
Modeling, Identification and Control, Vol. 41, No. 4, 2020, pp. 313–332, ISSN 1890–1328

A Cryptographic Toolbox for Feedback Control
Systems

Petter Solnør

Department of Engineering Cybernetics, Norwegian University of Science and Technology, 7491 Trondheim, Nor-
way. E-mail: petter.solnor@ntnu.no

Abstract

Feedback control systems consist of components such as sensory systems, state estimators, controllers,
and actuators. By transmitting signals between these components across insecure transmission channels,
feedback control systems become vulnerable to cyber-physical attacks. For example, passive eavesdropping
attacks may result in a leak of confidential system and control parameters. Active deception attacks may
manipulate the behavior of the state estimators, controllers, and actuators through the injection of spoofed
data. To prevent such attacks, we must ensure that the transmitted signals remain confidential across the
transmission channels, and that spoofed data is not allowed to enter the feedback control system. We can
achieve both these goals by using cryptographic tools. By encrypting the signals, we achieve confidential
signal transmission. By applying message authentication codes (MACs), we assert the authenticity of
the data before allowing it to enter the components of the feedback control system. In this paper, a
toolbox containing implementations of state-of-the-art high-performance algorithms such as the Advanced
Encryption Standard (AES), the AEGIS stream cipher, the Keyed-Hash Message Authentication Code
(HMAC), and the stream ciphers from the eSTREAM portfolio, is introduced. It is shown how the
algorithm implementations can be used to ensure secure signal transmission between the components of
the feedback control system, and general guidelines that the users must adhere to for safe operation are
provided.

Keywords: Cryptography, Feedback Control System, Networked Control System, Authenticated Encryp-
tion

1. Introduction

By consisting of components such as sensory systems,
state estimators, controllers, and actuators, feedback
control systems are inherently modular. These compo-
nents need to communicate by transmitting measure-
ments, state estimates, and control inputs. Since these
components may be spatially distributed, they are of-
ten connected through a network or a field bus span-
ning the vehicle or plant.

We refer to a feedback control system, in which the
components are connected through a network, as a net-
worked control system (Hespanha et al., 2007). Unfor-

tunately, these signal transmissions also make the feed-
back control systems vulnerable to cyber-physical at-
tacks such as eavesdropping and deception attacks. An
adversary that gains access to the network may eaves-
drop on the transmitted signals and perform unau-
thorized system identification, thus gaining knowledge
of system parameters or control parameters that may
be considered confidential, as discussed by de S et al.
(2017). Furthermore, an adversary with access to the
network can also perform deception attacks by inject-
ing spoofed data, thus manipulating the behavior of
the system. Combined with system knowledge, such a
deception attack could even result in a successful sys-

doi:10.4173/mic.2020.4.3 c© 2020 Norwegian Society of Automatic Control

http://dx.doi.org/10.4173/mic.2020.4.3

Modeling, Identification and Control

tem hijacking, as discussed by Teixeira et al. (2013).

The leak of system and controller parameters, and
the hijacking of a dynamical system, poses a signifi-
cant risk to the system and its surroundings. Explor-
ing methods that enhance the resilience of feedback
control systems against such cyber-physical attacks is
therefore important.

1.1. Cryptographic methods and feedback
control signals

To prevent system identification attacks, the confi-
dentiality of the transmitted signals must be ensured
across the insecure transmission channels, while the
origin of the transmitted signals must be authenticated
before they are allowed to enter the feedback control
system in order to prevent deception attacks. Both
of these goals may be achieved by using cryptographic
tools. Confidential signal transmission is ensured by
encrypting the signals before transmission, and the ori-
gin of the transmitted signals may be authenticated by
using message authentication codes (MACs).

In recent years, many researchers have investigated
the use of cryptographic algorithms in feedback con-
trol systems, such as Gupta and Chow (2008), Pang
et al. (2011), Jithish and Sankaran (2017), Lera et al.
(2016), and Rodrguez-Lera et al. (2018). While cryp-
tographic algorithms are available through open-source
libraries such as OpenSSL (OpenSSL Software Foun-
dation, 2020), Crypto++ (Dai, 2020), and wolfCrypt
(wolfSSL Inc., 2020), these libraries may be hard to
navigate and do not provide access to modern stream
ciphers such as AEGIS or the stream ciphers from the
eSTREAM portfolio. Therefore, researchers have used
cryptographic algorithms that do not typically provide
the best performance, such as the Data Encryption
Standard (DES), 3DES, Blowfish, and the Advanced
Encryption Standard (AES). Notably, the DES encryp-
tion algorithm is not even considered secure anymore.
Worse yet, the algorithms have been used in insecure
configurations, such as the Electronic Codebook (ECB)
mode for block ciphers.

This paper presents a toolbox with implementations
of state-of-the-art high-performance cryptographic al-
gorithms that are ready to use in feedback control sys-
tems. The algorithms have been implemented both
in portable software implementations (in C++) and in
platform-specific implementations that take advantage
of hardware acceleration features available on most
modern x86 processors and a subset of ARMv8 processors
through intrinsic functions. This provides control engi-
neers with a set of accessible high-performance crypto-
graphic algorithms on most popular platforms with full
source code available. Examples are given to show how

the algorithms may be used to secure feedback control
systems against adversaries, and only secure configura-
tions are provided limiting the possibility for misuse.

1.2. Organization of the article

The article is organized as follows. In Section 2, a
scenario in which the CryptoToolbox can be used is
presented. Weaknesses in the control architecture mo-
tivating the need for cryptographic methods are identi-
fied. A brief introduction to cryptographic terminology
is also given. Then, in Section 3, a brief overview of
the CryptoToolbox is presented. The algorithms that
the users may access through the CryptoToolbox are
presented. Key propeties of the respective algorithms
are explained, in addition to important user guidelines.
In Section 4, focus is shifted to how the cryptographic
algorithms may be applied in a concrete example to
secure the guidance, navigation, and control (GNC)
system of a vehicle. Finally, Section 5 concludes the
article.

2. Motivation and terminology

We begin by motivating the need for the cryptographic
algorithms in the CryptoToolbox by describing how
they may be used to enhance the security of feedback
control systems. We introduce a use case for the Cryp-
toToolbox, which will be treated more in detail in Sec-
tion 4 after the cryptographic algorithms contained in
the CryptoToolbox have been introduced.

2.1. Security issues of guidance,
navigation, and control systems

Figure 1: The Otter USV. Image courtesy by Maritime
Robotics (2020).

Throughout the paper, we will illustrate how the
CryptoToolbox algorithms can be used in GNC archi-
tectures prevalent in many autonomous and unmanned
systems. Such systems are becoming more and more

314

P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

Control System Actuator

Sensors Kalman Filter

LAN

Guidance and Control

System

Vehicle
Navigation Computer

Control

System
Actuator

Sensors Kalman Filter

Vehicle with centralized

Guidance and Control System
Navigation Computer

Transmission lines vulnerable

to cyber-physical attacks such as

eavesdropping and injection

attacks

Figure 2: A generic schematic of the signal flow in vehicles with a distributed GNC architecture and a centralized
guidance and control computer with a remote navigation computer. Surfaces that are vulnerable to
attacks are marked, and the goal is to make the system resistant against attacks on these surfaces.

common, and securing them against cyber-physical
threats is important. An example would be the growing
industry of autonomous and unmanned surface vessels,
some designed to transport people, others to collect
possibly sensitive information for industrial purposes,
such as the Otter USV seen in Figure 1. While the use
case described in this article is focused on GNC sys-
tems, we emphasize that the algorithms may be used
similarly for other control applications.

An illustration of the typical signal flow in vehicles
with a distributed GNC architecture and a centralized
guidance and control computer with a remote naviga-
tion computer may be seen in Figure 2. In these exam-
ples, we assume that the signals are transmitted across
a network spanning the vehicle, for example, using the
UDP/IP or TCP/IP protocols over ethernet, or a field
bus such as CAN. Since none of these protocols provide
cryptographic protection by default, the signals trans-
mitted between the components may be eavesdropped
upon, and spoofed signals may be injected into the
transmission to manipulate the behavior of the vehi-
cle.

Such attacks are very serious threats. System and
controller parameters may be trade secrets that are
very valuable to businesses and developers, and indus-
trial espionage is a serious concern in high tech indus-
tries. On the other hand, if an adversary is capable of
manipulating the behavior of the vehicle through the
injection of spoofed signals to the GNC components,
the vehicle may be used as a tool in a terrorist attack

or an act of war to inflict great damage. Therefore, the
signals must be secured by other means. At the same
time, it is important that the security measures do not
deteriorate the performance of the GNC system.

2.2. Cryptographic preliminaries

An attack in which an adversary eavesdrops on the
transmitted signals to conduct system identification is
referred to as a passive attack and does not directly af-
fect the system. On the other hand, an attack in which
an adversary manipulates transmitted signals and in-
jects spoofed signals is called an active attack. To pro-
vide protection against passive eavesdropping attacks,
we may apply encryption, and to provide protection
against the active attacks, we may apply MACs.

Encryption

Encryption provides confidential transmission of data
over insecure transmission channels. We refer to unen-
crypted information as plaintext and encrypted infor-
mation as ciphertext. While techniques that provide
perfect secrecy, that is, encryption algorithms that
cannot be broken, exist, these are practically infeasi-
ble to implement. Instead, encryption algorithms that
are practically secure are used. The goal of these en-
cryption algorithms is to ensure that it is infeasible
to break the encryption algorithm in a computational
sense. That is, we assume that potential adversaries

315

Modeling, Identification and Control

have limited time and computational resources. En-
cryption algorithms are typically categorized as asym-
metric or symmetric depending on whether it is easy to
deduce the decryption key from the encryption key or
not. For asymmetric ciphers, this is believed to be com-
putationally infeasible, typically under the assumption
that a particular number-theoretic problem is hard to
solve. For symmetric ciphers, the encryption and de-
cryption keys are easy to deduce from one another and
are typically described as the same.

Asymmetric encryption algorithms are computation-
ally expensive compared to symmetric encryption al-
gorithms, and for this reason, symmetric encryption
algorithms are the main focus in this article. Because
the symmetric encryption algorithms act directly on
memory buffers, the only impact of the symmetric en-
cryption algorithms on the overall stability of a feed-
back control system is the latency that is induced,
provided that the encryption and decryption devices
achieve synchronous behavior.

Since the encryption algorithms are often stateful, a
lost or injected packet will cause the encryption and de-
cryption devices to lose synchronization. Most modern
encryption algorithms solve this by deducing an ini-
tial state for each packet through a public parameter
called an initialization vector (IV) or a nonce1. These
are called synchronous ciphers. Other encryption al-
gorithms solve this by feeding the ciphertext back into
the cipher. These are called self-synchronizing ciphers
because the decryption device automatically synchro-
nizes to the encryption device after a finite number of
ciphertext bits have been received in the correct order.

Cryptographic integrity and authenticity

While encryption algorithms may provide confidential
transmission of signals across insecure channels, they
do not ensure that the data that is received originate
from a trusted source and contains the content of the
data that was originally transmitted. We refer to the
former as data origin authenticity and the latter as data
integrity. Data origin authenticity is a stronger notion
and implies data integrity, and data origin authenticity
is typically achieved through MACs. Note that MACs
are different from non-cryptographic integrity checks,
such as cyclic redundancy checks (CRCs). While CRCs
may be used by the respective protocols, for example,
ethernet and CAN, they are unkeyed and are only suit-
able to detect inadvertent transmission errors. Because
CRCs are unkeyed, an active adversary can easily com-
pute a valid CRC for a spoofed packet. We emphasize
that this is often also true even if the output of the
CRC is encrypted. Encrypting the output of an un-

1Number used only once.

keyed integrity check in order to provide data origin
authenticity is bad practice and should be avoided.

Authenticated encryption

If both data origin authenticity and data confidential-
ity are required, a concept known as authenticated
encryption may be used. While authenticated en-
cryption may be obtained through use of dedicated
algorithms such as AEGIS, it may also be obtained
through generic compositions of encryption algorithms
and MACs although one ought to be careful. The rec-
ommended generic composition is known as Encrypt-
then-MAC, in which the MAC is computed over the
ciphertext. The flow in an Encrypt-then-MAC scheme
would be encrypt → authenticate → validate → de-
crypt. In addition to being the most secure composi-
tion, it is also efficient in the sense that invalid mes-
sages are discarded before they are decrypted (Bellare
and Namprempre, 2008).

3. The CryptoToolbox

The CryptoToolbox (Solnør, 2020) was developed to
give easy-access to state-of-the-art high-performance
cryptographic algorithms and contains a range of cryp-
tographic algorithms that provide either encryption,
MACs, or authenticated encryption. Figure 3 illus-
trates the structure of the CryptoToolbox contents,
while a brief summary explaning the contents of the
CryptoToolbox is found in Table 1. Each algorithm
operates on memory buffers, and it is assumed that the
data that is to be processed is contiguous in memory.

Note that the direct operation of AES, called the
Electronic Codebook (ECB) mode, has been deliber-
ately excluded from the CryptoToolbox. The reason
for this is that the use of ECB mode results in the
same plaintexts consistently being mapped to the same
ciphertexts. Because of this, the structure of the plain-
text leaks through to the ciphertext, and data confiden-
tiality is lost under very real circumstances. The ECB
mode has been misused in multiple previous publica-
tions (for example Gupta and Chow (2008), Pang et al.
(2011), and Jithish and Sankaran (2017)), and because
there is no scenario in which the ECB mode should
be used in a feedback control system, the ECB mode
has been excluded from the CryptoToolbox to limit the
possibility of user errors.

The properties of the cryptographic algorithms in
the CryptoToolbox are summed up in Table 2. As
we proceed, we will show how the cryptographic al-
gorithms from the CryptoToolbox may be used to en-
sure that the feedback control signals remain secure
across the insecure transmission channels shown in Fig-

316

P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

Table 1: An explanation of the contents of the CryptoToolbox.

Hash

Cryptographic hash functions are unkeyed, accept
inputs of arbitrary length and produces a fixed-
length output called a digest.

SHA-256
A variant of the Secure Hash Algorithm 2 (SHA-2)
producing a 256-bit digest (Dang, 2015).

Authentication

Contains keyed message authentication codes that
accept inputs of arbitrary length and produces a
fixed-length output called a tag.

HMAC-SHA-256
A variant of the Keyed-Hash Message Authentica-
tion Code (HMAC) using SHA-256 as the underlying
cryptographic hash function (Dang, 2008).

BlockCiphers

Contains stateless encryption algorithms and algo-
rithms deduced from these stateless encryption algo-
rithms.

AES
The Advanced Encryption Standard, a NIST certi-
fied block cipher (NIST, 2001).

AES CFB
A way of operating AES as a self-synchronizing
stream cipher, called the cipher feedback (CFB)
mode (Dworkin, 2001).

AES CTR
A way of operating AES as a synchronous stream
cipher, called the counter (CTR) mode (Dworkin,
2001).

AES x86

An implementation of AES taking advantage of an
enhanced instruction set on (most) x86 processors
called Advanced Encryption Standard New Instruc-
tions (AES-NI), which provides hardware support for
AES.

AES ARM

An implementation of AES taking advantage of an
enhanced instruction set on (some) ARMv8 proces-
sors called the ARMv8 Cryptographic Extension,
which provides hardware support for AES.

Serpent
A block cipher that was the runner up submission
to AES (Anderson et al., 2000). Used as part of the
Sosemanuk stream cipher.

StreamCiphers Contains stateful encryption algorithms.

AEGIS
A stream cipher that provides authenticated encryp-
tion directly. Based on the AES block cipher. Part
of the CAESAR portfolio (Wu and Preneel, 2014).

AEGIS x86
An implementation of AEGIS that takes advantage
of AES-NI.

AEGIS ARM
An implementation of AEGIS that takes advantage
of the ARMv8 Cryptographic Extension.

HC-128
A synchronous stream cipher. Part of the eSTREAM
portfolio (Wu, 2008).

ChaCha

A synchronous stream cipher. Part of the eS-
TREAM portfolio. May be operated as the full
cipher (ChaCha20), or in round reduced variants
(ChaCha12, ChaCha8) for increased performance at
the cost of reduced security (Bernstein, 2008).

Rabbit
A synchronous stream cipher. Part of the eSTREAM
portfolio (Boesgaard et al., 2008).

Sosemanuk
A synchronous stream cipher. Part of the eSTREAM
portfolio (Berbain et al., 2008).

Encoders
Components that convert data to/from specific for-
mats.

Hex Converts data to/from hexadecimal encoding.

317

Modeling, Identification and Control

The CryptoToolbox

BlockCiphers

AES

AES ARM

AES x86

AES

CTR

CFB

CTR

CFB

CTR

CFB

Serpent

StreamCiphers

AEGIS

AEGIS

ChaCha

HC-128

Rabbit

Sosemanuk

AEGIS ARM

AEGIS x86

ChaCha20

ChaCha12

ChaCha8

Authentication

HMAC-SHA-256

Encoders

Hex

Hash

SHA-256

Figure 3: An overview of the algorithms available through the CryptoToolbox.

ure 2. More details regarding the cryptographic al-
gorithms, compilation options, and implementation-
related specifics are found in Appendix A for the inter-
ested reader.

3.1. Important remarks

Note that it is the users’ responsibility to supply keys
to the algorithms. These should be highly randomized
and preferably drawn from a uniform distribution. For
algorithms that utilize IVs and nonces, it is the users’
responsibility to ensure that repeated IVs and nonces
do not occur for a fixed key. This can easily be solved
by incrementing the initialization vectors and nonces
after each message on the encryption device. Further-
more, it is assumed that the keys are pre-distributed. If
these guidelines are not followed, the resulting system
will be vulnerable to attacks.

4. Case study: Securing the GNC
system of an autonomous vehicle

We proceed by showing how the algorithms from the
CryptoToolbox may be used to provide secure signal
transmission in the use case described in Section 2. The
cryptographic algorithms should be applied immedi-
ately before transmission and upon reception, as shown

in Figure 4. Notice that the content of the E and D
blocks would depend on whether data confidentiality,
data origin authenticity, or both is required. In Algo-
rithms 1 and 2, the general flow of the E and D blocks
is outlined in pseudocode if authenticated encryption
is required. If only data confidentiality or data origin
authenticity is required, the excessive lines of code, for
the encryption or MAC, are removed. Now the ques-
tion regarding which algorithms the practitioner should
choose to implement the E and D blocks remain.

Algorithm 1 E block outline.

1: Initialize EK,IV ,MACK

2: while true do
3: Plaintext ← Load Data
4: Ciphertext ← EK,IV (Plaintext)
5: Tag ← MACK(IV, Ciphertext)
6: Message ← (IV||Ciphertext||Tag)
7: Transmit Message
8: Update IV
9: end while

4.1. When to use which cryptographic
primitive?

As described in Section 2.1, it is important to under-
stand that while encryption provides data confidential-

318

P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

Table 2: An overview of the properties of the cryptographic algorithms in the CryptoToolbox.

Algorithm
Data

confidentiality
Data origin
authenticity

Additional information

HMAC-SHA-256 X

Used to obtain data origin authentic-
ity to prevent active deception attacks.
May also be used in an Encrypt-then-
MAC composition with an encryption
algorithm to obtain authenticated en-
cryption.

AES CFB X

Converts the AES block cipher to a
self-synchronizing stream cipher. Elim-
inates the need for IVs. Performs well
on small data, subpar performance as
the amount of data increases.

AES CTR X

Converts the AES block cipher to a syn-
chronous stream cipher. Requires IVs,
but offers slightly better performance
compared to the CFB mode. Subpar
performance as the amount of data in-
creases.

AEGIS X X

An authenticated encryption algorithm
with excellent performance, particu-
larly as the amount of data increases,
e.g. on images and point-clouds.

HC-128 X

A synchronous stream cipher with a sig-
nificant initialization overhead. Should
be avoided for small data, but provides
excellent performance on bulk encryp-
tion.

ChaCha20/12/8 X

A synchronous stream cipher with no
initialization overhead. Provides decent
performance on small data, worse as
the amount of data increases. Better
performance achieved for the round re-
duced variants, at the cost of reduced
security.

Rabbit X

A synchronous stream cipher with a
small initialization overhead and excel-
lent performance as the amount of data
increases.

Sosemanuk X
A synchronous stream cipher with a
small initialization overhead. Subpar
performance for large data.

319

Modeling, Identification and Control

ED Control System

E

D Actuator

Sensors ED Kalman Filter

LAN

Guidance and Control

System

Vehicle
Navigation Computer

D
Control

System

E

Actuator

Sensors ED Kalman Filter

Vehicle with centralized

Guidance and Control System
Navigation Computer

Figure 4: An overview of how a vehicle may be enhanced with secure signal transmission. The cryptographic
algorithms are applied immediately before transmission and upon reception. Whether encryption, au-
thentication, or authenticated encryption is applied would depend on which cryptographic properties
are of interest.

Algorithm 2 D block outline.

1: Initialize EK,IV ,MACK

2: while true do
3: Receive (IV’||Ciphertext’||Tag’)
4: Tag ← MACK(IV’, Ciphertext’)
5: if Tag != Tag’ then
6: Reject message.
7: end if
8: Plaintext’ ← DK,IV ′(Ciphertext’)
9: Accept Plaintext’

10: end while

ity, it does not provide data integrity nor data origin
authenticity. For this, MACs must be used. There-
fore, the block ciphers and stream ciphers described
should only be used if data confidentiality is required,
with the notable exception of AEGIS, which can be
used to provide data origin authenticity only, by pass-
ing all the data in as authenticated data and none as
plaintext, or to provide authenticated encryption. The
HMAC-SHA-256 MAC should be used if data origin
authenticity is required, but it does not provide data
confidentiality. We emphasize that using the unkeyed
SHA-256 to generate a digest and then encrypting the
message and the digest is insecure. After the algo-
rithms have been initialized, the run-time of the algo-
rithms increases linearly with the size of the input.

Without AES-NI and ARM Cryptographic Extension
Without hardware acceleration support, the AES block
cipher provides decent performance on small packets
(< 1 KB) with no initialization overhead for each
packet. If traffic expansion and network congestion
is a concern, the self-synchronizing CFB mode may be
used to eliminate the need to transmit IVs. Otherwise,
CTR mode may be used. The HC-128 stream cipher
should be avoided for small packets due to the signifi-
cant initialization overhead. When used in conjunction
with HMAC-SHA-256, the AES, ChaCha, Rabbit, and
Sosemanuk ciphers achieve authenticated encryption
in an Encrypt-then-MAC composition with the cryp-
tographic algorithms inducing less than 1 ms latency
for the encryption & authentication and verification &
decryption processes combined on modern computers
(< 300 µs on a Raspberry Pi 3+).

For mid-range data (1 KB - 64 KB) the ChaCha,
Rabbit, and HC-128 stream ciphers offer the strongest
encryption performance, while the EtM composition of
HMAC-SHA-256 with ChaCha, Rabbit, and HC-128
offer nearly the same authenticated encryption perfor-
mance as the AEGIS stream cipher, with AEGIS gain-
ing the upper-hand as the data size increases.

For large quantities of data, e.g. vision-based signals
such as video streams and point-clouds, the Rabbit and
HC-128 stream ciphers offer the best encryption per-
formance with encryption & decryption combined of
a 1.3 MB image taking less than 4 ms and a 3.2 MB

320

P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

point-cloud taking less than 10 ms on an Nvidia Jetson
Xavier (Volden and Solnør, 2020). For authenticated
encryption on large data AEGIS should be used, with
encryption & authentication and decryption & verifi-
cation combined inducing approximately 8 ms and 18
ms latency on an image and a point-cloud on an Nvidia
Jetson Xavier, respectively (Volden and Solnør, 2020).
Note that these numbers should be used as guidelines,
and will vary depending on the system specification.
However, the relative performance between the algo-
rithms are expected to be similar between different sys-
tems.

With AES-NI or ARM Cryptographic Extension
With hardware support, AES and AEGIS offer the
by far best performance. The AES CTR and CFB
implementations may be considered for encryption-
only operations on small quantities of data, with the
latter being preferred if traffic expansion and net-
work congestion is a concern. For larger quantities
of data and authenticated encryption, AEGIS should
be used. The hardware-accelerated implementation of
AEGIS reduces the induced latency by approximately
65% compared to the portable software implementa-
tion when processing a 1.3 MB image and a 3.2 MB
point-cloud on an Nvidia Jetson Xavier, performing
encryption & authentication and verification & decryp-
tion combined of a 1.3 MB image in 2.9 ms and a 3.2
MB point-cloud in 6.5 ms on an Nvidia Jetson Xavier
(Volden and Solnør, 2020).

4.2. Implementing E and D

To assist the reader in implementing the scheme pro-
posed in Figure 4 to obtain secure signal transmission,
code is provided to obtain data confidentiality, data ori-
gin authenticity, or both in Appendix B. The code is
generic, with pseudocode for the transmitter, receiver,
data loading, and acceptance interface. The DATA_SIZE

parameter is a parameter to denote the number of bytes
that are to be processed. To obtain data confidential-
ity, the reader may use the Rabbit cipher as shown
in B.1. To obtain data origin authenticity, the reader
may use the HMAC-SHA-256 MAC as shown in B.2.
To obtain data confidentiality and data origin authen-
ticity the reader may use the Rabbit cipher and the
HMAC-SHA-256 in an ’Encrypt-then-MAC’ composi-
tion as shown in B.3, or the authenticated encryption
algorithm AEGIS directly as described in B.4.

In the data confidentiality example, and in the
‘Encrypt-then-MAC’ composition, the Rabbit cipher
can be changed with any of the other encryption al-
gorithms that provide data confidentiality. Note that
while the interfaces are quite similar, there may be

some minor differences. If interested, the reader should
consult Appendix A, or look at the sample programs
in their respective CryptoToolbox folders.

Notice that neither encryption nor MACs provide di-
rect protection against replay attacks. Replay attacks
are active attacks in which an adversary has logged
valid messages and inject them into the transmission
at a later stage to disrupt the system. However, protec-
tion against replay attacks is easy to achieve by com-
bining MACs with some additional logic, such as times-
tamps or sequence numbers, to ensure that old packets
are dismissed. The MAC should then be computed
over the timestamp or sequence number in addition to
the data. Encryption may or may not be applied.

5. Conclusion

In this article, the CryptoToolbox for control applica-
tions has been presented. The toolbox contains imple-
mentations of several high-performance cryptographic
algorithms that provide data confidentiality, data ori-
gin authenticity, or both. Examples illustrating how
the cryptographic algorithms may be used to obtain
data confidentiality and data origin authenticity across
insecure transmission channels in feedback control sys-
tems have been shown, and an example with a GNC
system has been presented. The latency induced by
the algorithms is very low and well-suited for real-time
applications, and synchronous behavior is guaranteed
when the algorithms are operated correctly.

Future work

The CryptoToolbox is planned to undergo further de-
velopment, with the addition of additional crypto-
graphic algorithms in the future.

Acknowledgments

This work was supported by the Norwegian Research
Council (project no. 223254) through the NTNU Cen-
ter of Autonomous Marine Operations and Systems
(AMOS) at the Norwegian University of Science and
Technology.

References

Anderson, R., Biham, E., and Knudsen, L. The case
for serpent. 2000.

Bellare, M. and Namprempre, C. Authenticated en-
cryption: Relations among notions and analysis of

321

Modeling, Identification and Control

the generic composition paradigm. J. Cryptol., 2008.
21(4):469491. doi:10.1007/s00145-008-9026-x.

Berbain, C., Billet, O., Canteaut, A., Courtois, N.,
Gilbert, H., Goubin, L., Gouget, A., Granboulan,
L., Lauradoux, C., Minier, M., Pornin, T., and Sib-
ert, H. Sosemanuk, a fast software-oriented stream
cipher, page 98118. Springer-Verlag, Berlin, Heidel-
berg, 2008.

Bernstein, D. Chacha, a variant of salsa20. 2008.

Biryukov, A. and Wagner, D. Slide attacks. In
L. Knudsen, editor, Fast Software Encryption.
Springer Berlin Heidelberg, Berlin, Heidelberg,
pages 245–259, 1999.

Boesgaard, M., Vesterager, M., and Zenner, E. The
Rabbit Stream Cipher, page 6983. Springer-Verlag,
Berlin, Heidelberg, 2008.

Crutchfield, C. Implementing and Optimizing En-
cryption Algorithms for the ARMv8-A Architecture.
Master’s thesis, California State University - Sacra-
mento, 6000 J St, Sacramento, CA 95819, USA,
2014.

Dai, W. Crypto++. 2020. URL https://www.

cryptopp.com/. Accessed: 2020-12-16.

Dang, Q. H. The keyed-hash message authentication
code (hmac) - fips 198-1. Technical report, Gaithers-
burg, MD, USA, 2008.

Dang, Q. H. Secure hash standard - fips 180-4. Tech-
nical report, Gaithersburg, MD, USA, 2015.

de S, A. O., d. C. Carmo, L. F. R., and
Machado, R. C. S. Covert attacks in cyber-
physical control systems. IEEE Transactions on
Industrial Informatics, 2017. 13(4):1641–1651.
doi:10.1109/TII.2017.2676005.

Duong, T. and Rizzo, J. Here come the ⊕ ninjas, 2011.
Unpublished.

Dworkin, M. J. Sp 800-38a 2001 edition. recommen-
dation for block cipher modes of operation: Meth-
ods and techniques. Technical report, Gaithersburg,
MD, USA, 2001.

Gupta, R. A. and Chow, M. Performance assess-
ment and compensation for secure networked con-
trol systems. In 2008 34th Annual Conference of
IEEE Industrial Electronics. pages 2929–2934, 2008.
doi:10.1109/IECON.2008.4758425.

Hespanha, J. P., Naghshtabrizi, P., and Xu, Y. A
survey of recent results in networked control sys-
tems. Proceedings of the IEEE, 2007. 95(1):138–162.
doi:10.1109/JPROC.2006.887288.

Jithish, J. and Sankaran, S. Securing networked con-
trol systems: Modeling attacks and defenses. In
2017 IEEE International Conference on Consumer
Electronics-Asia (ICCE-Asia). pages 7–11, 2017.
doi:10.1109/ICCE-ASIA.2017.8309317.

Lera, F. J. R., Balsa, J., Casado, F., Fernández, C.,
Rico, F. M., and Matellán, V. Cybersecurity in au-
tonomous systems: Evaluating the performance of
hardening ros. Málaga, Spain, 2016. 47.

Maritime Robotics. The portable usv system. 2020.
URL https://www.maritimerobotics.com/otter.
Accessed: 2020-12-18.

NIST. Specification for the advanced encryption stan-
dard (aes). Federal Information Processing Stan-
dards Publication 197, 2001.

OpenSSL Software Foundation. OpenSSL. 2020. URL
https://www.openssl.org/. Accessed: 2020-12-20.

Osvik, D. A. Speeding up serpent. In AES Candidate
Conference. 2000.

Pang, Z., Zheng, G., Liu, G., and Luo, C. Secure trans-
mission mechanism for networked control systems
under deception attacks. In 2011 IEEE Interna-
tional Conference on Cyber Technology in Automa-
tion, Control, and Intelligent Systems. pages 27–32,
2011. doi:10.1109/CYBER.2011.6011758.

Rodrguez-Lera, F. J., Matelln-Olivera, V., Balsa-
Comern, J., Guerrero-Higueras, n. M., and
Fernndez-Llamas, C. Message encryption in robot
operating system: Collateral effects of hardening
mobile robots. Frontiers in ICT, 2018. 5:11.
doi:10.3389/fict.2018.00002.

Solnør, P. CryptoToolbox. https://github.com/

pettsol/CryptoToolbox, 2020.

Teixeira, A., Sou, K. C., Sandberg, H., and
Johansson, K. H. Quantifying Cyber-Security
for Networked Control Systems, pages 123–142.
Springer International Publishing, Heidelberg, 2013.
doi:10.1007/978-3-319-01159-2 7.

Volden, Ø. and Solnør, P. Crypto ROS: Real-time au-
thenticated encryption of vision-based sensor signals
in ROS. https://github.com/oysteinvolden/

Real-time-sensor-encryption, 2020.

322

http://dx.doi.org/10.1007/s00145-008-9026-x
https://www.cryptopp.com/
https://www.cryptopp.com/
http://dx.doi.org/10.1109/TII.2017.2676005
http://dx.doi.org/10.1109/IECON.2008.4758425
http://dx.doi.org/10.1109/JPROC.2006.887288
http://dx.doi.org/10.1109/ICCE-ASIA.2017.8309317
https://www.maritimerobotics.com/otter
https://www.openssl.org/
http://dx.doi.org/10.1109/CYBER.2011.6011758
http://dx.doi.org/10.3389/fict.2018.00002
https://github.com/pettsol/CryptoToolbox
https://github.com/pettsol/CryptoToolbox
http://dx.doi.org/10.1007/978-3-319-01159-2_7
https://github.com/oysteinvolden/Real-time-sensor-encryption
https://github.com/oysteinvolden/Real-time-sensor-encryption

P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

wolfSSL Inc. wolfCrypt. 2020. URL https://www.

wolfssl.com/products/wolfcrypt-2/. Accessed:
2020-12-20.

Wu, H. The stream cipher hc-128. In The eSTREAM
Finalists. 2008.

Wu, H. and Preneel, B. Aegis: A fast authenticated
encryption algorithm. In T. Lange, K. Lauter, and
P. Lisoněk, editors, Selected Areas in Cryptography –
SAC 2013. Springer Berlin Heidelberg, Berlin, Hei-
delberg, pages 185–201, 2014.

A. CryptoToolbox Algorithm
Details

This appendix gives the reader a more detailed in-
troducton to the algorithms and the implementations
found in the CryptoToolbox.

A.1. Algorithm implementations

This section presents an overview of the algorithms
that are accessible in the CryptoToolbox. The inter-
faces of the algorithms are explained, along with com-
pilation options that exist for specific algorithms.

A.1.1. The Advanced Encryption Standard

The Advanced Encryption Standard (NIST, 2001)
(AES) was the result of an international effort to de-
velop a new block cipher around the year 2000. The
winner, the Rijndael cipher, was designed by Vin-
cent Rijmen and Joan Daemen and is a substitution-
permutation network. Figure 5 illustrates the structure
of the AES cipher. Note that like all block ciphers, AES
is stateless. The AES cipher operates on blocks of 128
bits, thus resulting in a fixed {0, 1}128 × {0, 1}K 7→
{0, 1}128 substitution parametrized by the K-bit key if
operated directly. The official AES standard accepts
three key sizes; 128, 192, and 256 bits, respectively.
The CryptoToolbox implementations accept 128-bit
keys. The direct operation of a block cipher is known as
the Electronic Codebook (ECB) mode and leaks struc-
tural information from the plaintext to the ciphertext.
This leak is an unfortunate characteristic, and block ci-
phers are therefore primarily operated in other modes
of operation such as the Cipher Block Chaining (CBC),
Cipher Feedback (CFB), Output Feedback (OFB), and
Counter (CTR) modes (Dworkin, 2001). The Crypto-
Toolbox contains implementations of AES operating in
the CTR mode of operation and a modified CFB mode
of operation.

Plaintext

MixColumns

Ciphertext

SubBytes

ShiftRows

Add Round Key 0

Add Round Key i

SubBytes

ShiftRows

Add Round Key N

For i = 1 to i = N-1

Ciphertext

Add Round Key N

InverseShiftRows

inverseSubBytes

InverseMixColumns

Add Round Key N-i

InverseShiftRows

inverseSubBytes

Add Round Key 0

Plaintext

For i = 1 to i = N-1

Figure 5: The overall structure of AES, with the en-
cryption mode on the left and the decryption
mode on the right. For CFB and CTR mode
the encryption mode is used both during en-
cryption and decryption.

As seen in Figure 5, the AES round function consists
of four operations. A byte substitution element, com-
monly referred to as an S-box, provides the nonlinear-
ity. A shift row and a mix column operation provide
the diffusion. Finally, a round key is added to pre-
vent slide attacks (Biryukov and Wagner, 1999). The
round keys are derived from the secret key. Because
the byte substitution operates on bytes and consists
of computationally expensive operations such as ex-
ponentiations, and because the mix column operation
consists of matrix multiplications, the round function
is very inefficient if implemented directly. At the very
least, the byte substitution should be pre-computed
and implemented as a lookup table. However, because
most systems today have 32 or 64-bit word sizes and
because we still have to deal with the matrix multi-
plication step, such an implementation is not very ef-
ficient. Therefore, the CryptoToolbox implementation
of the AES round function uses a time-memory trade-
off in which the byte substitution, shift row, and mix
column operations are pre-computed and stored in four
1 KB lookup tables. As such, an iteration of the AES
round function requires only 16 table lookups and 16
bitwise XOR (⊕) operations. The AES documentation
provides a detailed description of how to compute these
lookup tables.

Counter mode

The Counter (CTR) mode transforms the block cipher
into a synchronous stream cipher by introducing a state

323

https://www.wolfssl.com/products/wolfcrypt-2/
https://www.wolfssl.com/products/wolfcrypt-2/

Modeling, Identification and Control

determined by a nonce and a counter value. The nonce
combined with the counter value is often referred to as
the initialization vector (IV) and serves as input to
the block cipher. The output of the block cipher is
called the keystream, and after each iteration, the ci-
pher increments the counter value. The keystream is
then mixed with the plaintext or ciphertext through
the ⊕-operator to form the ciphertext or plaintext, re-
spectively. If packets arrive out of order, or if a message
is lost or injected, the transmitter and the receiver of
a transmission encrypted with a synchronous stream
cipher lose synchronization. The IV acts as a synchro-
nization mechanism to provide robustness against such
events. Because the IV is a public parameter it may be
transmitted along with the ciphertext in the plaintext.
Note that only the nonce needs to be transmitted, as
the counter value can be agreed upon beforehand (e.g.
by always initializing the counter value to zero for each
message). The size of the nonce and the counter value
depends on the application; if small packets are trans-
mitted at a high frequency, the nonce value is chosen
to be large (e.g. 96 bits for AES). If large packets are
transmitted less frequently, more bits can be reserved
to the counter value. A common configuration for AES
consists of 96 bits reserved to the nonce value and 32
bits reserved to the counter value. This is the config-
uration used by the CryptoToolbox implementation,
and the counter value is always initialized to 1 for a
new message.

The AES CTR cipher is accessed through the inter-
face seen in Listing 1.

Listing 1: AES CTR Interface

void aes_load_key(aes_state *cs, uint8_t key[16]);

void aes_load_iv(aes_state *cs, uint8_t nonce[12])

;

void aes_ctr_process_packet(aes_state *cs, uint8_t

*out, uint8_t *in, int size);

Note that the aes_load_key() function is only
called once per key to derive the round keys, while
the aes_load_iv() function is called to resynchro-
nize the transmitter and the receiver using the pub-
lic nonce, usually on a per-message basis. Both
encryption and decryption is achieved through the
aes_ctr_process_packet() function.

Cipher Feedback mode

For some applications, it may be desirable to minimize
the amount of data that is to be transmitted. Be-
cause stateful ciphers often require IVs to guarantee
synchronous behavior between the transmitter and the
receiver, each message must carry a (unique) IV in ad-
dition to the ciphertext.

The Cipher Feedback (CFB) mode converts the
block cipher to a self-synchronizing stream cipher by
making the state uniquely determined by a finite num-
ber of ciphertext bits. By modifying the CFB mode
slightly, the need for IVs can be removed by using the
final ciphertext block of the previous message as the IV
for the next message, thus reducing the amount of data
that must be transmitted. This is referred to this as
a carry-over IV design. It may be tempting to apply
a similar modification to the Cipher Block Chaining
mode, but due to the nature of the CBC decryption
mode, such an implementation is vulnerable to attacks
as shown by the famous BEAST attack by Duong and
Rizzo (2011). For this reason, the National Institute
of Standards and Technology (NIST) recommends that
the IVs for both CFB and CBC mode should be un-
predictable in addition to being unique. Thus, even
though no attacks are known against this modified
CFB mode, we warn that this implementation defies
best-practice as defined by NIST.

Because the state is uniquely determined by a finite
number of ciphertext bits, a transmission error prop-
agates and results in burst errors. This can happen
e.g. if packets are received out-of-order, if packets are
injected or if packets are lost in transmission.

An illustration of the carry-over IV CFB mode can
be seen in Figure 6. Unlike a block cipher operating
in CTR mode, a block cipher operating in CFB mode
must be aware of whether is it used to encrypt or de-
crypt data. This is done by passing either of the pre-
defined macros ENCRYPT and DECRYPT in the final func-
tion argument.

The AES CFB cipher is accessed through the inter-
face seen in Listing 2.

Listing 2: AES CFB Interface

void aes_cfb_initialize(aes_state *cs, uint8_t key

[16], uint8_t iv[16]);

void aes_cfb_process_packet(aes_state *cs, uint8_t

*out, uint8_t *in, int size, int mode);

The cipher is only initialized once per fixed
key using aes_cfb_initialize(), after which the
aes_cfb_process_packet() function is used to encrypt
and decrypt.

AES on x86 and ARMv8

Because of the wide adoption of AES, microproces-
sor manufacturers have included enhanced instruction
sets that provide hardware-acceleration of the AES op-
erations. In 2010 Intel included the Intel Advanced
Encryption Standard New Instructions (AES-NI) on
their x86-processors. Advanced Micro Devices fol-
lowed shortly after, and included AES-NI on their x86-

324

P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

Block

cipher

Initialization Vector

Ciphertext

Plaintext

Block

cipher

Ciphertext

Block

cipher

Ciphertext

Plaintext Plaintext

Message 1

Block

cipher

Ciphertext

Plaintext

Block

cipher

Ciphertext

Block

cipher

Ciphertext

Plaintext Plaintext

Message 2

Figure 6: A block cipher operated in CFB mode, with a carry-over IV.

processors. Later, ARM provided an optional crypto-
graphic extension to their ARMv8-processors, the ARMv8

Crypto Extension. These instructions may easily be
accessed through intrinsic functions.

On systems with a modern x86 processor with the
AES-NI instruction set available, the user may com-
pile AES CTR and AES CFB using the g++ commands
seen in Listing 3 to take advantage of the AES-NI in-
structions.

Listing 3: AES x86 AES-NI Compilation.

g++ test_vectors.cpp aes_ctr.cpp ../../../../

Encoders/Hex/encoder.cpp -o test_vectors -D

x86_INTRINSICS -march=native

g++ main.cpp aes_cfb.cpp -o main -D x86_INTRINSICS

-march=native

On systems running an ARMv8 processor with the
ARMv8 Crypto Extension instruction set available, the
user may compile AES CTR and AES CFB using the
g++ commands seen in Listing 4 to take advantage of
the ARMv8 Crypto Extension instructions.

Listing 4: AES ARMv8 Crypto Extension Compila-
tion.

g++ test_vectors.cpp aes_ctr.cpp ../../../../

Encoders/Hex/encoder.cpp -o test_vectors -D

ARM_INTRINSICS -march=armv8-a+crypto

g++ main.cpp aes_cfb.cpp -o main -march=armv8-a+

crypto -D ARM_INTRINSICS

Note that these hardware-accelerated variants are,
in addition to being faster, less prone to side-channel
attacks, i.e. attacks that target the algorithm imple-
mentations rather than the algorithms themselves. An
example of such a side-channel attack is the timing at-
tack in which an adversary attempts to extract infor-
mation based on the time certain operations take. For
example, there may be variations in the time required
to compute multiplication operations depending on the
inputs, and the time needed to access lookup tables de-
pends on where the lookup tables are stored, such as
the level-1 cache or level-2 cache.

A.1.2. Sosemanuk

The Sosemanuk stream cipher was the result of a co-
operative effort between multiple French cryptologists
and was submitted by Berbain et al. (2008) to the
eSTREAM competition. The Sosemanuk stream ci-
pher consists of a linear feedback shift register com-
posed with a nonlinear output function. The nonlin-
ear output function is constructed using components
from the Serpent block cipher designed by Anderson
et al. (2000), which was the runner-up submission to
the AES-process. An overview of the Sosemanuk ci-
pher can be seen in Figure 7.

The Sosemanuk cipher is accessed through the
interface seen in Listing 5.

325

Modeling, Identification and Control

s
t+9

s
t+8

s
t

s
t+1

s
t+3

a-1

a

MUX

R1 R2Trans

Serpent1
Keystream(4 words)

Figure 7: An overview of the Sosemanuk stream cipher.

Listing 5: The Sosemanuk Interface.

void sosemanuk_load_key(sosemanuk_state *cs,

uint8_t *key, int keysize);

void sosemanuk_load_iv(sosemanuk_state *cs,

uint8_t iv[16]);

void sosemanuk_process_packet(sosemanuk_state *cs,

uint8_t *out, uint8_t *in, uint64_t size);

The sosemanuk_load_key() function is called once per
key, while the sosemanuk_load_iv() function is called
to resynchronize the transmitter and the receiver by
deducing an initial state of the cipher from the pre-
loaded key and an IV. This is usually done on a per-
message basis. Encryption and decryption is achieved
through the sosemanuk_process_packet() function.

Serpent

The Serpent block cipher is a substitution-permutation
network like AES. As in AES, the nonlinear component
of the cipher consists of S-boxes. However, because
the Serpent S-boxes are {0, 1}4 7→ {0, 1}4 mappings,
they do not lend themselves well to lookup table im-
plementations. Instead, a bit-slicing technique may be
applied. In the CryptoToolbox implementation, the
bit-slicing techniques proposed by Osvik (2000) is used
to implement the Serpent S-boxes. The Serpent block
cipher is accessed indirectly through the Sosemanuk
function calls, and it is noted that only the parts used
in the Sosemanuk cipher are implemented. The Ser-
pent block cipher is therefore not available as a stand-
alone cipher. An implementation of a bit-sliced Osvik
S-box used in the Serpent cipher can be seen in List-
ing 6.

Listing 6: A Bitsliced Osvik S-Box for the Serpent
Block Cipher.

inline void S4(uint32_t *r0, uint32_t *r1,

uint32_t *r2, uint32_t *r3, uint32_t *r4)

{

*r1 ^= *r3; *r3 = ~(*r3);

*r2 ^= *r3; *r3 ^= *r0;

*r4 = *r1; *r1 &= *r3;

*r1 ^= *r2; *r4 ^= *r3;

*r0 ^= *r4; *r2 &= *r4;

*r2 ^= *r0; *r0 &= *r1;

*r3 ^= *r0; *r4 |= *r1;

*r4 ^= *r0; *r0 |= *r3;

*r0 ^= *r2; *r2 &= *r3;

*r0 = ~(*r0); *r4 ^= *r2;

}

A.1.3. Rabbit

The Rabbit stream cipher is a cipher designed by Boes-
gaard et al. (2008) that was a successful entrant to the
eSTREAM competition. The theoretical foundation of
the Rabbit cipher comes from the theory of chaotic sys-
tems. The cipher deduces a secret master state from
the key, and each IV is mixed with the master state to
produce an initial state of the cipher.

The Rabbit stream cipher is accessed through the
interface seen in Listing 7.

Listing 7: The Rabbit Interface.

void rabbit_load_key(rabbit_state *cs, uint8_t key

[16]);

void rabbit_load_iv(rabbit_state *cs, uint8_t iv

[8]);

void rabbit_process_packet(rabbit_state *cs,

uint8_t *output, uint8_t *input, uint64_t

size);

The rabbit_load_key() function deduces the master
state, and is called once per key. The rabbit_load_iv()

function derives an initial state from the master state
and a public IV. This is usually done on a per-message
basis. The rabbit_process_packet() function is used
to encrypt and decrypt.

A.1.4. ChaCha

The ChaCha stream cipher is a variant of the Salsa-
family of stream ciphers and was designed by Bern-
stein (2008). The ChaCha stream cipher follows an
Add-Rotate-XOR-design, and is generally used in three
configurations; the full cipher consisting of twenty
rounds (ChaCha20), a round reduced variant con-
sisting of twelve rounds (ChaCha20/12), and a fur-
ther round reduced variant consisting of eight rounds
(ChaCha20/8). The round reduced variants offer in-
creased performance at the cost of reduced security.
The CryptoToolbox provides the full ChaCha20 ci-
pher as default, however, the round reduced variants
may be accessed by passing the -D TWELVE_ROUNDS and

326

P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

-D EIGHT_ROUNDS preprocessor flags for the twelve and
eight round variants, respectively, as seen in Listing 8:

Listing 8: The ChaCha Compilation Options for
Round-Reduced Variants.

g++ main.cpp chacha.cpp ../../Encoders/Hex/encoder

.cpp -o main -D TWELVE_ROUNDS

g++ main.cpp chacha.cpp ../../Encoders/Hex/encoder

.cpp -o main -D EIGHT_ROUNDS

If compiled using CMAKE, the preprocessor flags can
be set using add_definitions(). All variants of the
ChaCha stream cipher are accessed through the inter-
face seen in Listing 9.

Listing 9: The ChaCha Interface.

void chacha_initialize(chacha_state *cs, uint8_t

key[32], uint8_t nonce[12]);

void chacha_process_packet(chacha_state *cs,

uint8_t *output, uint8_t *input, uint64_t

size);

The chacha_initialize() function is used to de-
rive an initial state from the secret key and the pub-
lic IV, normally on a per-message basis, after which
chacha_process_packet() is used to encrypt and de-
crypt.

The core of the ChaCha stream cipher revolves
around the quarter-round function shown in Listing 10.
Notice that only modular additions, 32-bit rotations
and bitwise ⊕-operations are used.

Listing 10: The ChaCha Quarter-Round Function.

inline void q_round(chacha_state *cs, int a, int b

, int c, int d){

cs->state[a] += cs->state[b];

cs->state[d] ^= cs->state[a];

cs->state[d] = ROTL_32((cs->state[d]), 16);

cs->state[c] += cs->state[d];

cs->state[b] ^= cs->state[c];

cs->state[b] = ROTL_32((cs->state[b]), 12);

cs->state[a] += cs->state[b];

cs->state[d] ^= cs->state[a];

cs->state[d] = ROTL_32((cs->state[d]), 8);

cs->state[c] += cs->state[d];

cs->state[b] ^= cs->state[c];

cs->state[b] = ROTL_32((cs->state[b]), 7);

}

A.1.5. HC-128

The HC-128 stream cipher was designed by Wu (2008)
and rely on large permutation tables. The HC-128 ci-
pher offers excellent performance on bulk-encryption,

at the cost of a large initialization overhead. The ci-
pher, therefore, suffers from poor performance if small
packets are encrypted frequently.

The HC-128 stream cipher is accessed through the
interface seen in Listing 11:

Listing 11: The HC-128 Interface.

void hc128_initialize(hc128_state *cs, uint8_t key

[16], uint8_t iv[16]);

void hc128_process_packet(hc128_state *cs, uint8_t

*output, uint8_t *input, uint64_t size);

The hc128_initialize() function derives an initial
state from the secret key and IV by mapping the key
and the IV to the tables containing the state, and it-
erating the cipher 1024 times. Once initialized, the
hc128_process_packet() function is used to encrypt
and decrypt.

The remarkably efficient keystream generator func-
tion of the HC-128 stream cipher can be seen in List-
ing 12. Note that g1,2 and h1,2 are functions consisting
only of 32-bit rotations, modular additions, and bit-
wise ⊕-operations, while P and Q denote the tables
that make up the state of the cipher.

Listing 12: The HC-128 Keystream Generator Func-
tion.

void hc128_generate_keystream(hc128_state *cs,

uint32_t *keystream, uint64_t size)

{

// Generate keystream

for (int i = 0; i <= (size-1)/4; i++)

{

int j = (i&0x1FF);

if ((i&0x3FF) < 512)

{

// Operate on P

cs->P[j] = cs->P[j] + g1(cs->P[(j-3)&0x1FF],

cs->P[(j-10)&0x1FF],

cs->P[(j-511)&0x1FF]);

*keystream = h1(cs, cs->P[(j-12)&0x1FF]) ^ (

cs->P[j]);

keystream++;

} else {

// Operate on Q

cs->Q[j] = cs->Q[j] + g2(cs->Q[(j-3)&0x1FF],

cs->Q[(j-10)&0x1FF],

cs->Q[(j-511)&0x1FF]);

*keystream = h2(cs, cs->Q[(j-12)&0x1FF]) ^ (

cs->Q[j]);

keystream++;

}

}

}

327

Modeling, Identification and Control

A.1.6. AEGIS

The AEGIS stream cipher was designed by Wu and
Preneel (2014) and submitted to the Competition for
Authenticated Encryption: Security, Applicability and
Robustness (CAESAR). The AEGIS stream cipher is a
cipher that is heavily based on the AES round function
and provides authenticated encryption directly. Note
that AEGIS also can be used to provide message au-
thenticity without encryption or to authenticate addi-
tional data that is not encrypted. This is commonly
used to authenticate the IV in plaintext, in addition to
the ciphertext. The AEGIS stream cipher is accessed
through the interface displayed in Listing 13.

Listing 13: The AEGIS Interface.

void aegis_load_key(aegis_state *cs, uint8_t key

[16]);

void aegis_encrypt_packet(aegis_state *cs, uint8_t

*ct, uint8_t tag[16], uint8_t *pt, uint8_t *

ad, uint8_t iv[16], uint64_t adlen, uint64_t

msglen);

int aegis_decrypt_packet(aegis_state *cs, uint8_t

*pt, uint8_t *ct, uint8_t *ad, uint8_t iv

[16], uint8_t tag[16], uint64_t adlen,

uint64_t msglen);

The aegis_load_key() function is called once
per key, while the aegis_encrypt_packet() and
aegis_decrypt_packet() functions are used to en-
crypt and decrypt, respectively. Note that the
aegis_decrypt_packet()-function returns 1 if the
(message,tag)-pair is valid. If the (message,tag)-pair
is invalid, the pt-buffer is zeroized. This is done to
prevent chosen ciphertext attacks.

AEGIS on x86 and ARMv8

Because the AEGIS stream cipher utilizes AES oper-
ations, the cipher can take advantage of the enhanced
instruction sets provided by some modern microproces-
sors.

On systems running an x86 processor with the AES-
NI instruction set available, AEGIS is compiled using
the g++ command seen in Listing 14:

Listing 14: AEGIS x86 AES-NI Compilation.

g++ test_vectors.cpp aegis_128.cpp ../../../

Encoders/Hex/encoder.cpp -o test_vectors -D

x86_INTRINSICS -march=native

On systems running an ARMv8 processor with the
ARMv8 Crypto Extension instruction set available,
AEGIS is compiled using the g++ command seen in
Listing 15:

Listing 15: AEGIS ARMv8 Crypto Extension Compi-
lation.

g++ test_vectors.cpp aegis_128.cpp ../../../

Encoders/Hex/encoder.cpp -o test_vectors -

march=armv8-a+crypto -D ARM_INTRINSICS

Notice in Figure 8, however, that the ARMv8 Cryp-
tography Extension intrinsic functions are not perfectly
aligned with the ‘true’ AES round function. Since
AEGIS only utilizes the ‘true’ AES round function and
not the first and last rounds, the round keys must be
pre- and post-added. An excerpt from the ARMv8
AEGIS implementation in the CryptoToolbox illus-
trates this in Listing 16.

Listing 16: Reconstruction of AES Round using
ARMv8 Intrinsics.

#ifdef ARM_INTRINSICS

// ARM INTRINSICS

B_S3 = veorq_u8(B_S3, B_KEY);

B_S3 = vaesmcq_u8(vaeseq_u8(B_S3, B_KEY));

B_S3 = veorq_u8(B_S3, B_KEY);

B_TMP = B_KEY;

vst1q_u8((uint8_t*)cs->s3, B_S3);

#else

A.1.7. Keyed-Hash Message Authentication Code

The Keyed-Hash Message Authentication Code (Dang,
2008) (HMAC) is a construction that converts an un-
keyed cryptographic hash function to a keyed MAC.
In the CryptoToolbox, the HMAC algorithm is im-
plemented with the Secure Hash Algorithm 2 (Dang,
2015) (SHA-2), SHA-256 to be more specific. Note that
the tag size is a parameter in the range [0, 32] bytes de-
termined by the user. A larger tag size provides greater
security against forgery attacks. The size of the key is
also a parameter determined by the user. A key size of
32 bytes is recommended, provided that it is generated
from a sufficiently random source. The interface to the
HMAC-SHA-256 algorithm is displayed in Listing 17.

Listing 17: The HMAC Interface

void hmac_load_key(hmac_state *cs, uint8_t *key,

int keysize);

void hmac_tag_generation(hmac_state *cs, uint8_t*

tag, uint8_t *message, uint64_t dataLength,

int tagSize);

int hmac_tag_validation(hmac_state *cs, uint8_t *

tag, uint8_t *message, uint64_t dataLength,

int tagSize);

The hmac_load_key() function is only called once
per key, while the hmac_tag_generation() and
hmac_tag_validation is used to generate a valid tag,
and authenticate the validity of a (message,tag)-pair,

328

P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

AES Description Intel AES-NI ARMv8-A Cryptography Extension

Round 1:

 AddRoundKey

Round 1:

 _mm_xor_si128()

 AddRoundKey

Round 1 to N-1:

 vaeseq()

 AddRoundKey

 ShiftRows

 SubBytes

 vaesmq()

 MixColumns

Rounds 2 to N:

 SubBytes

 ShiftRows

 MixColumns

 AddRoundKey

Final Round:

 SubBytes

 ShiftRows

 AddRoundKey

Rounds 2 to N:

 _mm_aesenc_si128()

 ShiftRows

 SubBytes

 MixColumns

 AddRoundKey

Final Round:

 _mm_aesenclast_si128()

 ShiftRows

 SubBytes

 AddRoundKey

Round N:

 vaeseq()

 AddRoundKey

 ShiftRows

 SubBytes

Final Round:

 veorq()

 AddRoundKey

Figure 8: An illustration of the AES description, the AES-NI operations and the ARMv8 cryptography extension
operations. The difference between the AES-NI and ARMv8 cryptography extension round function
means that extra operations are required when using ARM hardware-acceleration. This figure is
based on a figure from Crutchfield (2014).

respectively. The hmac_tag_validation function re-
turns 1 if the (message,tag)-pair is valid and 0 if in-
valid.

SHA-256

The unkeyed SHA-256 algorithm is also accessible
through the interface displayed in Listing 18. Note
that an unkeyed cryptographic hash algorithm should
not be used to provide message authenticity and in-
tegrity directly.

Listing 18: SHA-256 Interface

void sha256_process_message(uint8_t *digest,

uint8_t *message, uint64_t size);

A.1.8. Hexadecimal encoding

In addition to the cryptographic algorithms, the Cryp-
toToolbox contains a hexadecimal encoder. The hex-
adecimal encoder is useful for printing the output of the
cryptographic algorithms in a printable format. Be-
cause the algorithms operate on buffers of type uint8_t,
each byte represents a number in the interval [0, 255].
However, only numbers in the interval [32, 255] repre-
sent printable characters, some of which are unintelligi-
ble. The hexadecimal encoder abates this problem by
interpreting each byte as a hexadecimal number. The
CryptoToolbox also provides a decoder that interprets
a buffer of hexadecimal numbers as uint8_t. The de-
coder is generally used in scenarios in which correctly

formatted input is needed to confirm the correct oper-
ation of an algorithm with official test vectors.

The interfaces for the hexadecimal encoder and de-
coder are displayed in Listing 19.

Listing 19: The Hexadecimal Encoder and Decoder In-
terfaces.

void hex_encode(char* output, const uint8_t* input

, int size);

void hex_decode(uint8_t* output, const char* input

, int size);

B. Algorithm Applications

This appendix contains examples of how cryptographic
algorithms from the CryptoToolbox may be applied to
obtain data confidentiality, data authenticity, or both.

B.1. Encryption and decryption using
Rabbit

Listing 20: E-block implemented with Rabbit for data
confidentiality

#include "rabbit.h"

#include <cstring> // for memcpy

int main()

{

/* RABBIT SETUP */

329

Modeling, Identification and Control

rabbit_state cs;

uint8_t key[16] = {0};

uint8_t iv[8] = {0};

rabbit_load_key(&cs, key);

/* SETUP FINISHED */

/*One buffer for plaintext and one

buffer for the ciphertext and IV*/

uint8_t plaintext[DATA_SIZE];

uint8_t message[8+DATA_SIZE];

while(1)

{

/* Get new data */

plaintext <- LoadData();

/* RABBIT ENCRYPT */

std::memcpy(message, iv, 8);

rabbit_load_iv(&cs, iv);

rabbit_process_packet(&cs, &message[8],

plaintext, DATA_SIZE);

(*(uint64_t*)iv)++;

/* ENCRYPT FINISHED */

/* Transmit (IV || Ciphertext) */

Transmit(message);

}

}

Listing 21: D-block implemented with Rabbit for data
confidentiality

#include "rabbit.h"

int main()

{

/* RABBIT SETUP */

rabbit_state cs;

uint8_t key[16] = {0};

rabbit_load_key(&cs, key);

/* SETUP FINISHED */

/*One buffer for plaintext and one

buffer for the ciphertext and IV*/

uint8_t plaintext[DATA_SIZE];

uint8_t message[8+DATA_SIZE];

while(1)

{

/* Receive message (IV || Ciphertext) */

message <- Receiver();

/* RABBIT DECRYPT */

rabbit_load_iv(&cs, message);

rabbit_process_packet(&cs, plaintext, &message

[8], DATA_SIZE);

/* DECRYPT FINISHED */

/* Pass on the data */

Accept(plaintext);

}

}

B.2. Authentication and verification using
HMAC-SHA-256

Listing 22: E-block implemented with HMAC-SHA-
256 for data origin authenticity

#include "hmac.h"

#include <cstring> // for memcpy

int main()

{

/* HMAC-SHA-256 SETUP */

hmac_state as;

uint8_t a_key[32] = {0};

hmac_load_key(&as, a_key, 32);

/* SETUP FINISHED */

/* One buffer holds the plaintext,

and the other holds the plaintext

and the 32-byte tag. */

uint8_t plaintext[DATA_SIZE];

uint8_t message[DATA_SIZE+32];

while(1)

{

/* Get new data */

plaintext <- LoadData();

/* COMPUTE TAG */

std::memcpy(message, plaintext, DATA_SIZE);

hmac_tag_generation(&as, &message[DATA_SIZE],

plaintext, DATA_SIZE, 32);

/* TAG GENERATION FINISHED */

/* Transmit (Plaintext || Tag) */

Transmit(message);

}

}

Listing 23: D-block implemented with HMAC-SHA-
256 for data origin authenticity

#include "hmac.h"

int main()

{

/* HMAC-SHA-256 SETUP */

hmac_state as;

uint8_t a_key[32] = {0};

hmac_load_key(&as, a_key, 32);

/* SETUP FINISHED */

330

P. Solnør, “A Cryptographic Toolbox for Feedback Control Systems”

/* One buffer holds the plaintext,

and the other holds the plaintext

and the 32-byte tag. */

uint8_t plaintext[DATA_SIZE];

uint8_t message[DATA_SIZE+32];

while(1)

{

/* Receive message (Plaintext || Tag) */

message <- Receiver();

/* HMAC-SHA-256 VALIDATE MESSAGE */

if (!hmac_tag_validation(&as, &message[

DATA_SIZE], message, DATA_SIZE, 32)){

/* TAG IS INVALID */

continue;

} else {

std::memcpy(plaintext, message, DATA_SIZE);

}

/* MESSAGE VALIDATION FINISHED */

/* Pass on the data */

Accept(plaintext);

}

}

B.3. Authenticated encryption using
Rabbit and HMAC-SHA-256

Listing 24: E-block implemented with Rabbit and
HMAC-SHA-256 for data confidentiality
and data origin authenticity

#include "rabbit.h"

#include "hmac.h"

#include <cstring> // for memcpy

int main()

{

/* RABBIT SETUP */

rabbit_state cs;

uint8_t key[16] = {0};

uint8_t iv[8] = {0};

rabbit_load_key(&cs, key);

/* SETUP FINISHED */

/* HMAC-SHA-256 SETUP */

hmac_state as;

uint8_t a_key[32] = {0};

hmac_load_key(&as, a_key, 32);

/* SETUP FINISHED */

/* Buffer for plaintext, and

(IV || Ciphertext || Tag) */

uint8_t plaintext[DATA_SIZE];

uint8_t message[8+DATA_SIZE+32];

while(1)

{

/* Get new data */

plaintext <- LoadData();

/* RABBIT ENCRYPT */

std::memcpy(message, iv, 8);

rabbit_load_iv(&cs, iv);

rabbit_process_packet(&cs, &message[8],

plaintext, DATA_SIZE);

(*(uint64_t*)iv)++;

/* ENCRYPT FINISHED */

/* COMPUTE TAG OVER IV AND CIPHERTEXT,

PLACE BEHIND IV AND CIPHERTEXT */

hmac_tag_generation(&as, &message[DATA_SIZE

+8], message, DATA_SIZE+8, 32);

/* TAG GENERATION FINISHED */

/* Transmit (IV || Ciphertext || Tag) */

Transmit(message);

}

}

Listing 25: D-block implemented with Rabbit and
HMAC-SHA-256 for data confidentiality
and data origin authenticity

#include "rabbit.h"

#include "hmac.h"

int main()

{

/* RABBIT SETUP */

rabbit_state cs;

uint8_t key[16] = {0};

rabbit_load_key(&cs, key);

/* SETUP FINISHED */

/* HMAC-SHA-256 SETUP */

hmac_state as;

uint8_t a_key[32] = {0};

hmac_load_key(&as, a_key, 32);

/* SETUP FINISHED */

/* Buffer for plaintext, and

(IV || Ciphertext || Tag) */

uint8_t plaintext[DATA_SIZE];

uint8_t message[8+DATA_SIZE+32];

while(1)

{

/* Receive message (IV || Ciphertext || Tag)

*/

message <- Receiver();

/* HMAC-SHA-256 VALIDATE MESSAGE */

if (!hmac_tag_validation(&as, &message[8+

DATA_SIZE], message, DATA_SIZE+8, 32)){

331

Modeling, Identification and Control

/* TAG IS INVALID */

continue;

}

/* MESSAGE VALIDATION FINISHED */

/* RABBIT DECRYPT */

rabbit_load_iv(&cs, message);

rabbit_process_packet(&cs, plaintext, &message

[8], DATA_SIZE);

/* DECRYPT FINISHED */

/* Pass on the data */

Accept(plaintext);

}

}

B.4. Authenticated encryption using
AEGIS

Listing 26: E-block implemented with AEGIS for data
confidentiality and data origin authenticity

#include "aegis_128.h"

#include <cstring> // for memcpy

int main()

{

/* AEGIS SETUP */

aegis_state cs;

uint8_t key[16] = {0};

uint8_t iv[16] = {0};

aegis_load_key(&cs, key);

/* SETUP FINISHED */

/* Buffer for plaintext and

(IV || Ciphertext || Tag) */

uint8_t plaintext[DATA_SIZE];

uint8_t message[16+DATA_SIZE+16];

while(1)

{

/* Get new data*/

plaintext <- LoadData();

/* AEGIS ENCRYPT & AUTHENTICATE */

std::memcpy(message, iv, 16);

aegis_encrypt_packet(&cs, &message[16], &

message[16+DATA_SIZE], plaintext, iv, iv,

16, DATA_SIZE);

(*(uint64_t*)iv)++;

/*Transmit (IV || Ciphertext || Tag) */

Transmit(message);

}

}

Listing 27: D-block implemented with AEGIS for data
confidentiality and data origin authenticity

#include "aegis_128.h"

int main()

{

/* AEGIS SETUP */

aegis_state cs;

uint8_t key[16] = {0};

aegis_load_key(&cs, key);

/* SETUP FINISHED */

/* Buffer for plaintext and

(IV || Ciphertext || Tag) */

uint8_t plaintext[DATA_SIZE];

uint8_t message[16+DATA_SIZE+16];

while(1)

{

/* Receive message */

message <- Receiver();

/* AEGIS VALIDATE & DECRYPT */

if (!aegis_decrypt_packet(&cs, plaintext, &

message[16], message, message, &message

[16+DATA_SIZE], 16, DATA_SIZE))

{

// Invalid msg

continue;

}

/*COMPLETED*/

/* Pass on the data */

Accept(plaintext);

}

}

332

http://creativecommons.org/licenses/by/3.0

	Introduction
	Cryptographic methods and feedback control signals
	Organization of the article

	Motivation and terminology
	Security issues of guidance, navigation, and control systems
	Cryptographic preliminaries

	The CryptoToolbox
	Important remarks

	Case study: Securing the GNC system of an autonomous vehicle
	When to use which cryptographic primitive?
	Implementing E and D

	Conclusion
	CryptoToolbox Algorithm Details
	Algorithm implementations
	The Advanced Encryption Standard
	Sosemanuk
	Rabbit
	ChaCha
	HC-128
	AEGIS
	Keyed-Hash Message Authentication Code
	Hexadecimal encoding

	Algorithm Applications
	Encryption and decryption using Rabbit
	Authentication and verification using HMAC-SHA-256
	Authenticated encryption using Rabbit and HMAC-SHA-256
	Authenticated encryption using AEGIS

