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Abstract

This article aims to analyze Model Predictive Control (MPC) for the control of multi-chamber cylinders.
MPC with and without integral action has been introduced. Three different algorithms have been used
to solve the optimization problem in the MPC. The different algorithms have been compared with an
industrial solver. The influence of changing mass, choosing a different middle line pressure, system delays,
signal noise, velocity estimation, and changing pressure levels has been investigated. It is concluded that
for the small prediction horizon used in the paper a simple algorithm such as A∗ can produce results
as good as the previously used Differential Evolution algorithm in less than half the time. It is further
concluded that unknown software delays and unknown changes in mass have the largest effect on system
performance.
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1 Introduction

Digital displacement cylinders are cylinders with more
than two chambers. The differently sized areas allow
the cylinder to change its force output, by connect-
ing them to low or high pressure lines Linjama et al.
(2009). Switching between these forces can allow the
cylinder to follow a desired trajectory in an energy
efficient way. The switching also causes undesirable
vibrations in the cylinder’s movement. According to
Linjama et al. (2009) multi-chamber cylinders are only
good for moving large masses, which help to filter out
the vibrations. While this is true the minimum mass
requirements have not clearly been investigated. The
cylinders force resolution is defined by the number of
chambers, their relative size, and the number of pres-
sures, which it can be connected to. The authors have
been using a middle pressure line to reduce the losses

due to switching Hansen et al. (2011), Hansen et al.
(2017). Usually this pressure is selected as the mid-
point between the minimum and maximum pressures
in the system. In the case of Hansen et al. (2011) a sys-
tem with four pressure-rails is discussed but their mag-
nitudes are still equally distributed. In Donkov et al.
(2017) the value of the middle pressure rail is selected
through a parameter sweep and it is shown that the
value of the middle pressure value can vastly improve
energy efficiency. A simulation of the entire trajec-
tory run is used for each evaluation, which makes the
method slow. Two algorithms are used in the control
of multi-chamber cylinders - Force Selection Algorithm
(FSA) used in Huova et al. (2010) and Hansen et al.
(2011), and Model Predictive Control (MPC) used in
Donkov et al. (2018), Hansen et al. (2018). In Hey-
broek and Sjöberg (2018) both algorithms are used in
a sense as a FSA is used to generate a pressure ref-
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erence and then a MPC is used to control the valves
during the switching event. In Hansen et al. (2017) and
Donkov et al. (2018) it was shown that MPC can per-
form better than FSA for position tracking problems,
but in these papers and others the computational bur-
den of the algorithm is mentioned as a significant issue.
In Donkov et al. (2018) the MPC could not deal with
the changing load. In Donkov et al. (2019) MPC with
integral action was applied to deal with this, but since
the focus in Donkov et al. (2019) was on fault tolerance
the effects were not really properly investigated. Fur-
thermore the delay compensation proposed in Cortes
et al. (2012) was introduced to deal with the consid-
erable computation delay and the long time between
a given command to switch pressures and the actual
event occurring. This was also not discussed. This pa-
per will attempt to address some of these problems.
First a system will be described in Sec. 2. This system
will be used for all of the tests. Then the MPC used
in Donkov et al. (2018) and the addition of integral
action as in Donkov et al. (2019) will be presented in
Sec. 3. Furthermore, the properties of the cost func-
tions used in Donkov et al. (2018) and Donkov et al.
(2019) will be analysed. Then three different optimiza-
tion algorithms will be presented in Sec. 4. One of the
algorithms will be chosen for further study of the sys-
tem in Sec. 5, where the influence of changing mass,
changes in middle pressure line, reference changes and
system delay will be discussed.

2 Model
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Figure 1: Representation of the multi-chamber cylin-
der used in the paper

The model used to investigate the system is a three
chamber multi-chamber cylinder with a constant mass.

The equations are as follows.

ṗi =
βi
Vi

(Aiẋp +Qv,i,n(u)) (1)

Qv,i,n(u) = kquS(pi − pn)
√

(|pi − pn| (2)

ẍp =
1

m
(Fcyl − Fg − Ffric) (3)

where ṗi, βi, Vi, and Ai are the pressure gradient, bulk
modulus, volume, and area of chamber i. xp, ẋp, and
ẍp are the position, velocity and the acceleration of
the piston. Qv,i,n(u) is the flow to chamber i, through
valve n. The flow is defined by the orifice equation with
kq being the valve specific coefficient, pn being the nth

pressure line and u being the normalized valve opening.
S(∗) stands for the sign function. m is the mass of the
system, Fcyl is the force provided by the cylinder, Fg is
the gravitational load, and Ffric is the frictional force
modelled by the LuGre model. The system parameters
are taken from Donkov et al. (2018) and Ho Cho et al.
(2016), with a major difference that the cylinder is con-
sidered to push a constant mass instead of a changing
inertia. This is done in order to simplify the analysis.
The LuGre friction model is described by

Ffric = σ0z + σ1ż + σ2ẋ (4)

ż = ẋ− |ẋ|
g(ẋ)

z (5)

g(ẋ) =
1

σ0

[
Fc + (Fs − Fc)e

−(ẋ/vstr)
]

(6)

where z is the average deflection of the bristles, σ0, σ1,
and σ2 are friction parameters. g(ẋ) is a non-linear
function describing the effects of the different friction
forces, where Fc is the Coulomb friction, Fs is the static
friction, and vstr is the Stribeck velocity. The parame-
ters for this friction model have been obtained experi-
mentaly for this specific cylinder by Ho et al. in Ho Cho
et al. (2016). All parameters are collected in Tab. 1.

2.1 Force level number and density

The operation of the controller is heavily influenced by
the possible force levels. The equation for the number
of possible force levels is:

Fnum = nc
np (7)

where Fnum is the number of force levels that are avail-
able, nc is the number of chambers and np is the num-
ber of pressure lines. Some researchers have chosen to
use a four-chamber cylinder with two pressure lines -
this gives 16 force levels. Others have chosen to use
a three-chamber cylinder with three pressure lines -
this gives 27 force levels. Others have chosen to use a
normal differential cylinder with 7 pressure lines - this
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Table 1: System parameters

A1 0.0051 m2 Fs 1214/-1646 N
A2 0.0026 m2 Fc 500/-600 N
A3 0.0013 m2 vstr 0.026/-0.035 m/s
kq 2.3570 · 10−7 m3/Pa σ0 8 · 106/− 6 · 106 N/m
m 50000 kg σ1 7 · 102/− 7 · 102 N/ms−1

Fg 9000 N σ2 1 · 104/− 9 · 103 N/ms−1
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Figure 2: Force resolution of a three-chamber, three-pressure cylinder.

gives 128 force levels. The cost of switching between
two pressures depends on the pressure and the volume
as:

E =
1

2

V

β
(p1 − p0)

2
(8)

It stands to reason that having smaller differences be-
tween pressure levels improves efficiency more than
having smaller chambers in which the switch can oc-
cur, because the pressure difference is squared. This
would suggest that having more pressure lines is always
better than having more chambers. An argument for
increasing the number of chambers can be made, since
all chambers are in use. On the contrary there might
be 20 possible pressure lines, but a trajectory might re-
quire the use of only two of them. The number of force
levels alone is not the only important thing. As men-
tioned above, it can be expected that trajectories will
not utilise the entire force range of the cylinder. An
example of this can be seen in Fig. 2. Here a constant
force of 9000 N is needed (denoted with a red circle).
Since it is very difficult to have a force which exactly
matches the load the controller will have to switch con-
stantly. In Fig. 2 the two forces with the smallest cost
between them have been coloured in red. Changing
pressure of the middle line value does not change the
maximum and minimum forces of the cylinder, but it
does change the distribution of possible forces. Here a

mid pressure line of 30 bar has been chosen through a
parameter sweep with a full model simulation for each
point in the space (20 pressure values between 20 and
100 bar). A less time consuming method can be uti-
lized to choose the value of the mid pressure line for a
certain load by using Eq. (8). For each possible mid
pressure value all combinations between a force above
and a force below a target can be arranged. The cost of
each combination can be found through Eq. (8) and the
minimum can be selected. Fig. 3 shows the results for
such an analysis when the target is the afore mentioned
9000 N . The analysis suggests that the mid pressure
line should be even smaller than the previously selected
30 bar. This can be attributed to the fact that in the
analysis only the average required force is considered.
By doing the same sweep, but this time summing the
cost for each force in the known force trajectory gives
the result shown in Fig. 4. In the figure it can be
seen that for this trajectory a mid pressure value of 30
bar gives the smallest amount of switching losses. This
agrees with the results of the exhaustive search. The
benefit is that the analysis can be conducted in a mat-
ter of seconds where as the parameter sweep can take
up to several hours. The improved costs and force den-
sity around the load comes at a price of course - there
is only one force level between 34000 N and 55000 N .
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Figure 3: Cost to stay in one place with a load of 9 kN
with different mid pressure levels
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Figure 4: Cost to follow trajectory with different mid
pressure levels

3 Control

The control structure will be a Model Predictive Con-
troller (MPC). The controller has already been tested
on a similar system in Donkov et al. (2018). Here it
is repeated in brief terms for consistency in notation.
The controller chooses a control signal based on an
optimisation of a cost function J . The elements of
the cost function are usually connected with the out-
puts of a physical representation of the system e.g a
model. So in order to use MPC a model of the multi-
chamber cylinder should be established. The one used
in Donkov et al. (2018) was:

x(k + 1) = Ax(k) +Bu(k)−Agrav (9)

y(k + 1) = Cx(k) (10)

where x(k) are the five internal states of the system
at time step k which are pA, pB , pC , vp, xp. These in
turn are the three chamber pressures, the velocity of
the piston, and the position of the piston respectively.
u(k) is the vector of valve openings. Once again from
Donkov et al. (2018) A, B, and C can be defined as:

A =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 Ts

A1Ts

Meq
−B1Ts

Meq

A2Ts

Meq
0 1

 (11)

B =


pt pmid phigh 0 0 0 0 0 0

0 0 0 pt pmid phigh 0 0 0
0 0 0 0 0 0 pt pmid phigh

0 · · · 0
0 · · · 0

 (12)

It can be noticed that no pressure dynamics are present
in the model. The pressures in the system are directly
defined by the valve vector and the matrix B. An
equivalent mass Meq, areas A1, B1, and A2, and the
sampling time Ts define the dynamics of the model.
The magnitudes of these can be seen in Tab. 1, with
the exception of Ts, which is 60 ms. Furthermore it was
shown in Donkov et al. (2018), that the controller can
work much better if the disturbance force is constant
and known. In the referenced article the disturbance
force was a load due to gravity, which is why it is de-
noted with Agrav in Eq. (9). The use of MPC with
integral action can be a solution to problems with dis-
turbances and modelling errors Stephens et al. (2013).
According to Stephens et al. (2013) in order to intro-
duce integral action the two things need to be intro-
duced - the change in control ∆u(k) = u(k)− u(k− 1)
and change in system state ∆x(k) = x(k) − x(k − 1).
With these definitions Eq. (9) can be rewritten as

∆x(k + 1) = A∆xc(k) +B∆u(k) (13)

y(k + 1)− y(k) = CA∆xc(k) + CB∆u(k) (14)

Then a new state vector has to be introduced

x̄(k) =

[
∆xc(k)
y(k)

]
(15)

The system equations become

x̄(k + 1) = Āx̄(k) + B̄∆u(k) (16)

y(k) = C̄x̄(k) (17)

where

Ā =

[
A 0n×m

CA Im×m

]
(18)

B̄ =

[
B
CB

]
(19)

C̄ =
[
0m×n Im×m

]
(20)
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Figure 5: Position of cylinder without integral action
MPC.
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Figure 6: Position of cylinder with integral action
MPC.

This can also be written as

ŷ = G∆û+ x̂o (21)

where

G =


B̄ 0 · · · 0
ĀB̄ B̄ · · · 0

...
...

. . .
...

ĀM−1B̄ ĀM−2B̄ · · · B̄

 (22)

x̂o =

 C̄Ā
...

C̄ĀHp

 (23)

This is the model which will be used to predict the
piston position of the multi-chamber cylinder for M
steps ahead. The effect of a changing load on the ori-
ginal controller can be seen in Fig. 5. In this figure the
load force on the cylinder is 0 N for the first 15 seconds
and increases to 9000 N for the rest of the simulation.
When the load increases an offset appears just as in
Donkov et al. (2018). The effect of the integral action
controller can be seen in Fig. 6.

3.1 Cost Function Analysis

The cost function used for the optimisation problem is

J = ||r̂ − (GQûfull + x̂o)||2 + |Fûfull| (24)

where r̂ is the reference vector. The symbol ûfull de-
notes the vector of valves which starts with the cur-
rent valve combination followed by the vector to be
found by optimisation. These variables can only take
on values of 0 or 1. This denotes the valve being
open or closed. The matrix Q is used to connect

the vector ûfull ∈ {0, 1} with the difference vector
∆û ∈ {−1, 0, 1}. One shows the actual valve opening,
while the other shows the change in control action. By
this definition of Q, ∆û can be defined as Qûfull = ∆û.
In this case (GQûfull + x̂o) = G∆û+ x̂o = ŷ. The first

part of the cost function is then ||r̂ − ŷ||2, which is the
second norm squared of the position error of the cylin-
der. Throught this paper ||∗|| denotes the second norm
of ∗ and |∗| denotes the first norm. The cost function
can also be rewritten as:

J = ||−GQûfull + (r̂ − x̂o)||2 + |Fûfull| (25)

J =
∣∣∣∣∣∣T ûfull + ĵ

∣∣∣∣∣∣2 + |Fûfull| (26)

Putting the cost function on the form (26) makes it a
well known optimization problem called classic lasso.
F is a difference matrix which calculates the cost of
switching from one pressure to another.

F (i, j) =

 −Vchambnpz, if i = j
Vchambnpz, elseif j = i+ 9
0, otherwise

(27)

where Vchambn is the volume of the chamber connected
to this valve, pz is the normalized pressure in the pres-
sure line connected to this valve.
In order for the optimization to agree with the model
û has to be constrained to:

0̂ ≤ û ≤ 1̂ (28)

where 0̂ and 1̂ are vectors of zeros and ones respectively,
with the same size as û. Furthermore, since only one
pressure line should be connected to each chamber an
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Figure 7: Cost of position accuracy.
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Figure 8: Cost of switching scaled with w.

additional constraint is added:

Lû =

 u1(k) + u2(k) + u3(k)
...

u7(M) + u8(M) + u9(M)

 Lû = 1̂ (29)

Finally, because no throttling should occur with this
controller, the input vector is constrained to only hav-
ing the integer values û ∈ {0, 1}.

The cost function is made of two parts - the cost of
not following the reference, and the cost incurred due
to switching between two pressure lines. The two costs
for a prediction horizon of 4 steps can be seen in Fig. 7
and Fig. 8.

The switching cost function can be considered con-
vex (if and only if the integrality constraint is dropped
from ûfull), because the first one is constructed by tak-
ing an affine system ŷ to the second power, and the sec-
ond function is a norm, which makes it always affine.

In Fig. 9 the two parts of the cost function have
been plotted against each other with blue points being
specific combinations of valve openings. A Pareto op-
timal front can be identified by the points which are
not dominated by any other points in at least one di-
mension. In this case the front has been denoted with
red points. A closer view of the front is available in in
Fig. 10.

The two cost functions can be added with the
weighted sum method in order to find a preferred trade-
off. This is illustrated in Fig. 11. In the figure the red
star denotes the minimum, which is the the point with
zero energy cost in Fig. 9.

4 Algorithms

Many different algorithms can be used to solve the
problem defined in Eq. (26). Due to the integral-
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Figure 9: Pareto front.

ity constraint on the inputs the problem is known as
mixed-integer programming and is not convex. Some
of the algorithms include stochastic optimization al-
gorithms, branch and bound algorithms and enumera-
tion. It is often difficult to determine which algorithm
to use on a specific problem without testing it out. So
far most DDC control papers have focused on stochas-
tic algorithms (differential evolution in particular) and
enumeration methods. In this section both differential
evolution and branch and bound methods will be im-
plemented and their performance will be investigated.

Differential Evolution

The differential evolution (DE) algorithm is a stochas-
tic algorithm inspired by natural processes Storn
(1995). It can solve a large variety of problems in-
cluding the mixed-integer non-linear problems of the
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Figure 10: Zoomed in plot of the Pareto front.

0 1 2 3 4 5 6
Combination [-] 105

0

0.5

1

1.5

2

2.5

C
os

t [
-]

10-4

Figure 11: Combined cost for energy and position.

kind discussed in this paper. The algorithm has been
proven to work for this specific controller in Hansen
et al. (2017) and Donkov et al. (2019). The algorithm
can be applied to the problem of controlling a DDC
as described in Fig. 12. In it x stands for the current
population, Iind is a matrix of TRUE/FALSE values,
rand is a random number generator outputting values
between 0 and 1, and CR is a number describing the
crossover ratio. mod(∗, ∗) is the modulus function re-
turning the remainder of the division of two numbers.
Notation x(min(f) == f) is taken from Matlab and
stands for those members of x which produce the min-
imum value f . h is a vector holding the quality of
the results of the last several generations. The size
of the vector is defined by Tf . hindx is the index in
which the results of the current generation should be
recorded in the vector h. The index cycles between 1
and Tf because of the modulus function. This cause

the the vector h to act as a buffer getting continuously
overwritten. The quality of the results of a genera-
tion is in this case the sum optimal values f for the
entire population. If the algorithm is producing the
same results multiple times in a row then it can be
stopped. This is one of the stopping conditions for the
algorithm, where the standard deviation of the history
vector is compared with a tolerance T . In the algo-
rithm a population of size [NP,D] is initiated, where
NP is the size of the population and D is the control
horizon for the MPC. For each member in the pop-
ulation, a D-number of forces are selected based on
a randomization of an initial seed. The seed can be a
previous optimum or something else. In this implemen-
tation the seed was the force number 12 because that
was a force level close to the constant load applied to
the cylinder. It was found to be a good starting value.
The randomization changed this force level within ±4
forces i.e. the initial population had forces between
force levels 8 and 16. The algorithm then uses the cost
function J to find the fitness of each member. Each
new generation is created based on the best members
from the previous generations and a random mutation.
The crossover ratio CR determines how many members
can be kept from the previous generation.

Figure 12: Differential Evolution (DE)

x = Initiate(seed);
G = 1;
stop = 0;
f = J(x);
while stop ==0 do

xnew = Mutate(x, min(f));
Iind = rand > CR;
xnew(Iind) = x(Iind);
f = J(xnew);
hindx = mod(G, Tf )+1;
h(hindx) = sum(f);
G = G+ 1;
xbest = x(min(f) == f);
x = xnew;
if std(h) < T OR G ≥ Gmax then

stop = 1;
end

end

The mutation was done according to:

xnew = xr1 + F (xbest − xr1) + F (xr2 − xr3) (30)

where r1, r2, and r3 are randomly chosen vectors from
the previous population, which are different from each
other. The first part: xr1 + F (xbest − xr1), moves the
new population towards the best solution from the pre-
vious iteration, since if F = 1, the equation simplifies

229



Modeling, Identification and Control

to xbest. The second part: F (xr2 − xr3), prevents the
algorithm from converging prematurely as it moves the
answer in a random direction. As the algorithm con-
verges, the population becomes more and more homo-
geneous and so the effect of the second part is reduced.

In theory the algorithm will converge to a global
minimum provided the size of the population is large
enough, the number of generations is large enough and
the population is mutated in such a way as to explore
the entire solution space. Generally speaking settings
which allow the algorithm to converge faster are also
more likely to result in local instead of global minima.
The algorithm was implemented on a single-core 2 GHz
dSpace microcontroller in Donkov et al. (2019). In that
setup populations larger than 50 and with more than a
4 step prediction could not run in real time (<60 ms for
the specific system). Even these numbers were not pos-
sible without first changing the cost function. Profiling
the algorithm code showed the bottleneck in the eval-
uation of the cost function. Initially the cost function
was selected for its convexity, but the DE method does
not depend on convexity or the gradient of the cost
function. The cost function J has a 2-norm squared.
The squaring of matrices was identified as computa-
tionally intensive, so instead the sum(∗) and abs(∗)
functions from Matlab were used:

fx = sum(abs(ênp)) (31)

The vector fx has size <NP,1 and represents the costs
of following the reference of each individual member
in the population of size NP . Similarly the cost of
switching can be collected as:

fE = sum(abs(Fx)) (32)

where F is the difference matrix and x is the current
population. The final cost vector is then:

f = fx + fE (33)

It can be seen that for each individual member of the
population the cost function was changed from Eq.
(26) to

J =
∣∣∣T ûfull + ĵ

∣∣∣+ |Fûfull| (34)

The effects of this can be seen in Fig. 13. A red star
denotes the minimum and it should be noticed that
the same minimum as in Fig. 11 is found. This shows
that changing the cost function has not changed the
optimum. The algorithm was considerably sped up due
to the reduction of mathematical operations. In fact
the lines of code, which took the most time are the
ones used to create the matrix x. Furthermore, the
cost function can be sped up in Matlab by vectorizing
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Figure 13: Position error and switching cost combined
into one cost function.

the calculations. Instead of evaluating each member of
the population in a FOR loop, the entire population
can be evaluated at once by collecting all the control
input vectors in a population of size NP to a matrix
of size ûpop ∈ <D×9,NP .

ûpop = [ûfull,1, ûfull,2, · · · , ûfull,np] (35)

ĵnp =
[
ĵ, ĵ, · · · , ĵ

]
(36)

Then the entire population can be evaluated as

ênp = T ûpop + ĵnp (37)

After these changes the runtime of the code was re-
duced from ≈ 2 s to ≈ 30 ms. The small number of
members in each population, the low number of pop-
ulations and the changes to the cost function were ex-
pected to produce poor results, but in fact valve prob-
lems and measurement noise had a larger effect. For
this article the function was written with both the flat
cost function from Eq. 34 and the Lasso from Eq. 26
using Matlab 2019. The two functions were then com-
piled to MEX files with the Matlab coder application.
Both were then tested on the same laptop. In the newer
version of Matlab the two cost functions take the same
time to complete. This can attribute to either improve-
ments in Matlab’s compiler or the difference in how the
hardware handles the compiled code. The performance
of the algorithm will be presented and compared after
the other algorithms are also discussed. In those re-
sults DE refers to the Differential Evolution algorithm
with the cost function Eq. (26), while DE-Flat refers
to results with the cost function Eq. 34.
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Branch and bound

A branch and bound algorithm was also developed.
The algorithm consists of several steps as can be seen
in Fig. 14.

Figure 14: Branch and bound based on Al-
ternating Directions Method of Multipliers

while stop == 0 do
xopt, fopt = ADMM(J , A) ;
if Binary(xopt) OR I > Imax then

stop = 1 ;
end
xb = BranchVar(xopt) ;
A1 = AddConstaintOne(xb) ;
x1, f1 = ADMM(J , A1) ;
A0 = AddConstaintZero(xb) ;
x0, f0 = ADMM(J , A0) ;
if f0 > f1 then

A = A1 ;
else

A = A0

end
I = I + 1 ;

end

The algorithm removes the integrality constraint and
solves the resulting convex problem using a normal con-
vex solver. In this case the convex solver used is the
Alternating Directions Method of Multipliers (ADMM)
algorithm. The solver finds a convex solution xopt with
a cost of fopt according to the cost function J and the
constraint matrix A. Then a variable xb is chosen on
which to branch by the function BranchVar(). The
branching function evaluates three values of xopt at a
time. According to Eq. 29 the sum of these should
be equal to one. If all three values are integers the
function continues to the next three. If they are not,
the function chooses the largest value to be branched
on. In this case the two branches are - ”the variable is
constrained to be 0” and ”the variable is constrained
to be 1”. This is done by adding the appropriate row
to matrix A, which creates the matrices A0 and A1

respectively. The two minimums f0 and f1 are then
compared and the smaller one is selected, provided all
the constraints are satisfied. If f1 is smaller and the
value is constrained to be one, then the other two val-
ues have to be equal to zero for the original constraints
to be satisfied. Because there is a switching cost asso-
ciated with changing a variable, constraining one vari-
able can affect the other values in the vector xopt, re-
sulting in faster convergence to an integer solution. If
at this point all the variables are integers the algorithm
is stopped. If not, then another variable to branch on

is selected. In practice it was found that f0 is more
often smaller, so the same three variables have to be
evaluated again.

The ADMM algorithm was chosen because it shows
good properties for solving the lasso problem Boyd
et al. (2011), Gaines et al. (2018). The method con-
sists of separating the cost function into two separate
functions

f(x) = 0.5
∣∣∣∣∣∣Tx+ ĵ

∣∣∣∣∣∣2 + |Fx| (38)

g(z) = I(z) (39)

where f(x) is the original cost function and g(z) is an
indication function connected with the constraints as

I(z) =

{
0 x ∈ C

inf otherwise
(40)

In this case C is the set Ax = b satisfying the con-
straints Eq. (29) and x ≥ 0. Then the problem can be
described as:

min(f(x) + g(z)) (41)

subject to x− z = 0 (42)

The ADMM iterations to solve this problem are:

xk+1 = min(f(x) + 0.5ρ
∣∣∣∣xk+1 − zk + uk

∣∣∣∣2) (43)

zk+1 = min(g(z) + 0.5ρ
∣∣∣∣xk+1 − zk+1 + uk

∣∣∣∣2) (44)

uk+1 = uk + xk+1 + zk+1 (45)

For this type of problem the proximity functions of the
x and z iteration are known Gaines et al. (2018).

A∗ search

Another algorithm which will be tested is the A∗ search
algorithm. The algorithm can be seen in Fig. 15. At
each step, the algorithm chooses the node nbranch with
the smallest cost ncost and explores its branches nnew
using the cost function J . The costs and names of
the new branches are added to the list of branches N
with the function AddNodes(). Then the already ex-
plored branch is removed from the list with the func-
tion RemoveNode(). Each branch deeper represents
one more simulation step. For this reason the al-
gorithm is searching for a node number above 20440
which represents nodes in the 5th simulation step. For
the specific case here each node branches into 27 pos-
sible new combinations. The algorithm stops when the
goal is reached and the cost to reach it is smaller than
the cost to reach any of the unexplored nodes. Longer
time horizons represent bigger vectors. Summing big-
ger vectors can result in larger results, which causes the
algorithm to choose to branches with smaller numbers
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Figure 15: A∗ search

N = [1, 0, 0] ;
stop = 0 ;
while stop ==0 do

nbranch, ncost = min(N(:, 2));
nnew = Branch(nbranch);
nnew,costs = J(nnew);
f = J(xnew);
N = AddNodes([ nnew, nnew,costs,
nbranch]) ;
N = RemoveNode(nbranch) ;
if nnew > Goal AND nnew,costs < N(:, 2)
then

stop = 1 ;
end

end

i.e. branches earlier in the tree. This type of search is
called a width first search and can result in a large num-
ber of explored branches. An example of this can be
seen in Fig. 16. In order to help the algorithm to con-

Figure 16: Tree exploration without heuristic. Ex-
plored nodes 229.

verge faster an heuristic is implemented. The heuristic
is based on the distance of a certain combination to
an oracle. In order to obtain an oracle the integrality
constraint is dropped and the much simpler problem is
solved using ADMM. Unfortunately the heuristic only
works if the ADMM produces results above 0.5 for a
specific valve which can then be rounded to 1. An ex-
ample where the heuristic is rounded and where it is
not can be seen in Fig. 18 and Fig. 17 respectively.
Without a heuristic 229 nodes need to be explored,
while with one the number drops to 84. It can be ob-

Figure 17: Tree exploration with heuristic but no
rounding. Explored nodes = 3423.

served that at each following time step the number of
summed elements is increased. This can lead to a situ-
ation in which every node on a level is explored before
the next level is explored. The heuristic and the tuning
need to take this into account. It can also be observed
that during the first steps the chosen pressure levels do
not affect the position error directly. This leads to a
situation where the cost of changing force has a larger
effect on the cost function.

The algorithm was still slow to complete in this form
so a modification was introduced. Instead of predicting
only until the current step in each node, the prediction
for the entire horizon with the current node’s force level
is conducted. For example for node 10, which corre-
sponds to the choice of force 9 at the first time step,
the prediction is for the full 5 time steps with force 9
being kept constant. This prevents the optimization
algorithm to find combinations in which a more costly
step is taken first in order to use a much cheaper step
later in the prediction horizon. This greatly increased
performance time-wise, while not considerably degrad-
ing the accuracy of the controller, due to the nature of
the system.

Algorithm results

The performance of the various algorithms has been
tested and presented in Fig. 20 and Fig. 19. Two algo-
rithms are added for comparison. The results denoted
with Mosek are obtained using a commercial solver of
the same name. Mosek can solve a variety of prob-
lems including mixed interger problems. The Yalmip
toolbox for optimization in Matlab was used to inter-
act with the solver Löfberg (2004). The algorithm is
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Figure 18: Tree exploration with heuristic with round-
ing. Explored nodes = 84.

included as a baseline. The second algorithm is called
OneStep. It takes the first step of the A∗ algorithm
and stops. The algorithm is included because it was
noticed that the A∗ algorithm takes very few iterations
to converge, which could mean that it converges pre-
maturely. The initial conditions for the tests consist of
32 different initial conditions. These are created from
all the combinations of two parameters. One parame-
ter is the current force level. The second parameter is
the position reference. This corresponds to a change
in the position reference for the final step from -5 mm
to +5 mm. In the table the notation (1,1) then cor-
responds to a situation where all the valves are closed
and the desired movement is in the negative direction.

The different algorithms find similar optimum values
in most cases. The only exception is the branch and
bound algorithm which in most cases gives a poorer re-
sult. In order to show how these small variations affect
the accuracy of the controller full simulation runs are
conducted with each algorithm. Each test is repeated
ten times and the values in Tab. 2 are the average
and the standard deviation. Instead of RMS sum of
position error, only the absolute sum of errors is used
for the Accuracy measure. This is done, because when
these numbers are divided by the large number of sam-
ple the variations become very small numbers which are
difficult to compare. All the tests presented here have
the same number of samples.

It can be seen that the branch and bound algorithm
has the worst results in terms of accuracy, energy use
and simulation time. It is also important to notice that
the A∗ and OneStep algorithm have the same accuracy
and energy use. This shows that in its current imple-
mentation the A∗ cannot find the global optimum. On
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Figure 19: The value of the minimums found by the
algorithms
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Figure 20: Time needed to find the minimum with dif-
ferent algorithms

the other hand it can also be noticed that the accu-
racy of the controller compared with the DE controller
is not much different. Furthermore the OneStep algo-
rithm completes the computation in ≈ 1/3 of the time.
It can also be noticed that while DE and DE-Flat have
variations in their results, the other algorithms do not.
This is, because these two algorithms are stochastic
based. The variation of the DE-Flat algorithm is quite
large. In one of the ten tests the algorithm fails to find
an optimum and gives an incorrect force command.
The cost to switching back to a better force level is
quite high and by the time the cylinder is following the
trajectory again the results of that run are poor. This
illustrates the issue with using stochastic algorithms to
solve time sensitive problems.
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Table 2: Result for full simulation

BB-ADMM DE DE-Flat A∗ OneStep

Accuracy [m] 1260.99±0.00 843.90±8.29 916.30±119.49 859.62±0.00 859.62±0.00
Energy use [J/mm] 21.15±0.00 5.03±0.69 4.48±1.04 7.44±0.00 7.44±0.00

Sim Time [s] 197.50±12.85 131.01±17.49 121.75±7.43 64.87±34.84 41.50±8.19

5 Parameter variation

The effect of different algorithms has been explored
in the previous section. In this section one of the al-
gorithms is chosen and the effects of the variation of
different system parameters will be examined. The per-
formance of the algorithm under varying conditions will
be examined according to the root-mean-square sum of
error over time, the energy used over time and the to-
tal harmonic distortion. All test results are normalized
with a so called base run where mass is 50 ton, soft-
ware delays are 30 ms, no position or velocity noise is
present, the pressure lines are constant and all signal
are available.

5.1 Total Harmonic Distortion analysis
and reference variation

In order to analyse the effect of parameter variation
it was decided that the sum of error and the energy
use of the simulation might not be enough. The Total
Harmonic Distortion (THD) analysis is based on Fast
Fourier Transforms (FFT) and can show the ratio be-
tween the main amplitude present in a signal and other
frequencies such as harmonics or noise. Compared with
the RMS sum of error the analysis shows whether posi-
tion error comes from switching activity or if it comes
from a phase shift between the reference and the actual
position. In order to calculate the THD, the FFT of
the position, velocity, and force output signals of the
cylinder were collected. FFT produces a single-sided
amplitude spectrum of the analysed signal. For in-
stance the position signal was analysed and the results
can be seen in Fig. 21. The FFT has broken down the
original position signal into a large number of smaller
composite sine-wave signals. In the figure the y-axis
shows the amplitude of these components and the x-
axis shows their frequency. The following formula was
used in order to calculate THD based on the signal P1:

THD =

√
(
∑L

f=1 Ppos(f)2)−max(Ppos(f))2

Aref,rms
(46)

In the equation L is the length of the amplitude spec-
trum signal. This is determined by the sampling fre-
quency. Since the signal was obtained from a simula-
tion a very high sampling frequency of 10000 Hz could
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Figure 21: The single-sided amplitude spectrum of the
position signal.

be chosen. Ppos(f) is the value of the signal at fre-
quency f i.e. the amplitude of the sine-wave with this
frequency. In the figure it can be seen that the ref-
erence trajectory with a frequency of 0.2 Hz and an
amplitude of 0.05 m is clearly seen. max(Ppos(f)) is
the maximum value of the signal. In this case it will
correspond to the previously mentioned spike due to
the reference. It is important to notice that the spike
does not necessarily equal the reference, as the con-
troller might over or undershoot. Aref,rms is the RMS
value of the reference signal. The noise due to switch-
ing is difficult to see due to the scale of the plot in Fig.
21. For this reason a zoomed in version is provided in
Fig. 22. In Tab. 3 the results of five test are shown.
The position reference is a sine wave with the indicated
frequency. The length of the trajectory is always the
same - 3 periods of the sine wave. THD results closer to
0 are better. It can be seen that position error, energy
use and THD do not vary the same way. The trajectory
with a frequency of 0.2 Hz has two times larger error,
but uses three times less energy. At the same time the
smoothness of motion has not degraded considerably
as is indicated by the THD. It can be concluded that
the error is largely due to phase shift between position
and trajectory. It can be seen that at faster frequencies
the controller is no longer able to follow the trajectory
with the same accuracy until at 0.8 Hz the error and
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Table 3: Sine wave testing

Sine freq [Hz] Error sum [m] Energy measure[J/mm] THD [%]
0.1 0.0024 6.36 1.25
0.2 0.0047 2.66 1.79
0.4 0.0102 4.40 1.43
0.6 0.0171 8.02 4.99
0.8 0.0356 8.36 48.04
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Figure 22: A zoomed in plot of the single-sided ampli-
tude spectrum of the position signal.

THD become extremely large.

A standard cylinder with a proportional control
valve, which can employ throttling control would pro-
duce THD values very close to zero. Outside of simula-
tion studies it can be expected that the multi-chamber
cylinder would produce results with higher THD. The
same THD analysis can be applied to the force output
of the cylinder and the results can be seen in Fig. 23.
The constant load can be seen as a spike at 0 Hz. The
result of the force switching can be seen as two moun-
tains on either side of the 8 Hz mark, which repeat pe-
riodically. This plot can give an indication of the force
spikes in the cylinder. Comparing the results in Fig.
22 and Fig. 23 shows that distortions at 5.5 Hz are
visible in both plots, but in the position signal more
noise is present in the frequency below 5.5 Hz. The
higher frequency distortions have been filtered out.

The THD value is well established in electrical and
audio engineering and multiple standards define ac-
ceptable limits. The field of digital hydraulics does not
have such standards, but perhaps as the field expands
it can establish them in conjunction with industry.
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Figure 23: The single-sided amplitude spectrum of the
force output signal.

5.2 Changing mass

In order to test how the controller reacts to a change
in load mass, this parameter has been varied from 25
ton to 100 ton. In Fig. 24 the mass is varied but
the controller uses only 50 ton in the model of the
system. It can be seen that reducing the mass below
40 ton increases error significantly. It can be seen that
THD increases much faster. At 25 ton the RMS sum
of position error is 5 times larger compared with the
base run. In Fig. 25 when the mass is changed the
new value is given to the controller and the prediction
matrices are recalculated. This reduces both error and
THD.

When inertia is reduced the system’s frequency in-
creases. In order to investigate if a multi-chamber
cylinder can operate with low mass - the mass and
switching frequency of the controller have been swept
individually. The accurate values are supplied to the
controller, so the model agrees with the parameters.
The sweep has been extended in one direction until
the controller is no longer accurate due to the large
mass. With different tuning(increased penalty on po-
sition error) this error can be reduced. Increasing the
switching frequency helps with this problem, but very
quickly a lower bound is found. One valve requires 15
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Figure 24: Result from varying mass without providing
the controller the correct value.
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Figure 25: Result from varying mass and providing the
controller the correct value.

ms to close and then the other requires 15 ms to open.
It is assumed that only 5 ms are actual spool travel
time while the rest is software delay and force build
up. Using the transition can be done in 20 ms. After
the transition is done it takes between 18 and 20 ms
for the pressure in the chamber to change. According
to this the controller cannot run faster than 40 ms. In
this case a time step of 60 ms was used to ensure that
the transition is complete. Changing tuning parame-
ters does not help with the instability due to very low
system inertia. It was found that with this size of cylin-
der and valves with these properties the system needs
at least 15 ton of equivalent mass for the controller to
be stable.

5.3 System delays

The system delays have a large effect on the perfor-
mance of the controller. The delays are of a signif-
icant size compared with the sampling time of the
model. In order to deal with this, the output of the
controller is further delayed as discussed previously. If
the added delay together with the system delays per-
fectly matches one sample of the model, it can be said
that the delay can be cancelled out. This is of course
never the case, since the delay compensation is static
and user chosen and the real delays are variable and
potentially unknown. In this study the representation
of the system delay is varied, while the user chosen
delay is kept constant at 30 ms. The results in Fig.
26 illustrate how much does the performance degrade
depending on difference in delay.
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Figure 26: Result from varying system delays.

When the user selected delay is 30 ms the algorithm
gives the best results. Between 25 ms and 35 ms there
is no noticeable effect. Above 35 ms position error
is still not affected, but THD increases. Between 10
ms and 25 ms position error and THD grow. THD is
affected worse than the position error. Reducing the
user selected delay to zero is equivalent to removing
the delay compensation completely, which is why the
results for 10 ms are the worst.

5.4 Noise and velocity estimation

In this study the difference in performance when noise
is present on the position measurement and velocity
measurement are presented. The level of the white
noise is varied with a gain. A low pass filter with a cut-
off frequency of 160 Hz is used to filter out the noise,
because it can be expected that both noise and filtering
would be present on any implementation of the system.
Because of the gain the maximum noise level varies
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from 0 mm in the first test to 1.25 mm in the last. As
a reference the real system has a noise level of 0.3 mm.
The effect of noise on the position measurement can
be seen in Fig. 27. The effect of noise on the velocity
measurement can be seen in Fig. 28. Finally, it cannot
be certain that a velocity measurement is available on
all systems. A test was conducted were the velocity
is estimated from the position measurement using the
same method as in Donkov et al. (2019). The frequency
of this estimation process was varied by changing the
sampling time ts and the results can be seen in Fig.
29.
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Figure 27: Result from varying position noise level.
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Figure 28: Result from varying velocity noise level.

These tests show that noise has little effect on the
position error, but it increases THD. It can also be seen
that at 0 mm velocity noise THD has increased by 20
% compared with the base run. The only difference
between the two is that in this test the velocity signal
is filtered even though the noise gain is zero. The same
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Figure 29: Result from varying the frequency of veloc-
ity estimation.

is true for the position noise test, but the THD there
has not increased. It can be concluded that the phase
shift introduced by the filter has increased THD, but
the controller is only sensitive to phase shifts in ve-
locity and not position. The results also show that if
velocity is estimated with a high enough frequency it
does not effect performance. In Donkov et al. (2019)
the sampling rate of the velocity estimation was 5 ms.
It can be concluded that this contributed to the poor
laboratory results in that study.

5.5 Supply pressure change

It can be expected that the pressure of the supply lines
will not be perfectly constant. In this test the value of
the middle pressure line is changed, but the controller
is not updated. The results can be seen in Fig. 30.
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Figure 30: Result from varying the

In this test also the position error is not significantly
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changed by the variation of the parameter, but the
THD raises to twice its original value when the pressure
line magnitude is reduced by nine bar.

6 Conclusion

In this paper, a multi-chamber cylinder with MPC with
integral action has been investigated through a sensi-
tivity study. Several different optimization algorithms
have been tested for the specific problem. The DE al-
gorithm produces the best results regarding time and
accuracy at larger time horizons, but at smaller time
horizons of 4 steps a simpler iterative algorithm or the
A∗ search can find similar results faster. Another bene-
fit of the A∗ algorithm is that it is not based on stochas-
tic methods, so it delivers the same performance every
time. The systems performance depends on several fac-
tors. It can be seen that the integral action of the MPC
can overcome some parameter variations, but this usu-
ally comes at the cost of increased control effort. The
factors, which have the largest impact on the system
performance are changes in mass, changes in system
delays and the frequency of velocity estimation. If the
exact mass is known and provided to the controller,
multi-chamber cylinders can work with masses as low
as 15 ton. In order to drive systems with lower inertia
- smaller cylinders, faster valves and faster controllers
need to be used. The THD number can give a good
indication of the vibrations the controller will intro-
duce due to switching, but the number is meaningless
without some well established standards.
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Heybroek, K. and Sjöberg, J. Model predic-
tive control of a hydraulic multichamber actua-
tor: A feasibility study. IEEE/ASME Trans-
actions on Mechatronics, 2018. 23(3):1393–1403.
doi:10.1109/TMECH.2018.2823695.
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