Stage

Filter Images

Find Objects Contours

Get Bounding Boxes Coordinates

Image Extraction Stage

Extract Images

Update Dataset

Image Dataset

Neural Network Stage

Train Neural Network

Perform Predictions

Get Bounding Boxes Coordinates

Object Recognition
Model

Figure 1: Flow diagram of the top level view

techniques of image processing to enhance and isolate
objects of interest in environments where objects are
easily separable from the background, such as fish un-
derwater. The output of this stage is a set of bounding
boxes coordinates enclosing the isolated objects. The
details are explained in section 2.2.

As many bounding boxes found in the previous step
might be inaccurate for our purpose, IES will evaluate
the list of boxes and decide which boxes to keep and
which ones to discard. The images inside the remain-
ing boxes will be prepared for extraction and added
to the dataset with their corresponding labels and an-
notations. The description of the algorithm is given
section 2.3.

Once a small dataset of some dozens or a few hun-
dreds of images is created, it will be used to train a
neural network (NN) for object recognition, such as
YOLOv3 Redmon and Farhadi (2018). This step cor-
responds to the third block in figure 1 (i.e. NNS). From
this point forward an NN is used to find the bounding
boxes instead of the IPS. Details are described in 2.4.

2.2 Image processing stage

This is the starting point of the system when we do
not have any image of the class we are dealing with. In
this initial stage, bounding boxes for the fish present in
each frame are found by filtering the objects of interest
from the background.

In order to train the NN to recognize fish species, at
least a few hundred annotated images are needed. To
obtain this first dataset, bounding boxes are created
by using simple techniques of image processing to ”fil-
ter” the objects of interest. A set of parameters must
be tuned in order to filter the desired objects. This
stage is sensitive to variations in light conditions and
therefore, if the conditions change much, the parame-
ters need to be readjusted. In consequence, this stage
is not a general solution for any type of objects but it
is very suitable for objects easily separable from their
background, such as fish underwater. Once the param-
eters are tuned (which only takes a few minutes), the
algorithm can process an entire video filtering the fish.
It generates the bounding boxes and annotations, with
a predefined label, automatically.

The steps of the algorithm are shown in figure 2 and
it works as follows. Firstly, each image is split into HSV
(Hue-Saturation-Value) channels and each channel is
processed independently. This gives us more degrees
of freedom. In each channel the following functions are
applied:

• Blurring : To smooth the image reducing noise.

• Global Histogram Equalization: To balance the
global contrast. Under water there is usually a
gradient of brightness as a consequence of the light
coming from the surface.

• Contrast Limited Adaptive Histogram Equalization
(CLAHE): This is an adaptive equalization by re-
gions. It is a more refined equalization than the
previous step.

• Morphological Transformations Closing-Opening :
Closing fills the small holes present in objects,
while opening removes small regions of pixels in
the background that act as noise.

Each of the steps described thus far were imple-
mented using the library OpenCV and the details re-
garding how each operation works are available at ope
(2020). The parameters for each operation are tuned
differently for each channel in order to maximize flexi-
bility. After the image is ”cleaned”, the three channels
(H-S-V) are merged together again. As shown in fig-
ure 2, at this point of the process, the object of interest
(e.g. fish) is enhanced. This facilitates detection later
in the process.

3

Modeling, Identification and Control

The following step is to apply a binary threshold in
each channel to filter the image. By default, each pixel
in each channel can take a value between 0 and 255.
Therefore, a lower and upper threshold are defined in
order to decide which range of pixel values will survive
the filtering. There might be an undesired remainder in
the borders of the frame as a consequence of applying
the histogram equalization. To delete this effect, the
option to trim the borders of the frames is included. At
this point in the chain, the result is a binary mask with
only the fish. The following step is to perform closed
contour detection. In this part every contour present
in the image will be detected. The list of contours
is then sent to the function ”Clean Contours”. The
Clean Contours function performs two controls. First,
it discards all contours that are under a specified size.
This is due to the fact that some contours might be
too small. Second, it controls that contours are not
on the borders of the frame. This is because only full-
body fish are considered for extraction. The rest are
dropped from the list.

The final task of the IPS is to output the bounding
boxes coordinates of the remaining contours. This is
easily done by taking two vertices that correspond to
the minimum and maximum values of (x,y) for each
contour.

2.3 Image extraction stage

When using a dataset for image classification, it is
enough to have images that just contain the object of
interest (OOI). Object recognition, on the other hand,
makes it necessary to provide information regarding
the coordinates of the OOI inside the image. This in-
formation is contained in an annotation file. There are
several formats and standards for annotation files, but
essentially, it is a text file that includes the following
data:

• Path to the image file.

• Name of the class (e.g. saithe, salmon, etc.).

• Coordinates of the bounding box that encloses the
OOI inside the image.

As the goal is to create datasets for multi-purpose
applications, the latter case is considered. In conse-
quence, for every image that is extracted from a frame,
an annotation file is also created.

In this work, for simplicity, the focus was placed on
creating images with only one object per image. Fu-
ture work will include images with multiple objects.
The original frames may have several fish. At the same
time, in order to help NNs to generalize better, there

Initial
Videos /
Frames

Image Processing Stage (IPS)

Separate
Channels

(H,S,V)

Bounding
Boxes

Coordinates

Blurring

Merge
Channels

(H,S,V)

Binary
Threshold

Trim Borders Find Contours Clean Contours
Get Bounding Boxes

coordinates

Histogram
Equalization

Closing
Opening

CLAHE

Blurring
Histogram

Equalization
Closing

Opening
CLAHE

Blurring
Histogram

Equalization
Closing

Opening
CLAHE

Figure 2: Flow diagram of the image processing stage (IPS)

4

Crescitelli et.al., “NorFisk: fish image dataset from Norwegian fish farms for species recognition using deep NN”

has to be as much background as possible in each im-
age. Therefore, regions of interest for each fish are
cropped, annotated, and saved as different images in
our dataset. These are the images that will be used to
train NNs. In conclusion, the following two boxes for
each fish are handled:

• Bounding Box: It is the bounding box found in
the previous stage. It encloses the contour of the
fish.

• Region Of Interest (ROI): It is a scaled version
of the bounding box that includes the object and
part of the background.

This stage takes the list of bounding boxes coordi-
nates produced by the IPS and performs a number of
checks to discard undesired bounding boxes. It is also
encharged of generating ROIs while checking that they
do not overlap with other OOI. At the end, the IES out-
puts labeled and annotated images that will be added
to the dataset. The flow chart of the functionality is
shown in figure 3 and it works as described below.

The first step is to check and discard those bounding
boxes that are on the borders of the frame. These are
considered to be fish getting in or out of the field of
view. With the remaining bounding boxes a ROI for
each one needs to be generated. To generate a ROI,
first, the bounding box is scaled up with a random size
in a predefined range of values. The original aspect ra-
tio of the image is conserved. Then, it is checked that
the ROI is not passing the borders of the image. If it
does, the ROI is moved inside the image keeping the
size (this means that the fish is not necessarily cen-
tered inside the ROI). Next, it is checked that ROIs
are not overlapped with bounding boxes that belong
to other ROIs. If any do, the size of that ROI is re-
duced to the minimum to avoid the overlap. If the
bounding boxes are the ones overlapping (e.g. when
one fish is behind another one), they are discarded.
Finally, the remaining ROIs are cropped from the orig-
inal frame, the annotations are created automatically
based on the bounding boxes coordinates, and this new
data is added to our dataset.

After saving this information for a few dozens or
hundreds of fish, there are two choices. One option is
to keep expanding our dataset using the IPS and IES
with more videos, semi-automatically, by readjusting
the IPS parameters when needed. The other option is
to automate this process by including an NN, as ex-
plained in next section.

2.4 Neural network stage

After creating an initial dataset with a few hundred
images, an NN can be trained to recognize the object

Image Extraction
Stage (IES)

Bounding Boxes
Coordinates

Annotation files

Discard bounding boxes
in the border

Generate ROIs

Control and adjust
ROIs borders

Drop overlapping
bounding boxes

Generate
annotation files

Crop bounding
boxes

Crop ROI
images

Bounding boxes
images

Labeled images
for training

Figure 3: Flow diagram of the image extraction stage
(IES)

of interest by itself (e.g. certain species of fish). There-
fore, from this point on, the task of finding bounding
boxes can be addressed by the NN. By definition CNNs
can capture features in images. This makes them more
robust against light or contrast variations. In conse-
quence, when using a CNN, there is no need to tune
the parameters of the image processing stage anymore.
Thus, the whole process, from the video footage as in-
put to the final product (i.e. annotated images in the
dataset), can be automatic.

The reader might wonder about the accuracy given
the small dataset used for training. This is where the
iterative loop of figure 1 comes in. In the first instance
of predictions, the performance of the neural network
will be poor. It might detect a few fish and with low
accuracy. The detections that are above a predefined
threshold of accuracy will be added to the dataset.
Later on, the NN will be re-trained with these new

5

Modeling, Identification and Control

images. In consequence, the accuracy and generaliza-
tion is expected to increase in each iteration. At the
same time this should enable the NN to make predic-
tions in more diverse scenarios. The iterative loop of
expanding the dataset and re-training the NN to make
it more general and accurate can be repeated as long
as desired.
Neural Network Selection. Region-based CNNs,

such as R-CNN in all its versions, are complex and
involve a two-stage pipeline: one stage to generate po-
tential bounding boxes and one stage to run a classi-
fier with post-processing on those proposed boxes. By
contrast, YOLOv3 is a single-stage that consists on a
regression problem, a single CNN that simultaneously
predicts bounding box coordinates and class probabil-
ities straight from the image. This makes YOLOv3
extremely fast compared to other methods. Besides
speed, region-based techniques observe images by slid-
ing windows. YOLO’s architecture instead, sees the
whole picture during training and testing. Thus it also
encodes contextual information. This enables YOLO
to make a much lower number of background errors
compared, for example, to Fast R-CNN.

While YOLO can quickly identify objects, its major
downside is that the precision of localization of objects
is not as good. The loss function treats errors in small
boxes the same as in large boxes. A small error in a
small box, for example, has greater effect than a small
error in a big box. This is not reflected in the loss
function, and therefore YOLO’s main source of errors
is localization errors. Overall the speed of YOLOv3,
together with its accuracy, simplicity, and low number
of background errors make it the most suitable object
detector for this work.

Bounding Boxes Detection. The input image
is divided into a grid of S × S. Each grid is en-
charged of predicting C conditional class probabilities
defined as P (Classi|Object) and B bounding boxes.
YOLOv3 predicts bounding boxes using hand-picked
priors called anchor boxes. It only predicts offsets and
confidences with respect to the anchor boxes. Using
anchor boxes decouples the class prediction from the
spatial location. With anchor boxes, YOLOv3 can pre-
dict more than a thousand boxes per image.

Each bounding box is defined as follows:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
tw (1)

bh = phe
th

Objectness = σ(to)

where (bx, by) represents the center of the box and
(bw, bh) is the width and height. The Objectness is

defined as Objectness = P (object)IOU(b, object) and
represents the confidence that there is an object in
that place. IOU is defined as the intersection area be-
tween two bounding boxes divided by the area under
the union of the two bounding boxes. It is a measure
of how much overlap the two boxes have with respect
to the total area they occupy. IOU = 1 means the two
boxes have equal size and they are fully overlapping.
On the right-hand side of the equation 1, (cx, cy) rep-
resents the grid cell’s offset from the top left corner of
the image. pw and ph are the width and height of the
bounding box prior (i.e. the anchor). The NN pre-
dicts the 5 parameters [tx, ty, tw, th, to] that form the
bounding boxes as offsets of the anchors. σ(.) is the
sigmoid function. This parametrization makes the NN
more stable and easy to learn, as Redmon and Farhadi
Redmon and Farhadi (2016) describe.

Architecture. YOLOv3 uses Darknet-53 Redmon
(2016) as a backbone architecture which has 53 con-
volutional layers and has been pre-trained on the Im-
ageNet dataset in order to learn basic and general fea-
tures. For object detection, YOLOv3 adds 53 more
layers on top of Darknet-53, for a total of 106 layers.
The full YOLOv3 is trained on the Microsoft COCO
dataset Lin et al. (2014) and that is the starting point
in this paper. Transfer learning is used to fine-tune the
NN with our own fish images.

YOLOv3 is a multi-label detector that uses indepen-
dent logistic classifiers. This means that every bound-
ing box can predict multiple classes. This architecture
predicts boxes at three different scales concatenating
feature maps from different layers at different sizes,
using a similar concept to feature pyramid networks.
This multi-scale feature allows the network to extract
finer-grained information from early higher-resolution
feature maps. YOLOv3 uses 9 anchors divided in 3
scales. The anchors are found automatically using k-
means clustering on the training dataset. Since the
model only uses convolutional and pooling layers, it
can be resized on the way. By default, the NN changes
the input size randomly every 10 batches while train-
ing. This forces the network to learn across a variety of
input dimensions and allows it to perform predictions
at different input resolutions.

Loss. The loss function to be minimized by
YOLOv3 has three components. That is, the loss that
accounts for the error in the localization of the bound-
ing boxes, the loss that accounts for the objectness,
and the loss in classification. The total loss is given
by:

Loss = Lcoord + Lconf + Lclass (2)

6

Crescitelli et.al., “NorFisk: fish image dataset from Norwegian fish farms for species recognition using deep NN”

where:

Lcoord = λcoord

S2∑
i=0

B∑
j=0

1
obj
ij

[(
txi
− t̂xi

)2
+
(
tyi
− t̂yi

)2
+
(
twi
− t̂wi

)2
+
(
thi
− t̂hi

)2]
(3)

Lconf =

S2∑
i=0

B∑
j=0

1
obj
ij BCE

(
toi , t̂oi

)
+ λnoobj

S2∑
i=0

B∑
j=0

1
noobj
ij BCE

(
toi , t̂oi

) (4)

Lclass =

S2∑
i=0

1
obj
ij

∑
c∈classes

BCE (pi(c), p̂i(c)) (5)

BCE stands for Binary Cross Entropy and it is de-
fined as:

BCE (x, x̂) = −x log x̂− (x− x̂) log (1− x̂) (6)

The symbols with a hat represent the predicted val-
ues and the ones without hats are the ground truth
values. 1

obj
i is equal to 1 if an object appears in cell

i and zero otherwise. 1obj
ij will be one when j is equal

to the jth bounding box predictor in cell i that is re-
sponsible for that prediction. This means the predictor
with the highest IOU in that grid cell. 1

noobj
ij simply

takes the opposite value (i.e. 0 or 1) of 1obj
ij . From

5 it can be seen that the loss function only penalizes
classification errors if an object is present in that grid
cell. It also penalizes bounding box coordinates errors
if that predictor is the one responsible for the ground
truth box.

The model weights localization errors equally with
classification errors. Also, some grid cells may not
contain objects. This takes the confidence scores of
those cells to zero, increasing the gradient of those
cells that do contain objects. This can lead to model
instability causing the training to diverge. λcoord and
λnoobj solve this issue by controlling how much to weigh
the loss from bounding box coordinates and the con-
fidence. The sum-squared error also weights errors in
large boxes and errors in small boxes in the same way.
Clearly this is not ideal, since an error in a small box
has much greater effect on IOU than in a bigger box.
For more details regarding YOLO, refer to Redmon
et al. (2016)Redmon and Farhadi (2016)Redmon and
Farhadi (2018).

Metrics. The metric used to measure the accuracy
of our models is Average Precision (AP). Calculating

it requires understanding three other metrics: Inter-
section Over Union (already explained), Precision, and
Recall.

Precision is the proportion of the predictions (i.e.
detected boxes) that are correctly identified. Recall
is the proportion of the ground truth objects that are
correctly detected. A prediction is considered to be
correct when its IOU against the ground truth box is
above a specific threshold. In this work an IOU thresh-
old of 0.5 was used.

Mathematically:

Precision =
TP

TP + FP
; Recall =

TP

TP + FN
(7)

• True Positives (TP) is the number of the de-
tected bounding boxes with a IOU higher than
the threshold.

• False Positives (FP) is the number of detected
bounding boxes with a IOU below the threshold
(meaning the prediction does not overlap a ground
truth bounding box).

• False Negatives (FN) is the number of ground
truth boxes that are not detected.

The AP is the average of the precision for every re-
call value. In other words it represents the area under
the precision-recall curve. To build the precision curve
as a function of the recall, first the predictions in the
whole testing set have to be performed. Then, a table
with the confidence of each bounding box sorted by
precision in descending order is built. Next, for every
predicted bounding box, the values of TP and FP are
assigned. These values are used to create an accumula-
tive TP and FP to compute the precision equation for
each value. For each precision value the recall is calcu-
lated using the accumulative TP. TP+FN is equal to
the number of total ground truth boxes in the testing
dataset. Once we have the precision and recall values
for each predicted bounding box in an accumulative or-
der, the precision-recall curve is built. Finally, the AP
is obtained by computing the area under the curve.

In YOLOv3, performance drops significantly as the
IOU threshold increases. This indicates that YOLOv3
struggles to get the boxes perfectly aligned with the
objects.

Predictions in multiple resolutions. In the
training stage, YOLOv3 randomly changes the images
input size to make the model more adaptable to differ-
ent sizes. The prediction stage, instead, runs only at
one specific input size, typically small if real-time pro-
cessing is needed. Due to the process of resizing, small
objects may escape detection due to the loss of fine-
grained details. On the other hand, if high resolution

7

Modeling, Identification and Control

images are used, the NN may not recognize big objects
if the dataset does not have many. We have found that
performing predictions at different resolutions in the
same image and combining the outputs gives a better
result. Figure 4 shows an example of this, demonstrat-
ing that the combined result is better than any of the
single-resolution detection results.

Figure 4: Performing detection in multiple input reso-
lutions. The results are given for input sizes
of 416 (top-left corner), 608 (top-right cor-
ner), 1024 (bottom-left corner) and the com-
bination of 224, 416, 608, 864, and 1504 si-
multaneously, applying non-maximum sup-
pression to delete repeated boxes (bottom-
right corner).

When the same object is detected in different reso-
lutions, the one with the highest score is kept and non-
maximum suppression is applied to delete the other
ones. The price for this is, of course, a decrease in
speed. Nevertheless, as the goal here is to use this tool
to extract images for creating a dataset, running slower
than real time does not represent a problem. In this
work, the input sizes 224, 416, 608, 864, and 1504 are
simultaneously used to perform predictions.

Final model. Doing the work of cropping images,
labeling them and creating annotations manually can
be extremely time consuming. By doing the job au-
tomatically, not only a new dataset is created and ex-
panded fast, but also one ends with a trained model
that can already be used for detection in monitoring
applications.

3 Experiments

In this section the set of experiments performed to test
the system is introduced first. Next, the process of col-
lecting the data is presented. At the end the hardware,
software, and NN’s configurations are described.

3.1 Experiments Scheme

As the system involves an iterative process of re-
training the NN model at the same time the dataset
grows, a key for this process is to find the actual best
way of re-training. At the same time the authors aim to
verify that the system can create large datasets with lit-
tle human intervention. The system was tested for two
species of fish, that is: saithe and salmonids (group-
ing farmed salmon and trout). The test sequence per-
formed is summarized in the flow diagram of figure 5.
This was done for both fish species separately.

Videos - Set A

Extract 200 images

Image processing

Perform prediction

Update dataset

Update dataset

Train neural network

Extract 200 images

Re-train neural network Train neural network

Set A:
200 images

Dataset:
400 images

Model C Model B

Model A

Test set:
100 images

Compare
Performance

Videos - Set B

Set B:
200 images

Dataset:
200 images

Figure 5: Flow diagram of the experiment’s setup.

The process starts by analyzing a set of videos with
the IPS. In this stage the first set of 200 images (i.e.
Set A) was extracted. Next, this set was used to train
the NN, producing thus the first model (i.e Model A).
Prior to the first training, transfer learning was used to
initialize the NN with weights previously trained on the
MS COCO dataset. This enables the NN to save the
time of learning basic features and makes it converge
faster by only fine-tuning the model with our particular
dataset.

With the first NN model, predictions are performed
in order to find bounding boxes on a second set of

8

Crescitelli et.al., “NorFisk: fish image dataset from Norwegian fish farms for species recognition using deep NN”

videos. Two hundred new images were extracted into
what the authors called Set B. The previous NN’s
weights from Model A were used as starting point to
re-train the NN with the images from Set B. The result
was called Model B. It is expected that the NN learns
features from the new Set B so it is able to generalize
better.

It was also interesting to compare the performance of
a ”short” re-training only with every new set of images
that were extracted with training one time from scratch
with the full dataset (e.g. in this case Set A + Set B,
with 400 images). The output model of training with
the full dataset is called Model C.

For each model, 80% of the dataset was taken ran-
domly for training and 20% for validation. As the split
is random and the dataset small, a certain random vari-
ation of the results could be expected. Therefore, to
analyze the variance in the result, the process was re-
peated and the authors trained 10 independent cases
for each model (each with a random train-validation
set split).

At each step, the 10 cases were evaluated for each
model and the one with the highest testing AP was
selected to be the starting point of the re-training in
the following step. For instance, in Model A the best
case is selected and those weights are used as a starting
point to re-train the NN for 10 new random cases on
set B, generating Model B.

In order to measure the performance of each model,
a testing set with 100 images, picked from videos taken
in different places and times, was created. The focus
on the testing set was to maximize the variability in the
frames (e.g. light, quality, turbidity in water, depth,
etc.). This is designed to simulate a general case and
allows a realistic measurement of how well the models
generalize.

In figure 6 a sample of each video set is shown. At
the end, the best resulting model for each of the species
was chosen to process the entire video material from
this work, thus creating the first version of the NorFisk
dataset.

3.2 Data collection

The video footage has been taken in a fish farm at
different times on different days between 2017 to 2020.
Videos were taken in different weather conditions and
at different depths as well. The farm is located near
lesund in Norway (see figure 7)

This work started with a collection of 346 videos
summing up 58 hours and 56 minutes. The first step
was to delete the ones without useful information (e.g.
without fish around). This process left a total of 49
hours and 25 minutes of footage. The films were in
different resolutions and different orientations, so they

Set A

Set B

Test set Test set

Set B

Saithe

Set A

Salmonid

Figure 6: Sample images from the different video sets
for each of the species: Salmonids (left col-
umn) and Saithe (right column)

Figure 7: Fish farm where video footage for the ex-
periments was collected. View of a salmon
cage on the surface (top), wild fish outside
the net pens (bottom-left), salmon inside the
net pens (bottom-right)

were also normalized. A resolution of 1920x1080 pix-
els was set for all of them. When the video footage
was processed, only 1 frame per second was taken
in order to have the fish in different positions and
avoid repeated images. The recordings contain salmon
and trout inside the net pens (which was grouped as
salmonids) and most of the wild fish outside the nets
are saithe. Videos were taken using GoPro Hero 4, 5,
and 8 cameras.

From the 49 hours of video, three hours depict wild
fish and the rest only contains farmed fish. Therefore
the dataset that is published together with this work

9

Modeling, Identification and Control

is not balanced and it contains more salmonids than
saithe. However, during 2020, more than 150 hours of
video footage on wild fish around net pens have been
taken and this material will be processed as a future
work using the system developed here. The dataset will
be updated to include plenty of image data on wild fish.

3.3 System implementation and
configuration

An implementation of the neural network’s architec-
ture YOLOv3 Redmon and Farhadi (2018) was coded
in Python (the original version is written in C) and in-
tegrated with the rest of the system. The NN stops the
training when it reaches the pre-established maximum
number of epochs or when it converges. Convergence
is defined as the point where the NN has not improved
its loss for five consecutive epochs. When the training
stops, the weights that produced the lowest loss are
saved. In addition, an adaptive learning rate was used.
Every time the loss has not improved for two epochs,
the learning rate is divided by 10. Table 1 summarizes
the hyperparameters used.

Table 1: Neural Network’s hyperparameters.

Training
IOU threshold 0.5
Learning rate initial value 1e-4 (1e-5 for Model B)
Maximum epochs numb. 100 (12 for Model B)
Min. image input size 288x288
Max. image input size 448x448

Prediction
IOU threhsold 0.5
NMS threshold 0.4
Class threshold 0.3
Image input sizes 224, 416, 608, 864, 1504

Given the fact that YOLO’s weakest point is local-
ization errors, an IOU threshold of 0.5 was established.
The initial learning rate was 10−4 for models A and C
but the starting point was 10−5 in Model B. The reason
for this is that in Model A the NN has already learned
some features. Therefore, in Model B it is only needed
to fine-tune this previous model. The maximum num-
ber of epochs for Models A and C was 100, although
the models converged in an earlier stage in every case.
On the other hand, the maximum number of epochs for
Model B is 12. This is to avoid a scenario where the
NN ”memorizes” the new set of images and ”forgets”
the previous one (this is explained in the next section).

When image extraction is performed, the non-
maximum suppression (NMS) threshold is set to 0.4.
That means if two bounding boxes have an IOU greater
than 0.4 they are considered to belong to the same

object. The class threshold is low to enable the NN
to capture more objects in an early stage when the
model’s accuracy is not high (e.g. Model A). This can
be increased at the same time the NN gets more accu-
rate in order to avoid false positives. A summary of the
hardware and the main libraries used are listed in Ta-
ble 2. OpenCV is widely used in the IPS while the NN
is implemented using Keras embedded in TensorFlow
libraries.

Table 2: Hardware and software used for this work.
Hardware

CPU Intel Xeon W-2245 (3.9GHz x 16 cores)
GPU Nvidia Quadro RTX 6000 (24GB, 4608 cores)
RAM 64GB

Software
OS Ubuntu 18.04.4
CUDA 10.1
CuDNN 7.6.5
Python 3.7.6
Tensorflow 2.2.0
OpenCV 4.2.0.34

4 Results and discussions

The line of experiments from figure 5 was followed and
the three models A, B, and C were created success-
fully. To analyze the performance, in this section, the
process, the loss evolution, and the average precision
on validation and testing sets for each model are dis-
cussed.

4.1 General overview of the process

The IPS was used to produce set A of 200 images for
each species. The input in each case was a set of videos
in similar light conditions. First, the filters and pa-
rameters of the IPS had to be tuned manually (which
takes about 10 minutes) in order to filter fish from
the background. Next, the system started processing
frames and extracting images automatically and pre-
cisely. The processing time of each frame is on the
order of milliseconds and this is clearly faster than la-
beling and annotating images manually.

One interesting point to notice here is that if one
desires to install a fixed camera underwater to monitor
any fish activity in the field of view, the IPS can be
used. Five or six different filters that change automat-
ically for different times of the day (light conditions)
might have to be programmed. This can efficiently de-
tect and extract anything that is moving around, of
course without labels, and it can be used to acquire
images of new species for further labeling and training.

10

Crescitelli et.al., “NorFisk: fish image dataset from Norwegian fish farms for species recognition using deep NN”

After the IPS created the first minimal dataset of 200
images for salmonids and saithe, the NN was trained
to generate model A for each of the species. Valida-
tion and testing average precision (AP) for each case
was measured. The case with the best testing AP in
Model A was selected to continue with the next image
extraction. For saithe this was case 9 with a testing
AP of 0.73 (see table 3) and case 10 for salmonids with
a value of 0.78 (see table 4).

Model A was used to extract set B (200 more im-
ages). Set B was used to retrain the selected case of
Model A, producing 10 new cases for Model B. In the
beginning we let the NN converge alone, setting a limit
of 100 epochs. However the testing AP was not im-
proving. An investigation indicated the reason was the
NN was learning the new images but forgetting the old
ones (set A). This was exactly the opposite of what
it was initially aimed. To partially solve this problem
the maximum number of epochs was constrained to
12. In this way, the NN starts adjusting the weights
towards the new dataset without reaching the point
of forgetting the old ones. A better approach that
the authors propose, for a future work, is to modify
the loss function to include information from the past
weights in the training stage. This problem is known
as catastrophic forgetting and Kirkpatrick et al. (2017)
proposes a method to address it in classification prob-
lems.

The authors are proposing to make an iterative pro-
cess of extracting images and retraining to gain preci-
sion and generalization capability. In order to evaluate
and compare how this works, a new set of 10 cases
(Model C) was trained, from zero, using the whole
dataset up to this point (400 images adding Set A and
Set B). The performance is discussed in 4.3 and 4.4

4.2 Wrong predictions

The advantage of replacing the IPS for the NN in an
early stage is that no filters or parameters tuning is
needed. The NN is also independent of light conditions
because it extracts features of the fish and does not
act on the pixels colors themselves. However, in early
stages, the NN is not too accurate since it is trained
with few images. Therefore it detects some false pos-
itives and also misses some fish. In the case of false
positives, the image has to simply be deleted from the
dataset. Missing some fish does not cause an issue be-
cause the goal is to create a dataset as autonomously as
possible. The more the NN is re-trained with new im-
ages, the more accuracy and more generalization power
it gains and the fewer mistakes it is expected to make.

In this work, for simplicity, the focus is on having one
object per image. This has a downside when fish are in
dense groups. When this occurs, sometimes no image is

extracted because the bounding boxes are overlapped
and our system automatically discards those situations.
Other times a fish is detected, but not its neighbor. In
this case, the ROI of the detected fish will contain part
or all of the non-detected fish. This type of images
have to be discarded from the dataset as well. Nev-
ertheless, the time consumed to visually inspect and
delete a few images is not comparable with the time of
annotating all images manually. In future work images
with multiple objects will be included.

4.3 Loss evolution

The total loss in each epoch for each case in each model
for both species is shown in figure 8. In all cases of
Model A and C the training converged before reaching
the 100 epochs. Model B does not always converge
alone since it was forced to terminate in epoch 12 to
avoid forgetting the previous data. Model A converges
in a variety of epochs (between 12 and 29 epochs). The
loss evolution can also be quite different depending on
the data. In the case of saithe the evolution seems to be
more consistent for different cases while in salmonids
the difference can be up to 2 points between case 4 and
case 8, for example.

Model B, on the other hand, which is created by
retraining the best case of Model A on the dataset
B, presents a much smaller variance. The difference
between the different cases can be neglected, and the
same will be seen with the testing AP. With respect
to the values, in the case of salmonids the loss val-
ues for Model B are between 3 and 4 while in Model
A they reach values below 2. The reason is that for
Model B, the weights of the best testing AP was used
as a starting point. This does not necessarily mean the
lowest loss value. Since the loss follows the validation
set, the result can be quite different when the model
is evaluated on the testing set, and that was the case
for salmonids. Our best testing accuracy for model A
was on case 10, which has a loss of 3.58 and this is
what sets the starting point for Model B. For saithe,
the best case in Model A was case 9 with a loss value
of 2.36. This is why the loss evolution in Model B
presents these differences from Model A in the differ-
ent species. However, the goal is to obtain the most
general model and, while the loss exposes the trends,
variations, and evolution on the training set, our final
metric is the testing AP.

When comparing the results between Models A and
B, the results thus far suggest that it is important to
make several cases in Model A to have the best possi-
ble foundation for Model B since the variance is high
for small datasets. However, from that point on, the
retraining can be done just one time for each model
because the differences can be neglected. This is very

11

Modeling, Identification and Control

0 5 10 15 20 25 30 35
Epoch

0

2

4

6

8

10

12

14

16

Lo
ss

Loss - Saithe Set A

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9
Case 10

0 5 10 15 20 25 30 35
Epoch

0

2

4

6

8

10

12

14

16

Lo
ss

Loss - Salmonids Set A

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9
Case 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Epoch

2

2.5

3

3.5

4

4.5

5

5.5

6

Lo
ss

Loss - Saithe Set B
Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9
Case 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Epoch

2

2.5

3

3.5

4

4.5

5

5.5

6

Lo
ss

Loss - Salmonids Set B
Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9
Case 10

0 5 10 15 20 25 30 35 40
Epoch

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Lo
ss

Loss - Saithe Set A+B

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9
Case 10

0 5 10 15 20 25 30 35 40
Epoch

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Lo
ss

Loss - Salmonids Set A+B

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9
Case 10

Figure 8: Loss evolution during training of all the models for both saithe (left column) and salmonid (right
column). Big markers indicate the position of minimum loss for each case.

important because it means that when a new video or
set of videos is processed and extracts a few hundred
images, the retraining of the NN can be short enough
without sacrificing accuracy.

In the case of Model C, the loss evolution has similar
behavior as Model A, with high variance. This might
suggest that using 400 images was not very different
from using 200. This will of course depend on the vari-
ability of the images as well.

4.4 Average Precision

The AP for validation and testing sets for each case of
each model are shown in Tables 3 and 4 for saithe and

salmonids respectively. The average for each model was
also calculated. Lastly, to have an idea of the overfit,
the Root Mean Square (RMS) error between validation
and testing APs was obtained.

There are several points to analyze and conclude
from these results. First of all, as a general overview,
it can be seen that validation AP is always higher than
testing AP for all models. When one looks at the RMS
error, the differences between validation and testing
AP are around 10% and 20% for the different species.
This is not a surprise, since NNs tend to perform bet-
ter on the datasets they are trained with. In the early
stages this effect might be abrupt given the small num-
ber of images. That is why it becomes important to

12

Crescitelli et.al., “NorFisk: fish image dataset from Norwegian fish farms for species recognition using deep NN”

Table 3: Average precision obtained for different cases and models trained for Saithe. The range of values goes
from 0 (for a precision of 0%) to 1 (for a precision of 100%)

Model A (Set A) Model B (Set B) Model C (Set A + Set B)
Case

Number
Validation

mAP
Testing
mAP

Validation
mAP

Testing
mAP

Validation
mAP

Testing
mAP

1 0.7000 0.5673 0.9750 0.7496 0.8461 0.6300
2 0.8200 0.6500 0.9423 0.7500 0.7500 0.7100
3 0.6750 0.4050 0.9189 0.7500 0.7221 0.5300
4 0.5500 0.3000 0.9416 0.7000 0.5269 0.2731
5 0.8328 0.6137 0.9429 0.7000 0.8498 0.7588
6 0.8750 0.5776 0.9455 0.7400 0.7743 0.7052
7 0.9537 0.6843 0.9750 0.7500 0.8000 0.4500
8 0.8750 0.4640 0.9410 0.6600 0.7250 0.6600
9 0.9500 0.7300 0.9455 0.6700 0.9583 0.7900
10 0.8027 0.6351 0.9481 0.6800 0.7640 0.6900

Average 0.8034 0.5627 0.9475 0.7149 0.7716 0.61971
RMS Error 0.2522 0.2352 0.1797

Table 4: Average precision obtained for different cases and models trained for Salmonids. The range of values
goes from 0 (for a precision of 0%) to 1 (for a precision of 100%)

Model A (Set A) Model B (Set B) Model C (Set A + Set B)
Case

Number
Validation

mAP
Testing
mAP

Validation
mAP

Testing
mAP

Validation
mAP

Testing
mAP

1 0.6355 0.6497 0.5514 0.5000 0.8011 0.6120
2 0.6735 0.6777 0.8897 0.8000 0.7732 0.5779
3 0.8359 0.7046 0.9040 0.7992 0.7299 0.5232
4 0.7080 0.7297 0.8963 0.7750 0.7975 0.6091
5 0.7809 0.7209 0.8268 0.7242 0.8232 0.5794
6 0.5449 0.5135 0.8955 0.7992 0.7077 0.5386
7 0.5691 0.3783 0.8269 0.76953 0.5284 0.3906
8 0.6300 0.4324 0.8833 0.7500 0.7000 0.4811
9 0.5261 0.6367 0.8659 0.7750 0.6672 0.5033
10 0.8141 0.7837 0.8769 0.7977 0.5300 0.4051

Average 0.6718 0.62272 0.84238 0.748983 0.70582 0.52203
RMS Error 0.1054 0.0964 0.1869

have a separate test set in order to have a realistic
measurement of the accuracy.

When comparing the RMS error for each type of fish,
in Model C for example, it is similar for both species.
In the other two models, salmonids have a lower differ-
ence between validation and testing AP (i.e. smaller
RMS error). This is probably because the salmonid
datasets have greater variety in the environment and
backgrounds, which makes the training dataset more
general. In the saithe datasets, images tend to be more
similar. In consequence, the difference between train-
ing and validation sets are smaller, and this causes big-
ger validation AP and bigger differences with respect
to the testing AP (i.e. bigger RMS error).

With respect to the testing AP, Model B gives the

best average in both species. It shows an increase of
about 15% with respect to Model A. This suggests that
Model B is actually able to generalize better. Model
C, on the other hand (trained with the full dataset)
presents a lower value (in average) than model B in
both types of fish.

Another interesting fact about Model B is the very
low variance across the different cases. Every case
shows a very similar result of testing AP. This, again,
supports the idea that there is no need to make multi-
ple cases to ”select the best one.” It is good enough to
make just one case when retraining. This enables us
to quickly retrain for every new batch of data included
in the dataset, speeding up the process without com-
promising accuracy. In the case of Model C, the same

13

Modeling, Identification and Control

pattern as in Model A is observed. This might be due
to the fact that in the beginning the NN has not been
initialized for the type of fish in question and in con-
sequence there is more randomness in the convergence
process.

With respect to the AP values for each case, in the
tables, the highest testing AP for each model is colored.
In the case of salmonids, Model B presents the highest
AP in case 3 with a value of 0.79. In the case of saithe,
Model B was beaten by Model C with the highest value
of 0.79 in case 9. However, this case is also an outlier
compared to the rest of the model, as it is almost 20%
from the average. In Model B, the highest value for
saithe was 0.75 but it is barely 4% off the average.

Overall, in conclusion, there was a clear improve-
ment from Model A to B in both species. The test-
ing AP increases and therefore the NN acquires more
generalization capability. This supports the idea that
there is no need to train the whole dataset in every
extraction (investing a huge amount of time). Instead,
a short training with the last few hundreds of images
in each extraction can be made in order to incorporate
the new information to the NN.

4.5 Full dataset

Last but not least, the best case of Model B was chosen
for each type of fish to generate a public dataset. The
winners were case 7 for saithe and case 3 salmonids.
These models were used to process the entire video ma-
terial. 3027 images for saithe were obtained and 9487
for salmonids. Each image contains only one fish of
the corresponding class. For each image the bounding
box image, the labeled image, and the annotation file
(cf. figure 3) were obtained. The authors called this
dataset NorFisk Dataset v1.0 and is publicly available
at Crescitelli (2020). This dataset can now be used to
train neural networks and develop models to efficiently
monitor saithe and also wild salmon outside the net
pens for example. It can be used not only in fish farm
but also in other locations to get a better understand-
ing on migration patterns, stock estimation, etc. At
the same, a model can be trained with the full dataset
in one class called ”fish” and use it to detect other
species to be labeled later on and expand the dataset.

5 Conclusion

A new dataset of annotated images corresponding
to saithe and salmonids and which can be found at
Crescitelli (2020) was introduced.

A semi-automatic approach to create annotated
image datasets for fish species in aquaculture envi-
ronments with little human intervention using video

footage as input was also proposed. This method was
used to generate the dataset presented in this work.
The system uses object recognition and consists of
an iterative process of extracting images, growing the
dataset and retraining to gain generalization power.
The system was put to a series of preliminary tests
to evaluate the performance and the results are sat-
isfactory. The accuracy and generalization of the NN
increases from one iteration to the next one.

6 Future Work

Since this is the beginning of the work to create a new
approach, there are still many things to try and im-
prove in the future. The first feature to add is to
include multiple objects (i.e. fish) per image in the
dataset. The detection algorithm can be improved to
increase the accuracy and decrease the errors in local-
ization. The logic of maximizing the ROIs for every
object can also be improved. The loss function should
be modified to address the topic of catastrophic for-
getting. In this way, The NN can be let to converge
in each of the iteration steps without constraining the
number of epochs.

More exhaustive experiments should be made to
characterize the retraining stages deeply. This could
provide answers to questions such as: After how many
additional images should one retrain? What is a good
trade-off between accuracy and time spent on retrain-
ing? An evaluation for many iterations should also be
made. Such an evaluation would answer questions such
as: When does the NN stop improving the precision
(based on iterations or number of images)?. Finally,
we leave as future work the update of the published
dataset with large amounts images of wild fish sur-
rounding the net pens. For this more than 150 hours
of video footage taken during 2020 will be processed.

References

The Nature Conservancy. Na-
ture, 1964. 202(4930):337–337.
URL https://www.kaggle.com/c/

the-nature-conservancy-fisheries-monitoring/

data, doi:10.1038/202337d0.

The OpenCV Reference Manual. 2020. URL https:

//docs.opencv.org/4.4.0/.

Bjelland, H. V., Fore, M., Lader, P., Kristiansen, D.,
Holmen, I. M., Fredheim, A., Grotli, E. I., Fathi,
D. E., Oppedal, F., Utne, I. B., and Schjolberg, I.
Exposed Aquaculture in Norway. In OCEANS 2015

14

https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring/data
https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring/data
https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring/data
http://dx.doi.org/10.1038/202337d0
https://docs.opencv.org/4.4.0/
https://docs.opencv.org/4.4.0/

Crescitelli et.al., “NorFisk: fish image dataset from Norwegian fish farms for species recognition using deep NN”

- MTS/IEEE Washington. IEEE, pages 1–10, 2015.
doi:10.23919/OCEANS.2015.7404486.

Boom, B. J., Huang, P. X., Beyan, C., Spampinato,
C., Palazzo, S., He, J., Beauxis-Aussalet, E., Lin,
S. I., Chou, H. M., Nadarajan, G., Chen-Burger,
Y. H., van Ossenbruggen, J., Giordano, D., Hard-
man, L., Lin, F. P., and Fisher, R. B. Long-
term underwater camera surveillance for monitor-
ing and analysis of fish populations. In Work-
shop on Visual observation and Analysis of Animal
and Insect Behavior (VAIB), in conjunction with
ICPR 2012. Tsukuba Science City, Japan, pages 2–
5, 2012. URL http://homepages.inf.ed.ac.uk/

rbf/VAIB12PAPERS/boom.pdf.

Crescitelli, A. M. NorFisk Dataset. 2020.
doi:10.18710/H5G3K5.

Cutter, G., Stierhoff, K., and Zeng, J. Au-
tomated Detection of Rockfish in Unconstrained
Underwater Videos Using Haar Cascades and a
New Image Dataset: Labeled Fishes in the Wild.
In 2015 IEEE Winter Applications and Com-
puter Vision Workshops. IEEE, pages 57–62, 2015.
doi:10.1109/WACVW.2015.11.

Fernandez-Jover, D., Sanchez-Jerez, P., Bayle-
Sempere, J. T., Valle, C., and Dempster, T. Seasonal
patterns and diets of wild fish assemblages associ-
ated with Mediterranean coastal fish farms. ICES
Journal of Marine Science, 2008. 65(7):1153–1160.
doi:10.1093/icesjms/fsn091.

Girshick, R., Donahue, J., Darrell, T., and Ma-
lik, J. Rich Feature Hierarchies for Accurate Ob-
ject Detection and Semantic Segmentation. In
2014 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, pages 580–587, 2014.
doi:10.1109/CVPR.2014.81.

Grotli, E., Vagia, M., Fjerdingen, S., Bjerkeng, M.,
Transeth, A., Svendsen, E., and Rundtop, P. Au-
tonomous Job Analysis: a method for design of
autonomous marine operations. In OCEANS 2015
- MTS/IEEE Washington. IEEE, pages 1–7, 2015.
doi:10.23919/OCEANS.2015.7401888.

Hossain, E., Alam, S. M. S., Ali, A. A., and Amin,
M. A. Fish activity tracking and species iden-
tification in underwater video. In 2016 5th In-
ternational Conference on Informatics, Electron-
ics and Vision (ICIEV). IEEE, pages 62–66, 2016.
doi:10.1109/ICIEV.2016.7760189.

Joly, A., Goëau, H., Glotin, H., Spampinato, C., Bon-
net, P., Vellinga, W.-P., Planqué, R., Rauber, A.,

Palazzo, S., Fisher, B., and Müller, H. LifeCLEF
2015: Multimedia Life Species Identification Chal-
lenges. In Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), volume
9283, pages 462–483. 2015. doi:10.1007/978-3-319-
24027-5 46.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Ve-
ness, J., Desjardins, G., Rusu, A. A., Milan, K.,
Quan, J., Ramalho, T., Grabska-Barwinska, A.,
Hassabis, D., Clopath, C., Kumaran, D., and
Hadsell, R. Overcoming catastrophic forgetting
in neural networks. Proceedings of the National
Academy of Sciences, 2017. 114(13):3521–3526.
doi:10.1073/pnas.1611835114.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Gir-
shick, R., Hays, J., Perona, P., Ramanan, D., Zit-
nick, C. L., and Dollár, P. Microsoft COCO: Com-
mon Objects in Context. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 2014. 8693 LNCS(PART 5):740–755. URL
http://arxiv.org/abs/1405.0312.

Liu, S., Li, X., Gao, M., Cai, Y., Nian, R., Li,
P., Yan, T., and Lendasse, A. Embedded Online
Fish Detection and Tracking System via YOLOv3
and Parallel Correlation Filter. In OCEANS 2018
MTS/IEEE Charleston. IEEE, pages 1–6, 2018.
doi:10.1109/OCEANS.2018.8604658.

Mandal, R., Connolly, R. M., Schlacher, T. A., and
Stantic, B. Assessing fish abundance from under-
water video using deep neural networks. In 2018
International Joint Conference on Neural Networks
(IJCNN), volume 2018-July. IEEE, pages 1–6, 2018.
doi:10.1109/IJCNN.2018.8489482.

Pelletier, S., Montacir, A., Zakari, H., and Akhloufi,
M. Deep Learning for Marine Resources Clas-
sification in Non-Structured Scenarios: Training
vs. Transfer Learning. In 2018 IEEE Canadian
Conference on Electrical & Computer Engineering
(CCECE), volume 2018-May. IEEE, pages 1–4, 2018.
doi:10.1109/CCECE.2018.8447682.

Rathi, D., Jain, S., and Indu, D. S. Under-
water Fish Species Classification using Convolu-
tional Neural Network and Deep Learning. 2017
Ninth International Conference on Advances in
Pattern Recognition (ICAPR), 2018. pages 1–6.
doi:10.1109/ICAPR.2017.8593044.

Rauf, H. T., Lali, M. I. U., Zahoor, S., Shah,
S. Z. H., Rehman, A. U., and Bukhari, S.

15

http://dx.doi.org/10.23919/OCEANS.2015.7404486
http://homepages.inf.ed.ac.uk/rbf/VAIB12PAPERS/boom.pdf
http://homepages.inf.ed.ac.uk/rbf/VAIB12PAPERS/boom.pdf
http://dx.doi.org/10.18710/H5G3K5
http://dx.doi.org/10.1109/WACVW.2015.11
http://dx.doi.org/10.1093/icesjms/fsn091
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.23919/OCEANS.2015.7401888
http://dx.doi.org/10.1109/ICIEV.2016.7760189
http://dx.doi.org/10.1007/978-3-319-24027-5_46
http://dx.doi.org/10.1007/978-3-319-24027-5_46
http://dx.doi.org/10.1073/pnas.1611835114
http://arxiv.org/abs/1405.0312
http://dx.doi.org/10.1109/OCEANS.2018.8604658
http://dx.doi.org/10.1109/IJCNN.2018.8489482
http://dx.doi.org/10.1109/CCECE.2018.8447682
http://dx.doi.org/10.1109/ICAPR.2017.8593044

Modeling, Identification and Control

A. C. Visual features based automated iden-
tification of fish species using deep convolu-
tional neural networks. Computers and Electron-
ics in Agriculture, 2019. 167(September):105075.
doi:10.1016/j.compag.2019.105075.

Raza, K. and Hong, S. Fast and Accurate Fish De-
tection Design with Improved YOLO-v3 Model and
Transfer Learning. International Journal of Ad-
vanced Computer Science and Applications, 2020.
11(2):7–16. doi:10.14569/IJACSA.2020.0110202.

Redmon, J. Darknet: Open Source Neural Networks
in C. 2016. URL http://pjreddie.com/darknet/.

Redmon, J., Divvala, S., Girshick, R., and Farhadi,
A. You Only Look Once: Unified, Real-Time
Object Detection. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
volume 2016-Decem. IEEE, pages 779–788, 2016.
doi:10.1109/CVPR.2016.91.

Redmon, J. and Farhadi, A. YOLO9000: Bet-
ter, Faster, Stronger. 2017 IEEE Confer-
ence on Computer Vision and Pattern Recog-
nition (CVPR), 2016. 2017-Janua:6517–6525.
doi:10.1109/CVPR.2017.690.

Redmon, J. and Farhadi, A. YOLOv3: An Incremen-
tal Improvement. Tech report, 2018. URL http:

//arxiv.org/abs/1804.02767.

Ren, S., He, K., Girshick, R., and Sun, J. Faster
R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2017.
39(6):1137–1149. doi:10.1109/TPAMI.2016.2577031.

Salman, A., Jalal, A., Shafait, F., Mian, A., Shortis,
M., Seager, J., and Harvey, E. Fish species
classification in unconstrained underwater environ-
ments based on deep learning. Limnology and
Oceanography: Methods, 2016. 14(9):570–585.
doi:10.1002/lom3.10113.

Salman, A., Siddiqui, S. A., Shafait, F., Mian, A.,
Shortis, M. R., Khurshid, K., Ulges, A., and Schwa-
necke, U. Automatic fish detection in underwater
videos by a deep neural network-based hybrid mo-
tion learning system. ICES Journal of Marine Sci-
ence, 2019. (February). doi:10.1093/icesjms/fsz025.

Shah, S. Z. H., Rauf, H. T., IkramUllah, M., Khalid,
M. S., Farooq, M., Fatima, M., and Bukhari, S. A. C.
Fish-Pak: Fish species dataset from Pakistan for
visual features based classification. Data in Brief,
2019. 27. doi:10.1016/j.dib.2019.104565.

Siddiqui, S. A., Salman, A., Malik, M. I., Shafait, F.,
Mian, A., Shortis, M. R., and Harvey, E. S. Auto-
matic fish species classification in underwater videos:
Exploiting pre-trained deep neural network mod-
els to compensate for limited labelled data. ICES
Journal of Marine Science, 2018. 75(1):374–389.
doi:10.1093/icesjms/fsx109.

Tamou, A. B., Benzinou, A., Nasreddine, K., and
Ballihi, L. Transfer Learning with deep Con-
volutional Neural Network for Underwater Live
Fish Recognition. In 2018 IEEE International
Conference on Image Processing, Applications and
Systems (IPAS). IEEE, pages 204–209, 2018.
doi:10.1109/IPAS.2018.8708871.

Tuya, F., Sanchez-Jerez, P., Dempster, T., Boyra,
A., and Haroun, R. J. Changes in demersal wild
fish aggregations beneath a sea-cage fish farm af-
ter the cessation of farming. Journal of Fish Bi-
ology, 2006. 69(3):682–697. doi:10.1111/j.1095-
8649.2006.01139.x.

Utne, I., Schjølberg, I., and Holmen, I. Reducing risk in
aquaculture by implementing autonomous systems
and integrated operations. In Safety and Reliability
of Complex Engineered Systems, pages 3661–3669.
CRC Press, 2015. doi:10.1201/b19094-481.

Villon, S., Mouillot, D., Chaumont, M., Darling, E. S.,
Subsol, G., Claverie, T., and Villéger, S. A Deep
learning method for accurate and fast identifica-
tion of coral reef fishes in underwater images. Eco-
logical Informatics, 2018. 48(September):238–244.
doi:10.1016/j.ecoinf.2018.09.007.

Viola, P. and Jones, M. Rapid object detection using
a boosted cascade of simple features. In Proceedings
of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR
2001, volume 1. IEEE Comput. Soc, pages I–511–I–
518, 2001. doi:10.1109/CVPR.2001.990517.

Wang, X., Ouyang, J., Li, D., and Zhang, G. Under-
water Object Recognition Based on Deep Encoding-
Decoding Network. Journal of Ocean University of
China, 2019. 18(2):376–382. doi:10.1007/s11802-
019-3858-x.

Zhang, L., Li, W., Liu, C., Zhou, X., and Duan, Q.
Automatic fish counting method using image density
grading and local regression. Computers and Elec-
tronics in Agriculture, 2020. 179(October):105844.
doi:10.1016/j.compag.2020.105844.

16

http://dx.doi.org/10.1016/j.compag.2019.105075
http://dx.doi.org/10.14569/IJACSA.2020.0110202
http://pjreddie.com/darknet/
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2017.690
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1002/lom3.10113
http://dx.doi.org/10.1093/icesjms/fsz025
http://dx.doi.org/10.1016/j.dib.2019.104565
http://dx.doi.org/10.1093/icesjms/fsx109
http://dx.doi.org/10.1109/IPAS.2018.8708871
http://dx.doi.org/10.1111/j.1095-8649.2006.01139.x
http://dx.doi.org/10.1111/j.1095-8649.2006.01139.x
http://dx.doi.org/10.1201/b19094-481
http://dx.doi.org/10.1016/j.ecoinf.2018.09.007
http://dx.doi.org/10.1109/CVPR.2001.990517
http://dx.doi.org/10.1007/s11802-019-3858-x
http://dx.doi.org/10.1007/s11802-019-3858-x
http://dx.doi.org/10.1016/j.compag.2020.105844
http://creativecommons.org/licenses/by/3.0

	Introduction
	Proposed Approach
	Top level description
	Image processing stage
	Image extraction stage
	Neural network stage

	Experiments
	Experiments Scheme
	Data collection
	System implementation and configuration

	Results and discussions
	General overview of the process
	Wrong predictions
	Loss evolution
	Average Precision
	Full dataset

	Conclusion
	Future Work

